Gel-Based Materials for Intelligent Sensors and Self-Powered Nanogenerators
1. Introduction
2. Overview of Published Articles
3. Summary and Future Outlook
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fan, X.; Liu, S.; Jia, Z.; Koh, J.J.; Yeo, J.C.C.; Wang, C.G.; Loh, T.P.; Surat’Man, N.E.; Loh, X.J.; Le Bideau, J.; et al. Ionogels: Recent advances in design, material properties and emerging biomedical applications. Chem. Soc. Rev. 2023, 52, 2497–2527. [Google Scholar] [CrossRef] [PubMed]
 - Kumar, V.; Parvin, N.; Joo, S.W.; Mandal, T.K.; Park, S.S. Great carbon nano materials based composites for electronic skin: Intelligent sensing, and self-powered nano generators. Nano Energy 2025, 137, 110805. [Google Scholar] [CrossRef]
 - Zhao, C.; Wang, Y.; Tang, G.; Ru, J.; Zhu, Z.; Li, B.; Zhu, D.; Guo, C.F.; Li, L. Ionic flexible sensors: Mechanisms, materials, structures, and applications. Adv. Funct. Mater. 2022, 32, 2110417. [Google Scholar] [CrossRef]
 - Lu, P.; Liao, X.; Guo, X.; Cai, C.; Liu, Y.; Chi, M.; Nie, S.; Du, G.; Wei, Z.; Meng, X. Gel-based triboelectric nanogenerators for flexible sensing: Principles, properties, and applications. Nano-Micro Lett. 2024, 16, 206. [Google Scholar] [CrossRef] [PubMed]
 - Vijayakanth, T.; Shankar, S.; Finkelstein-Zuta, G.; Rencus-Lazar, S.; Gilead, S.; Gazit, E. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chem. Soc. Rev. 2023, 52, 6191–6220. [Google Scholar] [CrossRef] [PubMed]
 - Periyasamy, T.; Asrafali, S.P.; Lee, J. Hydrogels for Translucent Wearable Electronics: Innovations in Materials, Integration, and Applications. Gels 2025, 11, 372. [Google Scholar] [CrossRef] [PubMed]
 - Singh, A.N.; Nam, K.W. Gel-Based Self-Powered Nanogenerators: Materials, Mechanisms, and Emerging Opportunities. Gels 2025, 11, 451. [Google Scholar] [CrossRef] [PubMed]
 - Garbev, A.; Petkucheva, E.; Ivanova, G.; Dimitrova, M.; Stoyanova, A.; Slavcheva, E. Utilization of Flotation Wastewater for Metal Xanthate Gel Synthesis and Its Role in Polyaniline-Based Supercapacitor Electrode Fabrication. Gels 2025, 11, 446. [Google Scholar] [CrossRef] [PubMed]
 - Bottacin, L.; Zambon, R.; Tajoli, F.; Zani, V.; Pilot, R.; El Habra, N.; Signorini, R.; Gross, S. Silver–Titania Nanocomposites for Photothermal Applications. Gels 2025, 11, 461. [Google Scholar] [CrossRef] [PubMed]
 - Wang, N.; He, M.; Wang, L.; Lei, C.; Xiao, L.; Li, Y.; Liu, S. Highly Sensitive Optical Fiber Pb2+ Concentration Sensor Based on HEMA/AM/SA Interpenetrating Polymer Network (IPN) Hydrogel. Gels 2025, 11, 766. [Google Scholar] [CrossRef] [PubMed]
 - Wang, Q.; Zhao, Y.; Zeng, H.; Chen, X.; Chen, C.; Cui, J.; Wang, Y. 3D Printing of Polyacrylamide/Sodium Alginate/Ammonium Molybdate/Lithium Chloride Hydrogels for E-Skin and Information Encryption. Gels 2025, 11, 703. [Google Scholar] [CrossRef] [PubMed]
 - Sutradhar, S.C.; Banik, N.; Khan, M.M.R.; Jeong, J.H. Polymer Gel-Based Triboelectric Nanogenerators: Conductivity and Morphology Engineering for Advanced Sensing Applications. Gels 2025, 11, 737. [Google Scholar] [CrossRef] [PubMed]
 - Li, S.; Gao, Z.; Yang, W.; Wang, R.; Zhang, L. Recent Advances in Dielectric Elastomer Actuator-Based Soft Robots: Classification, Applications, and Future Perspectives. Gels 2025, 11, 844. [Google Scholar] [CrossRef]
 - Singh, A.N.; Meena, A.; Nam, K.-W. Gels in Motion: Recent Advancements in Energy Applications. Gels 2024, 10, 122. [Google Scholar] [CrossRef] [PubMed]
 - Sun, G.; Wang, P.; Jiang, Y.; Sun, H.; Meng, C.; Guo, S. Recent advances in flexible and soft gel-based pressure sensors. Soft Sci. 2022, 2, 17. [Google Scholar] [CrossRef]
 - Nandi, A.K.; Chatterjee, D.P. Hybrid polymer gels for energy applications. J. Mater. Chem. A 2023, 11, 12593–12642. [Google Scholar] [CrossRef]
 - Sahoo, P.; Singh, P.; Saxena, K.; Ghosh, S.; Singh, R.P.; Benosman, R.; Bandyopadhyay, A.; Hill, J.P.; Nakayama, T. A general-purpose organic gel computer that learns by itself. Neuromorphic Comput. Eng. 2023, 3, 044007. [Google Scholar] [CrossRef]
 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Park, S.-S. Gel-Based Materials for Intelligent Sensors and Self-Powered Nanogenerators. Gels 2025, 11, 876. https://doi.org/10.3390/gels11110876
Kumar V, Park S-S. Gel-Based Materials for Intelligent Sensors and Self-Powered Nanogenerators. Gels. 2025; 11(11):876. https://doi.org/10.3390/gels11110876
Chicago/Turabian StyleKumar, Vineet, and Sang-Shin Park. 2025. "Gel-Based Materials for Intelligent Sensors and Self-Powered Nanogenerators" Gels 11, no. 11: 876. https://doi.org/10.3390/gels11110876
APA StyleKumar, V., & Park, S.-S. (2025). Gel-Based Materials for Intelligent Sensors and Self-Powered Nanogenerators. Gels, 11(11), 876. https://doi.org/10.3390/gels11110876
        
