Previous Issue
Volume 10, April
 
 

Gels, Volume 10, Issue 5 (May 2024) – 30 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 1764 KiB  
Article
Production and Physicochemical Characterization of the Gel Obtained in the Fermentation Process of Blue Corn Flour (Zea mays L.) with Colletotrichum gloeosporioides
by Guadalupe Villarreal-Rodríguez, Jesús Manuel Escajeda-García, Lingyun Chen, Nubia Amaya-Olivas, Teresita Ruiz-Anchondo, David Neder-Suarez, David Chávez-Flores, Néstor Gutierrez-Mendez and León Hernández-Ochoa
Gels 2024, 10(5), 314; https://doi.org/10.3390/gels10050314 - 03 May 2024
Viewed by 121
Abstract
Food gels are viscoelastic substances used in various gelled products manufactured around the world. Polysaccharides are the most common food gelling agents. The aim of this work was the production and characterization of a gel produced in a blue corn flour fermentation process, [...] Read more.
Food gels are viscoelastic substances used in various gelled products manufactured around the world. Polysaccharides are the most common food gelling agents. The aim of this work was the production and characterization of a gel produced in a blue corn flour fermentation process, where different proportions were used of blue corn (Zea mays L.) flour and Czapek Dox culture medium (90 mL of culture medium with 10 g of blue corn flour, 80 mL of culture medium with 20 g of blue corn flour, and 70 mL of culture medium with 30 g of blue corn flour) and were fermented for three different durations (20, 25, and 30 days) with the Colletotrichum gloeosporioides fungus. A characterization of the gel was carried out studying the rheological properties, proximal analysis, toxicological analysis, microscopic structure, and molecular characterization, in addition to a solubility test with three different organic solvents (ethanol, hexane, and ethyl acetate, in addition to water). The results obtained showed in the rheological analysis that the gel could have resistance to high temperatures and a reversible behavior. The gel is soluble in polar solvents (ethanol and water). The main chemical components of the gel are carbohydrates, especially polysaccharides, and it was confirmed by FT-IR spectroscopy that the gel may be composed of pectin. Full article
(This article belongs to the Special Issue Food Gels: Properties and Applications)
Show Figures

Graphical abstract

15 pages, 784 KiB  
Article
The Time–Temperature Superposition of Polymeric Rubber Gels Treated by Means of the Mode-Coupling Theory
by Domenico Mallamace, Giuseppe Mensitieri, Martina Salzano de Luna and Francesco Mallamace
Gels 2024, 10(5), 313; https://doi.org/10.3390/gels10050313 - 03 May 2024
Viewed by 152
Abstract
Viscoelastic relaxation measurements on styrene-butadiene rubbers (SBRs) doped with carbon nanotube (CNT) at different concentrations around the sol-gel transition show the time–temperature superposition (TTS). This process is described in terms of the mode coupling theory (MCT) approach to viscoelasticity by considering the frequency [...] Read more.
Viscoelastic relaxation measurements on styrene-butadiene rubbers (SBRs) doped with carbon nanotube (CNT) at different concentrations around the sol-gel transition show the time–temperature superposition (TTS). This process is described in terms of the mode coupling theory (MCT) approach to viscoelasticity by considering the frequency behavior of the loss modulus E(ω) and showing that the corresponding TTS is linked to ω1/2 decay. From the analysis of the obtained data, we observe that the interaction between SBRs and CNT determines different levels of decay according to their concentration. Systems with the lowest CNT concentration are only characterized in the studied T-range by their fragile glass-forming behavior. However, at a specific temperature TL, those with the highest CNT concentration show a crossover towards pure Arrhenius that, according to the MCT, indicates the presence of kinetic glass transition (KGT), where system response functions are characterized by scaling behaviors. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

21 pages, 4872 KiB  
Review
OnyxTMGel or Coil versus Hydrogel as Embolic Agents in Endovascular Applications: Review of the Literature and Case Series
by Paolo Perri, Giuseppe Sena, Paolo Piro, Tommaso De Bartolo, Stefania Galassi, Davide Costa and Raffaele Serra
Gels 2024, 10(5), 312; https://doi.org/10.3390/gels10050312 - 02 May 2024
Viewed by 308
Abstract
This review focuses on the use of conventional gel or coil and “new” generation hydrogel used as an embolic agent in endovascular applications. In general, embolic agents have deep or multidistrict vascular penetration properties as they ensure complete occlusion of vessels by exploiting [...] Read more.
This review focuses on the use of conventional gel or coil and “new” generation hydrogel used as an embolic agent in endovascular applications. In general, embolic agents have deep or multidistrict vascular penetration properties as they ensure complete occlusion of vessels by exploiting the patient’s coagulation system, which recognises them as substances foreign to the body, thus triggering the coagulation cascade. This is why they are widely used in the treatment of endovascular corrections (EV repair), arteriovenous malformations (AVM), endoleaks (E), visceral aneurysms or pseudo-aneurysms, and embolisation of pre-surgical or post-surgical (iatrogenic) lesions. Conventional gels such as Onyx or coils are now commercially available, both of which are frequently used in endovascular interventional procedures, as they are minimally invasive and have numerous advantages over conventional open repair (OR) surgery. Recently, these agents have been modified and optimised to develop new embolic substances in the form of hydrogels based on alginate, chitosan, fibroin and other polymers to ensure embolisation through phase transition phenomena. The main aim of this work was to expand on the data already known in the literature concerning the application of these devices in the endovascular field, focusing on the advantages, disadvantages and safety profiles of conventional and innovative embolic agents and also through some clinical cases reported. The clinical case series concerns the correction and exclusion of endoleak type I or type II appeared after an endovascular procedure of exclusion of aneurysmal abdominal aortic (EVAR) with a coil (coil penumbra released by a LANTERN microcatheter), the exclusion of renal arterial malformation (MAV) with a coil (penumbra coil released by a LANTERN microcatheter) and the correction of endoleak through the application of Onyx 18 in the arteries where sealing by the endoprosthesis was not guaranteed. Full article
Show Figures

Graphical abstract

17 pages, 3971 KiB  
Article
Characterization and Performance Analysis of Hydrolyzed versus Non-Hydrolyzed Poly(NVF-co-HEA) Hydrogels for Cosmetic Applications
by Maytinee Yooyod, Thanyaporn Pinthong, Sararat Mahasaranon, Jarupa Viyoch, Sukunya Ross and Gareth M. Ross
Gels 2024, 10(5), 311; https://doi.org/10.3390/gels10050311 - 02 May 2024
Viewed by 252
Abstract
This study explores the synthesis and modification of poly(N-vinylformamide-co-N-hydroxyethyl acrylamide) (poly(NVF-co-HEA)) hydrogels for cosmetic applications. Poly(NVF-co-HEA) hydrogels were produced followed by an acid hydrolysis reaction to produce poly(NVF-co-VAm-co-HEA) hydrogels, introducing poly(vinyl amine) (PVAm) into the structure. This modification considerably alters the hydrogels’ properties, [...] Read more.
This study explores the synthesis and modification of poly(N-vinylformamide-co-N-hydroxyethyl acrylamide) (poly(NVF-co-HEA)) hydrogels for cosmetic applications. Poly(NVF-co-HEA) hydrogels were produced followed by an acid hydrolysis reaction to produce poly(NVF-co-VAm-co-HEA) hydrogels, introducing poly(vinyl amine) (PVAm) into the structure. This modification considerably alters the hydrogels’ properties, yielding materials with over 96% water content, predominantly in the form of non-freezing or free water, which is beneficial in the uptake and release of hydrophilic species. The primary amine groups from inclusion of VAm also improved the mechanical properties, as evidenced by an 8-fold increase in Young’s modulus. The hydrogels also possessed pH-responsive behavior, which was particularly noticeable under acidic and basic conditions, where a large decrease in water content was observed (40% to 75% reduction). Characterizing the hydrogels’ release capabilities involved using organic dyes of different functional groups and sizes to examine the pH impact on release. The results indicated that hydrolyzed hydrogels interacted more effectively with charged species, highlighting their suitability for pH-responsive delivery. The release of cosmetic active ingredients was also demonstrated through the controlled release of Liquid Azelaic™, specifically potassium azeloyl diglycinate (PAD). Our findings reveal that the hydrolyzed hydrogels exhibit superior burst release, especially under alkaline conditions, suggesting their suitability for cosmetic applications where controlled, pH-responsive delivery of active ingredients is desired. Overall, this investigation highlights the potential of hydrolyzed poly(NVF-co-HEA) hydrogels in cosmetic applications. Their ability to combine high water content with mechanical integrity, along with their pH-responsive release ability, allows for use in cosmetic formulations. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

3 pages, 156 KiB  
Editorial
Editorial for the Special Issue Entitled “Recent Advances in Crosslinked Gels”
by Melike Firlak Demirkan and John G. Hardy
Gels 2024, 10(5), 310; https://doi.org/10.3390/gels10050310 - 02 May 2024
Viewed by 194
Abstract
A gel can be defined as a semi-solid structure that has mechanical properties ranging from tough to soft, depending on their constituents [...] Full article
(This article belongs to the Special Issue Recent Advances in Crosslinked Gels)
13 pages, 809 KiB  
Article
Heat-Induced Gelation of Chickpea and Faba Bean Flour Ingredients
by Anna Mengozzi, Emma Chiavaro, Davide Barbanti and Francesca Bot
Gels 2024, 10(5), 309; https://doi.org/10.3390/gels10050309 - 01 May 2024
Viewed by 243
Abstract
This study aimed to investigate the gelling behavior of faba bean (FB) and chickpea (CP) flour between 10 and 20% (w/w) concentration at pH 3.0, 5.0, and 7.0. Both sources formed at pH 3.0 and 5.0 self-standing gels with 12% ( [...] Read more.
This study aimed to investigate the gelling behavior of faba bean (FB) and chickpea (CP) flour between 10 and 20% (w/w) concentration at pH 3.0, 5.0, and 7.0. Both sources formed at pH 3.0 and 5.0 self-standing gels with 12% (w/w) of flour, while 16% (w/w) of flour was required to obtain a gel at pH 7.0. During gelling between 40 and 70 °C, a sharp increase of the elastic modulus G’ was observed in both flours, mainly due to water absorption and swelling of the starch, one of the major constituents in the ingredients. Increasing the temperature at 95 °C, G’ increased due to the denaturation of globulins and therefore the exposure of their internal part, which allowed more hydrophobic interactions and the formation of the gel. After cooling, both FB and CP gels displayed a solid-like behavior (tan δ ranging between 0.11 and 0.18) with G’ values at pH 3.0 and 5.0 significantly (p < 0.05) higher than those at pH 7.0, due to the lower electrostatic repulsions at pHs far from the isoelectric point. The rheological properties were supported by the water binding capacity values, confirming the better gels’ strength described by rheological analysis. These results will enhance our understanding of the role of legume flours in formulating innovative and sustainable food products as alternatives to animal ones. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels)
24 pages, 8738 KiB  
Article
Characterization of Quaternary-Ammonium-Based Ionogel Membranes for Application in Proton Exchange Membrane Fuel Cells
by Eduardo Iniesta-López, Adrián Hernández-Fernández, Ángel Martínez-López, Yolanda Garrido, Antonia Pérez de los Ríos and Francisco José Hernández-Fernández
Gels 2024, 10(5), 308; https://doi.org/10.3390/gels10050308 - 01 May 2024
Viewed by 369
Abstract
In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer [...] Read more.
In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer inclusion membranes or ionogels for proton exchange membrane fuel cells (PEMFCs) has recently appeared. Thermal stability, SEM-EDX characterization, NMR and IR characterization, thermogravimetric analysis, ion exchange capacity, and water uptake are key properties of these membranes which need to be investigated. In this work, ionogel based on quaternary ammonium salts, such as [N8,8,8,1+][Cl], [N8,8,8,1+][Br], and [N8-10,8-10,8-10,1+][Cl] in various compositions with poly(vinyl chloride) are extensively studied and characterized based on those key properties. The best properties were obtained when a quaternary ammonium cation was combined with a bromide anion. Finally, ionogels are tested in microbial fuel cells. Microbial fuel cells based on the ionogel reach a maximum of 147 mW/m2, which represents 55% of the reference membrane (Nafion 212). These results indicate that we still have the possibility of improvement through the appropriate selection of the cation and anion of the ionic liquid. Overall, the promise of ionogel membranes as a viable alternative in fuel cell applications has been demonstrated. Full article
(This article belongs to the Special Issue Synthetic, Natural and Hybrid Gels Intended for Various Applications)
Show Figures

Figure 1

18 pages, 22447 KiB  
Article
Rheological and Injectability Evaluation of Sterilized Poloxamer-407-Based Hydrogels Containing Docetaxel-Loaded Lipid Nanoparticles
by Ana Camila Marques, Paulo C. Costa, Sérgia Velho and Maria Helena Amaral
Gels 2024, 10(5), 307; https://doi.org/10.3390/gels10050307 - 01 May 2024
Viewed by 324
Abstract
Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and [...] Read more.
Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle–hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrogels containing NLCs for intratumoral delivery of DTX. To ensure sterility, the obtained hydrogels were autoclaved (121 °C for 15 min) after preparation. Then, the incorporation of NLCs into the poloxamer hydrogels and the impact of steam sterilization on the nanocomposite hydrogels were evaluated concerning sol–gel transition, injectability, and physicochemical stability. All formulations were extruded through the tested syringe–needle systems with acceptable force (2.2–13.4 N) and work (49.5–317.7 N·mm) of injection. Following steam sterilization, injection became easier in most cases, and the physicochemical properties of all hydrogels remained practically unchanged according to the spectroscopical and thermal analysis. The rheological evaluation revealed that the nanocomposite hydrogels were liquid at 25 °C and underwent rapid gelation at 37 °C. However, their sterilized counterparts gelled at 1–2 °C above body temperature, suggesting that the autoclaving conditions employed had rendered these nanocomposite hydrogels unsuitable for local drug delivery. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Figure 1

21 pages, 4422 KiB  
Article
Size Control of Carbon Xerogel Spheres as Key Factor Governing the H2O2 Selectivity in Metal-Free Bifunctional Electro-Fenton Catalysts for Tetracycline Degradation
by Edgar Fajardo-Puerto, Nerea López-García, Abdelhakim Elmouwahidi, Esther Bailón-García, Francisco Carrasco-Marín, Lilian D. Ramírez-Valencia and Agustín F. Pérez-Cadenas
Gels 2024, 10(5), 306; https://doi.org/10.3390/gels10050306 - 01 May 2024
Viewed by 634
Abstract
Carbon xerogel spheres co-doped with nitrogen and eco-graphene were synthesized using a typical solvothermal method. The results indicate that the incorporation of eco-graphene enhances the electrochemical properties, such as the current density (JK) and the selectivity for the four transferred electrons [...] Read more.
Carbon xerogel spheres co-doped with nitrogen and eco-graphene were synthesized using a typical solvothermal method. The results indicate that the incorporation of eco-graphene enhances the electrochemical properties, such as the current density (JK) and the selectivity for the four transferred electrons (n). Additionally, nitrogen doping has a significant effect on the degradation efficiency, varying with the size of the carbon xerogel spheres, which could be attributed to the type of nitrogenous group doped in the carbon material. The degradation efficiency improved in the nanometric spheres (48.3% to 61.6%) but decreased in the micrometric-scale spheres (58.6% to 53.4%). This effect was attributed to the N-functional groups present in each sample, with N-CNS-5 exhibiting a higher percentage of graphitic nitrogen (35.7%) compared to N-CMS-5 (15.3%). These findings highlight the critical role of sphere size in determining the type of N-functional groups present in the sample. leading to enhanced degradation of pollutants as a result of the electro-Fenton process. Full article
(This article belongs to the Special Issue Synthesis, Properties and Applications of Carbon Aerogel)
Show Figures

Figure 1

12 pages, 1503 KiB  
Article
Gel Properties and Protein Structures of Minced Pork Prepared with κ-Carrageenan and Non-Meat Proteins
by Yang Ye, Fei Chen, Meimei Shi, Yang Wang, Xia Xiao and Chunmei Wu
Gels 2024, 10(5), 305; https://doi.org/10.3390/gels10050305 - 30 Apr 2024
Viewed by 286
Abstract
Problems with minced pork include water release and low gel strength. This study aimed to investigate the effect of treatments with κ-carrageenan (κ-CAR), egg white powder (EWP), wheat gluten (WG), soy isolate protein (SPI), and a combination of these treatments on the gel [...] Read more.
Problems with minced pork include water release and low gel strength. This study aimed to investigate the effect of treatments with κ-carrageenan (κ-CAR), egg white powder (EWP), wheat gluten (WG), soy isolate protein (SPI), and a combination of these treatments on the gel properties and protein structures of minced pork. The cooking loss and trapped water within minced pork increased when additives were incorporated; in particular, the SPI group reached 1.31 ± 0.01% and 91.42 ± 0.20%. The hardness and chewiness of minced pork reached their maximum values (38.91 ± 0.80 N, 14.73 ± 0.41 N) when the WG was added. The κ-CAR/WG-minced pork gel network structure was the densest and most stable, characterized by increased hydrophobic interactions, disulfide bonds in the mince gel, and enthalpy value. The α-helix content with κ-CAR/WG treatment decreased from 27% to 7.8%, transforming into other secondary structures. This suggests that the addition of κ-CAR/WG can be a more effective combination for improving the quality of minced pork. Full article
(This article belongs to the Special Issue Advanced Gels in Food Technology)
Show Figures

Graphical abstract

12 pages, 2768 KiB  
Article
Study on a Strong Polymer Gel by the Addition of Micron Graphite Oxide Powder and Its Plugging of Fracture
by Bin Shi, Guangming Zhang, Lei Zhang, Chengjun Wang, Zhonghui Li and Fangping Chen
Gels 2024, 10(5), 304; https://doi.org/10.3390/gels10050304 - 30 Apr 2024
Viewed by 293
Abstract
It is difficult to plug the fracture water channeling of a fractured low-permeability reservoir during water flooding by using the conventional acrylamide polymer gel due to its weak mechanical properties. For this problem, micron graphite powder is added to enhance the comprehensive properties [...] Read more.
It is difficult to plug the fracture water channeling of a fractured low-permeability reservoir during water flooding by using the conventional acrylamide polymer gel due to its weak mechanical properties. For this problem, micron graphite powder is added to enhance the comprehensive properties of the acrylamide polymer gel, which can improve the plugging effect of fracture water channeling. The chemical principle of this process is that the hydroxyl and carboxyl groups of the layered micron graphite powder can undergo physicochemical interactions with the amide groups of the polyacrylamide molecule chain. As a rigid structure, the graphite powder can support the flexible skeleton of the original polyacrylamide molecule chain. Through the synergy of the rigid and flexible structures, the viscoelasticity, thermal stability, tensile performance, and plugging ability of the new-type gel can be significantly enhanced. Compared with a single acrylamide gel, after adding 3000 mg/L of micrometer-sized graphite powder, the elastic modulus, the viscous modulus, the phase transition temperature, the breakthrough pressure gradient, the elongation at break, and the tensile stress of the acrylamide gel are all greatly improved. After adding the graphite powder to the polyacrylamide gel, the fracture water channeling can be effectively plugged. The characteristics of the networked water flow channel are obvious during the injected water break through the gel in the fracture. The breakthrough pressure of water flooding is high. The experimental results are an attempt to develop a new gel material for the water plugging of a fractured low-permeability reservoir. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

25 pages, 8678 KiB  
Article
Cananga odorata (Ylang-Ylang) Essential Oil Containing Nanoemulgel for the Topical Treatment of Scalp Psoriasis and Dandruff
by Perwez Alam, Mohd Imran, Asad Ali and Haya Majid
Gels 2024, 10(5), 303; https://doi.org/10.3390/gels10050303 - 30 Apr 2024
Viewed by 315
Abstract
This research aimed to evaluate the efficacy of a nanoemulgel (NE) containing Cananga odorata (Ylang-Ylang) oil for managing scalp psoriasis and dandruff through various assessments. The study involved phytochemical screening, characterization, stability testing, in vivo performance evaluation, dermatokinetic analysis, central composite rotatable design [...] Read more.
This research aimed to evaluate the efficacy of a nanoemulgel (NE) containing Cananga odorata (Ylang-Ylang) oil for managing scalp psoriasis and dandruff through various assessments. The study involved phytochemical screening, characterization, stability testing, in vivo performance evaluation, dermatokinetic analysis, central composite rotatable design (CCRD) optimization, in vitro release profiling, and antioxidant and antimicrobial activity assessment of the NE. The NE exhibited excellent stability and maintained physical parameters over a three-month period. In vivo studies showed no skin irritation, maintenance of skin pH (4.55 to 5.08), and improvement in skin hydration (18.09 to 41.28 AU) and sebum content (26.75 to 5.67 mg/cm2). Dermatokinetic analysis revealed higher skin retention of C. odorata in the NE (epidermis: 71.266 µg/cm2, dermis: 60.179 µg/cm2) compared to conventional formulations. CCRD optimization yielded NE formulations with the desired particle size (195.64 nm), entrapment efficiency (85.51%), and zeta potential (−20.59 mV). In vitro release studies indicated sustained release behavior, and antioxidant and antimicrobial properties were observed. This study demonstrates the stability, skin-friendliness, therapeutic benefits, and controlled release properties of the NE. The NE presents a promising option for various topical applications in treating bacterial and fungal diseases, potentially enhancing drug delivery and treatment outcomes in pharmaceuticals and cosmetics. Full article
Show Figures

Figure 1

18 pages, 2899 KiB  
Review
Green and Low-Cost Modified Pisha Sandstone Geopolymer Gel Materials for Ecological Restoration: A Phase Review
by Changming Li, Yubing Fu, Haifeng Cheng, Yaozong Wang, Dongyang Jia and Hui Liu
Gels 2024, 10(5), 302; https://doi.org/10.3390/gels10050302 - 29 Apr 2024
Viewed by 483
Abstract
Pisha sandstone (PS) is a special interbedded rock in the middle reaches of the Yellow River that experiences severe weathering and is loose and broken. Due to severe multiple erosion events, the Pisha sandstone region is called “the most severe water loss and [...] Read more.
Pisha sandstone (PS) is a special interbedded rock in the middle reaches of the Yellow River that experiences severe weathering and is loose and broken. Due to severe multiple erosion events, the Pisha sandstone region is called “the most severe water loss and soil erosion in the world” and “the ecological cancer of the earth”. As a special pozzolanic mineral, PS has the potential to be used as precursors for the synthesis of green and low-carbon geopolymer gel materials and applied in ecological restoration. This paper aims to undertake a phase review of the precursors for geopolymer gel materials. The genesis and distribution, physical and chemical characterization, erosion characteristics, and advances in the ecological restoration of PS are all summarized. Furthermore, current advances in the use of PS for the synthesis of geopolymer gel materials in terms of mechanical properties and durability are discussed. The production of Pisha sandstone geopolymer gels through the binder jetting technique and 3D printing techniques is prospected. Meanwhile, the prospects for the resource application of PS in mine rehabilitation and sustainable ecology are discussed. In the future, multifactor-driven comprehensive measures should be further investigated in order to achieve ecological restoration of the Pisha sandstone region and promote high-quality development of the Yellow River Basin. Full article
Show Figures

Figure 1

12 pages, 3262 KiB  
Article
Effect of Heat Treatment Combined with TG Enzyme Cross-Linking on the Zein–Pea Protein Complex: Physicochemical and Gel Properties
by Yan Li, Chi Wang, Nannan Hu, Yuanhui Zhao, Yuzhu Wu, Jingsheng Liu and Yilin Zhao
Gels 2024, 10(5), 301; https://doi.org/10.3390/gels10050301 - 28 Apr 2024
Viewed by 272
Abstract
Plant proteins have the advantages of low cost and high yield, but they are still not comparable to animal proteins in processing due to factors such as gelation and solubility. How to enhance the processing performance of plant proteins by simple and green [...] Read more.
Plant proteins have the advantages of low cost and high yield, but they are still not comparable to animal proteins in processing due to factors such as gelation and solubility. How to enhance the processing performance of plant proteins by simple and green modification means has become a hot research topic nowadays. Based on the above problems, we studied the effect of gel induction on its properties. In this study, a pea protein–zein complex was prepared by the pH cycle method, and the effects of different induced gel methods on the gel properties of the complex protein were studied. The conclusions are as follows: All three gel induction methods can make the complex protein form a gel system, among which the gel strength of heat treatment and the TG enzyme-inducted group is the highest (372.84 g). Through the observation of the gel microstructure, the gel double network structure disappears and the structure becomes denser, which leads to a stronger water-binding state of the gel sample in the collaborative treatment group. In the simulated digestion experiment, heat treatment and enzyme-induced samples showed the best slow-release effect. This study provides a new method for the preparation of multi-vegetable protein gels and lays a theoretical foundation for their application in food processing. Full article
(This article belongs to the Special Issue Food Gels: Structure and Properties)
Show Figures

Figure 1

15 pages, 1353 KiB  
Article
The Influence of Reinforced Fibers and Opacifiers on the Effective Thermal Conductivity of Silica Aerogels
by Binghuan Huang, Jingbei Li, Liang Gong, Pengcheng Dai and Chuanyong Zhu
Gels 2024, 10(5), 300; https://doi.org/10.3390/gels10050300 - 26 Apr 2024
Viewed by 410
Abstract
Fiber–particle-reinforced silica aerogels are widely applied in thermal insulation. Knowing their effective thermal conductivity (ETC) and radiative characteristics under high temperatures is necessary to improve their performance. This article first analyzes the radiation characteristics of silica aerogels doped with opacifier particles and reinforced [...] Read more.
Fiber–particle-reinforced silica aerogels are widely applied in thermal insulation. Knowing their effective thermal conductivity (ETC) and radiative characteristics under high temperatures is necessary to improve their performance. This article first analyzes the radiation characteristics of silica aerogels doped with opacifier particles and reinforced fibers, and then a universal model is established to predict the ETC. Furthermore, the impacts of different parameters of opacifier particles and reinforced fibers on the thermal insulation performance of silica aerogels are investigated. The results indicate that SiC exhibits comparatively strong absorption characteristics, making it a good alternative for opacifiers to improve thermal insulation performance under high temperatures. For the given type and volume fraction of opacifier particles, there exists an optimal diameter and volume fraction to achieve the best insulation performance of silica aerogel under a certain temperature. Considering that SiO2 fibers exhibit a limited extinction capability and higher conductive thermal conductivity under high temperatures, for fiber–particle-reinforced silica aerogels, it is beneficial for their insulation performance to reduce the fiber volume fraction when the required mechanical properties are satisfied. Full article
(This article belongs to the Special Issue Recent Advances in Aerogels and Aerogel Composites)
Show Figures

Figure 1

17 pages, 2491 KiB  
Article
Effect of Agavins and Agave Syrup Use in the Formulation of a Synbiotic Gelatin Gummy with Microcapsules of Saccharomyces Boulardii
by Liliana K. Vigil-Cuate, Sandra V. Avila-Reyes, Brenda H. Camacho-Díaz, Humberto Hernández-Sánchez, Perla Osorio-Díaz, Antonio R. Jiménez-Aparicio, Paz Robert and Martha L. Arenas-Ocampo
Gels 2024, 10(5), 299; https://doi.org/10.3390/gels10050299 - 26 Apr 2024
Viewed by 327
Abstract
Agavins are reserve carbohydrates found in agave plants; they present texture-modifying properties and prebiotic capacity by increasing the viability of the intestinal microbiota. Through its hydrolysis, agave syrup (AS) can be obtained and can be used as a sweetener in food matrices. The [...] Read more.
Agavins are reserve carbohydrates found in agave plants; they present texture-modifying properties and prebiotic capacity by increasing the viability of the intestinal microbiota. Through its hydrolysis, agave syrup (AS) can be obtained and can be used as a sweetener in food matrices. The objective of this work was to evaluate the effect of the variation in the content of agavins and AS on the physical, structural, and viability properties of Saccharomyces boulardii encapsulates incorporated into gelatin gummies. An RSM was used to obtain an optimized formulation of gelatin gummies. The properties of the gel in the gummy were characterized by a texture profile analysis and Aw. The humidity and sugar content were determined. A sucrose gummy was used as a control for the variable ranges. Alginate microcapsules containing S. boulardii were added to the optimized gummy formulation to obtain a synbiotic gummy. The viability of S. boulardii and changes in the structure of the alginate gel of the microcapsules in the synbiotic gummy were evaluated for 24 days by image digital analysis (IDA). The agavins and agave syrup significantly affected the texture properties (<1 N) and the Aw (>0.85). The IDA showed a change in the gel network and an increase in viability by confocal microscopy from day 18. The number of pores in the gel increased, but their size decreased with an increase in the number of S. boulardii cells. Agavins and cells alter the structure of capsules in gummies without affecting their viability. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products)
Show Figures

Graphical abstract

15 pages, 4924 KiB  
Article
Development of Low-Molecular-Weight Gelator/Polymer Composite Materials Utilizing the Gelation and Swelling Process of Polymeric Materials
by Yutaka Ohsedo and Chinatsu Takagi
Gels 2024, 10(5), 298; https://doi.org/10.3390/gels10050298 - 26 Apr 2024
Viewed by 291
Abstract
The creation of polymer composite materials by compositing fillers into polymer materials is an effective method of improving the properties of polymer materials, and the development of new fillers and their novel composite methods is expected to lead to the creation of new [...] Read more.
The creation of polymer composite materials by compositing fillers into polymer materials is an effective method of improving the properties of polymer materials, and the development of new fillers and their novel composite methods is expected to lead to the creation of new polymer composite materials. In this study, we develop a new filler material made of low-molecular-weight gelators by applying a gelation process that simultaneously performs the swelling (gelation) of crosslinked polymer materials and the self-assembly of low-molecular-weight gelators into low-dimensional crystals in organic solvents within polymer materials. The gelation process of crosslinking rubber-based polymers using alkylhydrazides/toluene as the low-molecular-weight gelator allowed us to composite self-assembled sheet-like crystals of alkylhydrazides as fillers in polymeric materials, as suggested by various microscopic observations, including infrared absorption measurements, small-angle X-ray diffraction measurements and thermal analysis, microscopy, and infrared absorption measurements. Furthermore, tensile tests of the composite materials demonstrated that the presence of fillers improved both the Young’s modulus and the tensile strength, as well as the elongation at yield. Additionally, heat treatment was shown to facilitate filler dispersion and enhance the mechanical properties. The findings demonstrate the potential of self-assembled sheet-like crystals of low-molecular-weight gelators as novel filler materials for polymers. The study’s composite method utilizing gelators via gelation proved effective. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

13 pages, 2245 KiB  
Article
Preparation of Gel Forming Polymer-Based Sprays for First Aid Care of Skin Injuries
by Patrícia Alves, Diana Luzio, Kevin de Sá, Ilídio Correia and Paula Ferreira
Gels 2024, 10(5), 297; https://doi.org/10.3390/gels10050297 - 25 Apr 2024
Viewed by 253
Abstract
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the [...] Read more.
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the lesions, which can lead to further bleeding and tissue damage upon removal. In the present study, the development of a polymer-based gel that can be applied as a spray provides a new vision in injury protection, respecting the requirements of safety, ease, and quickness of both applicability and removal. The following polymeric sprays were developed to further obtain gels based on different polymers: hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) using polyethylene glycol (PEG) as a plasticizer. The developed sprays revealed suitable properties for use in topical injuries. A protective film was obtained when sprayed on a surface through a casting mechanism. The obtained films adhered to the surface of biological tissue (pig muscle), turning into a gel when the exudate was absorbed, and proved to be washable with saline solution and contribute to the clotting process. Moreover, biocompatibility results showed that all materials were biocompatible, as cell viability was over 90% for all the materials. Full article
Show Figures

Figure 1

16 pages, 3462 KiB  
Article
Fluorescence ‘Turn-on’ Probe for Chromium Reduction, Adsorption and Detection Based on Cellulosic Nitrogen-Doped Carbon Quantum Dots Hydrogels
by Hebat-Allah S. Tohamy
Gels 2024, 10(5), 296; https://doi.org/10.3390/gels10050296 - 25 Apr 2024
Viewed by 333
Abstract
This paper proposes a new, highly effective fluorescence test for Cr(VI) detection. This method utilizes a hydrogel composed of hydroxyethyl cellulose (HEC), nitrogen-doped carbon quantum dots (N–CQDs), and poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (AMPS). The N–CQDs were successfully synthesized using a simple microwave method, and [...] Read more.
This paper proposes a new, highly effective fluorescence test for Cr(VI) detection. This method utilizes a hydrogel composed of hydroxyethyl cellulose (HEC), nitrogen-doped carbon quantum dots (N–CQDs), and poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (AMPS). The N–CQDs were successfully synthesized using a simple microwave method, and then conjugated with HEC and AMPS. The higher adsorption (99.41%) and higher reduction rate in H1 likely stems from both the presence of N–CQDs (absent in HB) and their increased free functional groups (compared to H2/H3, where N–CQDs block them). This facilitates the release (desorption) of Cr(VI) from the hydrogels, making it more available for reduction to the less toxic Cr(III). The fluorescent brightness of the HEC-N–CQDs-g-poly(AMPS) hydrogel increases gradually when Cr(VI) is added in amounts ranging from 15 to 120 mg/L. The fluorescent enhancement of the HEC-N–CQDs-g-poly(AMPS) hydrogel appeared to exhibit a good linear relationship with the 15–120 mg of the Cr(VI) concentration, with a detection limit of 0.0053 mg/L, which is lower than the standard value published by WHO. Our study found that the HEC-N–CQDs-g-poly(AMPS) hydrogel served effectively as a fluorescent probe for Cr(VI) detection in aqueous solutions, demonstrating high sensitivity. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Figure 1

28 pages, 3351 KiB  
Review
Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations
by Weronika Kruczkowska, Julia Gałęziewska, Katarzyna Grabowska, Gabriela Liese, Paulina Buczek, Karol Kamil Kłosiński, Mateusz Kciuk, Zbigniew Pasieka, Żaneta Kałuzińska-Kołat and Damian Kołat
Gels 2024, 10(5), 295; https://doi.org/10.3390/gels10050295 - 25 Apr 2024
Viewed by 398
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by [...] Read more.
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues’ mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field. Full article
(This article belongs to the Special Issue Recent Developments in Chitosan Hydrogels)
Show Figures

Graphical abstract

15 pages, 6449 KiB  
Article
Development and Characterization of Gelatin-Based Hydrogels Containing Triblock Copolymer and Phytic Acid
by Njomza Ajvazi, Ingrid Milošev, Romana Cerc Korošec, Peter Rodič and Bojan Božić
Gels 2024, 10(5), 294; https://doi.org/10.3390/gels10050294 - 25 Apr 2024
Viewed by 429
Abstract
In recent research, significant interest has been directed towards gelatin-based hydrogels due to their affordable price, extensive availability, and biocompatibility, making them promising candidates for various biomedical applications. The development and characterization of novel hydrogels formed from varying ratios of gelatin, triblock copolymer [...] Read more.
In recent research, significant interest has been directed towards gelatin-based hydrogels due to their affordable price, extensive availability, and biocompatibility, making them promising candidates for various biomedical applications. The development and characterization of novel hydrogels formed from varying ratios of gelatin, triblock copolymer Pluronic F-127, and phytic acid have been presented. Swelling properties were examined at different pH levels. The morphology of hydrogels and their thermal properties were analyzed using scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). Fourier-transform infrared (FTIR) analysis of the hydrogels was also performed. The introduction of phytic acid in the hydrogel plays a crucial role in enhancing the intermolecular interactions within gelatin-based hydrogels, contributing to a more stable, elastic, and robust network structure. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization (2nd Edition))
Show Figures

Figure 1

15 pages, 12099 KiB  
Article
Silica-Poly(Vinyl Alcohol) Composite Aerogel: A Promising Electrolyte for Solid-State Sodium Batteries
by João Pedro Vareda, Ana Clotilde Fonseca, Ana Cristina Faria Ribeiro and Ana Dora Rodrigues Pontinha
Gels 2024, 10(5), 293; https://doi.org/10.3390/gels10050293 - 25 Apr 2024
Viewed by 349
Abstract
The transition from fossil fuels is in part limited by our inability to store energy at different scales. Batteries are therefore in high demand, and we need them to store more energy, be more reliable, durable and have less social and environmental impact. [...] Read more.
The transition from fossil fuels is in part limited by our inability to store energy at different scales. Batteries are therefore in high demand, and we need them to store more energy, be more reliable, durable and have less social and environmental impact. Silica-poly(vinyl alcohol) (PVA) composite aerogels doped with sodium perchlorate were synthesized as novel electrolytes for potential application in solid-state sodium batteries. The aerogels, synthesized by one-pot synthesis, are light (up to 214 kg m−3), porous (~85%), exhibit reduced shrinkage on drying (up to 12%) and a typical silica aerogel microstructure. The formation of a silica network and the presence of PVA and sodium perchlorate in the composite were confirmed by FTIR and TGA. The XRD analysis also shows that a predominantly amorphous structure is obtained, as crystalline phases of polymer and salt are present in a very reduced amount. The effects of increasing polymer and sodium salt concentrations on the ionic conductivity, assessed via electrochemical impedance spectroscopy, were studied. At a PVA concentration of 15% (w/w silica precursors), the sodium conduction improved significantly up to (1.1 ± 0.3) × 10−5 S cm−1. Thus, this novel material has promising properties for the envisaged application. Full article
Show Figures

Graphical abstract

12 pages, 3122 KiB  
Article
Fabrication of the SiC/HfC Composite Aerogel with Ultra-Low Thermal Conductivity and Excellent Compressive Strength
by Wei Wang, Qi You, Zhanwu Wu, Sheng Cui and Weimin Shen
Gels 2024, 10(5), 292; https://doi.org/10.3390/gels10050292 - 24 Apr 2024
Viewed by 263
Abstract
Aerogels, as a new type of high-temperature-resistant insulation material, find extensive application in aerospace, high-temperature industrial furnaces, new energy batteries, and various other domains, yet still face some limitations such as inadequate temperature resistance and pronounced brittleness. In this work, SiC/HfC composite aerogels [...] Read more.
Aerogels, as a new type of high-temperature-resistant insulation material, find extensive application in aerospace, high-temperature industrial furnaces, new energy batteries, and various other domains, yet still face some limitations such as inadequate temperature resistance and pronounced brittleness. In this work, SiC/HfC composite aerogels were prepared through a combination of sol-gel method, atmospheric pressure drying technique, and carbothermal reduction reaction. The effects of different molar ratios, calcination time, and temperatures on the microstructural features and physicochemical properties of the resulting SiC/HfC composite aerogels were investigated. The aerogel exhibited an elevated BET-specific surface area of 279.75 m2/g, while the sample displayed an extraordinarily low thermal conductivity of 0.052 W/(m·K). Most notably, the compressive strength reached an outstanding 5.93 MPa after a carbonization temperature of 1500 °C, far exceeding the values reported in prior aerogel studies. This research provided an innovative approach for advancing the development of carbide aerogels in the realm of high-temperature applications. Full article
(This article belongs to the Special Issue Preparation and Characteristics of Aerogel-Based Materials)
Show Figures

Figure 1

14 pages, 4387 KiB  
Article
Silver Dendritic Gels with Luminescence and Aggregation-Induced Emission Effect
by Verónica Iguarbe, Pilar Romero, Anabel Elduque and Raquel Giménez
Gels 2024, 10(5), 291; https://doi.org/10.3390/gels10050291 - 24 Apr 2024
Viewed by 323
Abstract
This work reports on a novel family of silver metallogels based on discrete coordination complexes. Structurally, they consist of dendrimers containing a trinuclear silver metallacycle at the core, with the general formula [M(μ-pz)]3, and poly(benzyl)ether branched structures with different numbers or [...] Read more.
This work reports on a novel family of silver metallogels based on discrete coordination complexes. Structurally, they consist of dendrimers containing a trinuclear silver metallacycle at the core, with the general formula [M(μ-pz)]3, and poly(benzyl)ether branched structures with different numbers or terminal alkoxy chains at the periphery. These silver metallodendrimers are able to gel low-polarity solvents such as dodecane or cyclohexane, giving rise to luminescent organogels at room temperature with the property of aggregation-induced emission (AIE). This property means that in solution or the sol state, they are weak emitters, but in the gel state, luminescence is considerably increased. In this particular case, they exhibit blue luminescence. Two different dendritic scaffolds have been studied, finding significant differences in solubility, gel formation and dependence of luminescence on temperature. The results show that properly tailored silver gelators can show luminescence in the gel state. Full article
Show Figures

Graphical abstract

15 pages, 41943 KiB  
Article
Post-Irradiation Behavior of Colored PVA-Based Films Containing Ag Nanoparticles as Radiation Detectors/Exposure Indicators
by Linas Kudrevicius, Evelina Jaselskė, Gabrielius Stankus, Shirin Arslonova and Diana Adliene
Gels 2024, 10(5), 290; https://doi.org/10.3390/gels10050290 - 24 Apr 2024
Viewed by 332
Abstract
Ionizing radiation covers a broad spectrum of applications. Since radioactive/radiation pollution is directly related to radiation risk, radiation levels should be strictly controlled. Different detection methods can be applied for radiation registration and monitoring. In this paper, radiation-induced variations in the optical properties [...] Read more.
Ionizing radiation covers a broad spectrum of applications. Since radioactive/radiation pollution is directly related to radiation risk, radiation levels should be strictly controlled. Different detection methods can be applied for radiation registration and monitoring. In this paper, radiation-induced variations in the optical properties of silver-enriched PVA-based hydrogel films with and without azo dye (Toluidine blue O, TBO, and Methyl red, MR) additives were investigated, and the feasibility of these free-standing films to serve as radiation detectors/exposure indicators was assessed. AgNO3 admixed with PVA gel was used as a source for the radiation-induced synthesis of silver nanoparticles (AgNPs) in irradiated gel films. Three types of sensors were prepared: silver-enriched PVA films containing a small amount of glycerol (AgPVAGly); silver-enriched PVA films with toluidine blue adducts (AgPVAGlyTBO); and silver-enriched PVA films with methyl red additives (AgPVAGlyMR). The selection of TBO and MR was based on their sensitivity to irradiation. The irradiation of the samples was performed in TrueBeam2.1 (VARIAN) using 6 MeV photons. Different doses up to 10 Gy were delivered to the films. The sensitivity of the films was assessed by analyzing the characteristic UV-Vis absorbance peaks on the same day as irradiation and 7, 30, 45, 90, and 180 days after irradiation. It was found that the addition of azo dyes led to an enhanced radiation sensitivity of the AgNPs containing films (0.6 Gy−1 for AgPVAGlyTBO and 0.4 Gy−1 for AgPVAGlyMR) irradiated with <2 Gy doses, indicating their applicability as low-dose exposure indicators. The irradiated films were less sensitive to higher doses. Almost no dose fading was detected between the 7th and 45th day after irradiation. Based on the obtained results, competing AgNP formation and color-bleaching effects in the AgPVAGly films with dye additives are discussed. Full article
(This article belongs to the Special Issue Advances in Gel Films)
Show Figures

Figure 1

12 pages, 2769 KiB  
Article
Copper-Chelated Chitosan Microgels for the Selective Enrichment of Small Cationic Peptides
by Jean-Christophe Jacquier, Ciara Duffy, Michael O’Sullivan and Eugène Dillon
Gels 2024, 10(5), 289; https://doi.org/10.3390/gels10050289 - 24 Apr 2024
Viewed by 349
Abstract
Copper-chelated chitosan microgels were investigated as an immobilized metal affinity chromatography (IMAC) phase for peptide separation. The copper-crosslinked chitosan beads were shown to strongly interact with a range of amino acids, in a wide range of pH and saline conditions. The beads exhibited [...] Read more.
Copper-chelated chitosan microgels were investigated as an immobilized metal affinity chromatography (IMAC) phase for peptide separation. The copper-crosslinked chitosan beads were shown to strongly interact with a range of amino acids, in a wide range of pH and saline conditions. The beads exhibited an affinity that seemed to depend on the isoelectric point of the amino acid, with the extent of uptake increasing with decreasing isoelectric point. This selective interaction with anionic amino acids resulted in a significant relative enrichment of the supernatant solution in cationic amino acids. The beads were then studied as a novel fractionation system for complex milk hydrolysates. The copper chitosan beads selectively removed larger peptides from the hydrolysate aqueous solution, yielding a solution relatively enriched in medium and smaller peptides, which was characterized both quantitatively and qualitatively by size exclusion chromatography (SEC). Liquid chromatography–mass spectrometry (LCMS) work provided comprehensive data on a peptide sequence level and showed that a depletion of the anionic peptides by the beads resulted in a relative enrichment of the cationic peptides in the supernatant solution. It could be concluded that after fractionation a dramatic relative enrichment in respect to small- and medium-sized cationic peptides in the solution, characteristics that have been linked to bioactivities, such as anti-microbial and cell-penetrating properties. The results demonstrate the use of the chitosan copper gel bead system in lab scale fractionation of complex hydrolysate mixtures, with the potential to enhance milk hydrolysate bioactivity. Full article
(This article belongs to the Special Issue Gels in Separation Science)
Show Figures

Figure 1

13 pages, 3710 KiB  
Article
UCST-Type Thermoresponsive Sol–Gel Transition Triblock Copolymer Containing Zwitterionic Polymer Blocks
by Akifumi Kawamura, Ryogo Takahashi and Takashi Miyata
Gels 2024, 10(5), 288; https://doi.org/10.3390/gels10050288 - 24 Apr 2024
Viewed by 422
Abstract
Thermoresponsive sol–gel transition polymers are of significant interest because of their fascinating biomedical applications, including as drug reservoirs for drug delivery systems and scaffolds for tissue engineering. Although extensive research has been conducted on lower critical solution temperature (LCST)-type sol–gel transition polymers, there [...] Read more.
Thermoresponsive sol–gel transition polymers are of significant interest because of their fascinating biomedical applications, including as drug reservoirs for drug delivery systems and scaffolds for tissue engineering. Although extensive research has been conducted on lower critical solution temperature (LCST)-type sol–gel transition polymers, there have been few reports on upper critical solution temperature (UCST)-type sol–gel transition polymers. In this study, we designed an ABA-type triblock copolymer composed of a poly(ethylene glycol) (PEG) block and zwitterionic polymer blocks that exhibit UCST-type thermoresponsive phase transitions. A sulfobetaine (SB) monomer with both ammonium and sulfonate (–SO3) groups in its side chain or a sulfabetaine (SaB) monomer with both ammonium and sulfate (–OSO3) groups in its side chain was polymerized from both ends of the PEG block via reversible addition–fragmentation chain-transfer (RAFT) polymerization to obtain PSB-PEG-PSB and PSaB-PEG-PSaB triblock copolymers, respectively. Although an aqueous solution containing the PSB-PEG-PSB triblock copolymer showed an increase in viscosity upon cooling, it did not undergo a sol-to-gel transition. In contrast, a sol-to-gel transition was observed when a phosphate-buffered saline containing PSaB-PEG-PSaB was cooled from 80 °C to 25 °C. The PSaB blocks with –OSO3 groups exhibited a stronger dipole–dipole interaction than conventional SB with –SO3 groups, leading to intermolecular association and the formation of a gel network composed of PSaB assemblies bridged with PEG. The fascinating UCST-type thermoresponsive sol–gel transition properties of the PSaB-PEG-PSaB triblock copolymer suggest that it can provide a useful platform for designing smart biomaterials, such as drug delivery reservoirs and cell culture scaffolds. Full article
(This article belongs to the Special Issue Recent Advances in Thermoreversible Gelation)
Show Figures

Graphical abstract

14 pages, 2158 KiB  
Article
Preparation of Peptide-Based Magnetogels for Removing Organic Dyes from Water
by Farid Hajareh Haghighi, Roya Binaymotlagh, Paula Stefana Pintilei, Laura Chronopoulou and Cleofe Palocci
Gels 2024, 10(5), 287; https://doi.org/10.3390/gels10050287 - 24 Apr 2024
Viewed by 419
Abstract
Water pollution by organic dyes represents a major health and environmental issue. Despite the fact that peptide-based hydrogels are considered to be optimal absorbents for removing such contaminants, hydrogel systems often suffer from a lack of mechanical stability and complex recovery. Recently, we [...] Read more.
Water pollution by organic dyes represents a major health and environmental issue. Despite the fact that peptide-based hydrogels are considered to be optimal absorbents for removing such contaminants, hydrogel systems often suffer from a lack of mechanical stability and complex recovery. Recently, we developed an enzymatic approach for the preparation of a new peptide-based magnetogel containing polyacrylic acid-modified γ-Fe2O3 nanoparticles (γ-Fe2O3NPs) that showed the promising ability to remove cationic metal ions from aqueous phases. In the present work, we tested the ability of the magnetogel formulation to remove three model organic dyes: methyl orange, methylene blue, and rhodamine 6G. Three different hydrogel-based systems were studied, including: (1) Fmoc-Phe3 hydrogel; (2) γ-Fe2O3NPs dispersed in the peptide-based gel (Fe2O3NPs@gel); and (3) Fe2O3NPs@gel with the application of a magnetic field. The removal efficiencies of such adsorbents were evaluated using two different experimental set-ups, by placing the hydrogel sample inside cuvettes or, alternatively, by placing them inside syringes. The obtained peptide magnetogel formulation could represent a valuable and environmentally friendly alternative to currently employed adsorbents. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (2nd Edition))
Show Figures

Figure 1

15 pages, 3011 KiB  
Review
A Review of High-Temperature Aerogels: Composition, Mechanisms, and Properties
by Conghui Wang, Letian Bai, Hongxin Xu, Shengjian Qin, Yanfang Li and Guanglei Zhang
Gels 2024, 10(5), 286; https://doi.org/10.3390/gels10050286 - 23 Apr 2024
Viewed by 408
Abstract
High-temperature aerogels have garnered significant attention as promising insulation materials in various industries such as aerospace, automotive manufacturing, and beyond, owing to their remarkable thermal insulation properties coupled with low density. With advancements in manufacturing techniques, the thermal resilience of aerogels has considerable [...] Read more.
High-temperature aerogels have garnered significant attention as promising insulation materials in various industries such as aerospace, automotive manufacturing, and beyond, owing to their remarkable thermal insulation properties coupled with low density. With advancements in manufacturing techniques, the thermal resilience of aerogels has considerable improvements. Notably, polyimide-based aerogels can endure temperatures up to 1000 °C, zirconia-based aerogels up to 1300 °C, silica-based aerogels up to 1500 °C, alumina-based aerogels up to 1800 °C, and carbon-based aerogels can withstand up to 2500 °C. This paper systematically discusses recent advancements in the thermal insulation performance of these five materials. It elaborates on the temperature resistance of aerogels and elucidates their thermal insulation mechanisms. Furthermore, it examines the impact of doping elements on the thermal conductivity of aerogels and consolidates various preparation methods aimed at producing aerogels capable of withstanding temperatures. In conclusion, by employing judicious composition design strategies, it is anticipated that the maximum tolerance temperature of aerogels can surpass 2500 °C, thus opening up new avenues for their application in extreme thermal environments. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel)
Show Figures

Figure 1

14 pages, 15555 KiB  
Article
Silicon-Doped Carbon Dots Crosslinked Carboxymethyl Cellulose Gel: Detection and Adsorption of Fe3+
by Zhengdong Zhao, Yichang Jing, Yuan Shen, Yang Liu, Jiaqi Wang, Mingjian Ma, Jiangbo Pan, Di Wang, Chengyu Wang and Jian Li
Gels 2024, 10(5), 285; https://doi.org/10.3390/gels10050285 - 23 Apr 2024
Viewed by 379
Abstract
The excessive emission of iron will pollute the environment and harm human health, so the fluorescence detection and adsorption of Fe3+ are of great significance. In the field of water treatment, cellulose-based gels have attracted wide attention due to their excellent properties [...] Read more.
The excessive emission of iron will pollute the environment and harm human health, so the fluorescence detection and adsorption of Fe3+ are of great significance. In the field of water treatment, cellulose-based gels have attracted wide attention due to their excellent properties and environmental friendliness. If carbon dots are used as a crosslinking agent to form a gel with cellulose, it can not only improve mechanical properties but also show good biocompatibility, reactivity, and fluorescence properties. In this study, silicon-doped carbon dots/carboxymethyl cellulose gel (DCG) was successfully prepared by chemically crosslinking biomass-derived silicon-doped carbon dots with carboxymethyl cellulose. The abundant crosslinking points endow the gel with excellent mechanical properties, with a compressive strength reaching 294 kPa. In the experiment on adsorbing Fe3+, the theoretical adsorption capacity reached 125.30 mg/g. The introduction of silicon-doped carbon dots confers the gel with excellent fluorescence properties and a good selective response to Fe3+. It exhibits a good linear relationship within the concentration range of 0–100 mg/L, with a detection limit of 0.6595 mg/L. DCG appears to be a good application prospect in the adsorption and detection of Fe3+. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (2nd Edition))
Show Figures

Figure 1

Previous Issue
Back to TopTop