Alleviating Plant Density and Salinity Stress in Moringa oleifera Using Arbuscular Mycorrhizal Fungi: A Review
Abstract
:1. Introduction
2. The Crucial Role of Arbuscular Mycorrhizal Fungi in Sustainable Agriculture
3. Moringa oleifera as a Multifaceted Plant
4. Moringa Ethnomedicinal Use and Pharmacological Activities
4.1. Flavonoids
4.2. Phenolic Acids
4.3. Glucosinolates
4.4. Terpenes
4.5. Alkaloids
4.6. Sterols
5. Moringa oleifera’s Adaptive Strategies Against Salinity
5.1. Salinity Stress Detrimentally Impacts Moringa Growth and Physiology
5.1.1. Physiological and Biochemical Adaptations
- Ion Homeostasis and Compartmentalization: Moringa maintains cellular ion balance by regulating the uptake, transport, and sequestration of ions, particularly sodium and chloride. This minimizes the toxic effects of excessive ion accumulation in sensitive cellular compartments [132].
- Osmotic Adjustment: To counter the osmotic stress induced by high salt concentrations, moringa accumulates compatible solutes or osmolytes, such as proline, glycine betaine, and sugars. These osmolytes help maintain cell turgor and protect cellular components from damage [132].
- Antioxidant Defense System: Salinity stress triggers the overproduction of reactive oxygen species, which can damage cellular components. Moringa enhances its antioxidant defense machinery, including enzymes like superoxide dismutase, catalase, and peroxidase, to scavenge ROS and mitigate oxidative stress [132].
- Polyamine Biosynthesis: Polyamines, such as putrescine, spermidine, and spermine, play a crucial role in stress tolerance. Moringa increases polyamine biosynthesis under salinity stress, contributing to ROS scavenging, membrane stabilization, and ion homeostasis [132].
- Morpho-Anatomical Modifications: Moringa exhibits structural changes in response to salinity, including alterations in root architecture, leaf morphology, and the size and number of organelles like chloroplasts, mitochondria, and peroxisomes. These modifications improve water uptake, reduce transpiration, and improve overall stress tolerance [133].
5.1.2. Molecular Adaptations
- Phytohormone Regulation: Salinity stress triggers changes in phytohormone levels in moringa. Hormones like abscisic acid, auxins, cytokinins, salicylic acid, jasmonic acid, gibberellins, and brassinosteroids play crucial roles in regulating plant responses to salinity, including stomatal closure, root development, and stress signaling [65].
- Gene Expression and Omics Approaches: Moringa activates a complex network of genes, transcription factors, and proteins to combat salinity stress [134]. Omics approaches, such as genomics, transcriptomics, proteomics, and metabolomics, have provided valuable insights into the molecular mechanisms underlying salinity tolerance in moringa, paving the way for developing salt-tolerant varieties and improving crop productivity [134].
5.1.3. Enzymatic Antioxidants
- Superoxide Dismutase: Acting as the first line of defense, SOD catalyzes the rapid dismutation of superoxide radicals (O2−) into the less reactive hydrogen peroxide (H2O2) and molecular oxygen (O2) [138]. Though hydrogen peroxide is less reactive, it still threatens cellular integrity if not further detoxified [138]. The importance of SOD lies in its rapid neutralization of superoxide radicals, preventing them from interacting with essential cellular components like DNA, proteins, and lipids. This is particularly important because unchecked superoxide radicals can lead to oxidative damage, which could result in mutations, protein dysfunction, and lipid peroxidation [138].
- Catalase and Ascorbate Peroxidase: Hydrogen peroxide is produced as a byproduct of SOD’s action, and though it is less reactive than superoxide radicals, it can cause oxidative damage [139]. Catalase and ascorbate peroxidase (APX) are responsible for eliminating H2O2, preventing it from causing further harm [139]. Catalase is highly efficient in converting H2O2 into water (H2O) and oxygen (O2), which are harmless to cells. This reaction is critical in protecting peroxisomes, where high levels of hydrogen peroxide may accumulate due to fatty acid metabolism [139]. Ascorbate peroxidase (APX) functions in conjunction with the ascorbate–glutathione cycle to detoxify hydrogen peroxide. It uses ascorbate (vitamin C) as an electron donor to convert H2O2 to H2O, with dehydroascorbate as the byproduct. This enzyme is particularly important in chloroplasts and other cellular compartments with high oxidative stress [139].
- Glutathione Peroxidase: Glutathione peroxidase provides an additional layer of protection against oxidative damage by targeting hydrogen peroxide and lipid peroxides [140]. When ROS attack cell membranes, they cause lipid peroxidation, which damages the cell structure and function of the lipid bilayer [132]. GPX reduces these lipid peroxides to their corresponding alcohol and water, restoring membrane integrity and further cellular damage [140]. In addition to detoxifying lipid peroxides, GPX also reduces hydrogen peroxide in the presence of reduced glutathione (GSH), converting it into water [140]. This reaction protects cellular membranes and ensures that harmful ROS do not accumulate to toxic levels [140]. The Fenton reaction, which involves the interaction of hydrogen peroxide with transition metals like iron, can produce highly reactive hydroxyl radicals. GPX mitigates this by detoxifying hydrogen peroxide before it can participate in this reaction, thus minimizing hydroxyl radical formation and, consequently, the resulting oxidative stress [140].
5.1.4. Non-Enzymatic Antioxidants
- Ascorbic Acid: This potent antioxidant acts as an electron donor, contributing to the ascorbate–glutathione cycle, which efficiently reduces H2O2 to H2O using APX. Ascorbic acid is also involved in zeaxanthin production during the xanthophyll cycle and tocopherol synthesis, which contribute to moringa stress tolerance [141].
- Glutathione: Glutathione (GSH) is a small, tripeptide molecule comprising glutamine, cysteine, and glycine. It serves multiple roles in maintaining the redox balance of cells and serves as a pivotal reduced glutathione (GSH) and oxidized glutathione (GSSG) [142]. The ratio of GSH to GSSG is critical for determining the redox state of the cell. In healthy, non-stressed cells, GSH predominates; this balance is essential for neutralizing ROS. When oxidative stress occurs, such as under salinity conditions, GSH reacts with ROS to form GSSG, effectively reducing the ROS levels and protecting cellular components from oxidative damage [142]. The ability of glutathione to maintain cellular redox homeostasis is vital for protecting proteins, lipids, and DNA from ROS-induced damage. Under conditions of high salinity, where ROS production tends to be elevated due to disrupted cellular metabolism and ionic imbalances, glutathione’s role in scavenging harmful species becomes even more critical [142]. Plays a vital role in maintaining cellular redox balance and participates in the ascorbate–glutathione cycle [143].
- Phenolic Compounds: Moringa oleifera is rich in secondary metabolites like polyphenols and flavonoids, which act as potent antioxidants. These compounds effectively scavenge free radicals, halting oxidative chain reactions and protecting cellular macromolecules and membranes from damage [144].
6. The Dual Role of Reactive Oxygen Species in Moringa oleifera Under Salinity Stress
6.1. ROS-Induced Damage
6.2. ROS as Signaling Molecules
7. Plant Population Density and Resource Utilization
7.1. Impact of Elevated Planting Density Stress on Moringa: Biochemical and Physiological Perspectives
7.1.1. Biochemical and Physiological Changes
7.1.2. Impact on Growth and Development
7.2. Phytochemical Production
8. Use of Arbuscular Mycorrhizal Fungi in Alleviating Salinity Stress and Plant Density Stress
8.1. Arbuscular Mycorrhiza Fungi Alleviation of Soil Salinity
8.2. Arbuscular Mycorrhiza Fungi Alleviation of Plant Density Stress
8.3. Arbuscular Mycorrhiza Fungi Influence on Phytochemical Biosynthesis
9. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Namdev, S.; Chauhan, C. Moringa species the potential candidate for traditional and future applications: A review. In Proceedings of the Symposium on Synthesis, Characterization & Processing of Inorganic, Bio and Nano Materials: Scpinm-2021, Mohali, India, 30–31 July 2021; AIP Conference Proceedings. AIP Publishing: College Park, MD, USA, 2023; Volume 2535, pp. 12–16. [Google Scholar]
- Gupta, S.; Verma, D.; Tufchi, N.; Kamboj, A.; Bachheti, A.; Bachheti, R.K.; Husen, A. Food, Fodder and Fuelwoods from Forest. Non-Timber Forest Products: Food. Healthc. Ind. Appl. 2021, 1, 383–425. [Google Scholar]
- Paikra, B.K.; Dhongade, H.K.J.; Gidwani, B. Phytochemistry and Pharmacology of Moringa oleifera Lam. J. Pharmacopunct. 2017, 20, 194–200. [Google Scholar]
- Alamgir, A.N.M. Phytoconstituents—Active and inert constituents, metabolic pathways, chemistry, and application of phytoconstituents, primary metabolic products, and bioactive compounds of primary metabolic origin. Ther. Use Med. Plants Their Extr. Phytochem. Bioact. Compd. 2018, 2, 25–164. [Google Scholar]
- Islam, Z.; Islam, S.R.; Hossen, F.; Mahtab-ul-Islam, K.; Hasan, M.R.; Karim, R. Moringa oleifera is a prominent source of nutrients with potential health benefits. Int. J. Food Sci. 2021, 2021, 6627265. [Google Scholar] [CrossRef]
- Place, F.; Garrity, D.; Mohan, S.; Agostini, P. Tree-Based Production Systems for Africa’s Drylands; World Bank Publications: Washington, DC, USA, 2016. [Google Scholar]
- Mashamaite, C.V.; Pieterse, P.J.; Mothapo, P.N.; Phiri, E.E. Moringa oleifera in South Africa: A review on its production, growing conditions and consumption as a food source. S. Afr. J. Sci. 2021, 117, 1–7. [Google Scholar] [CrossRef]
- Tshabalala, T.; Ncube, B.; Moyo, H.P.; Abdel-Rahman, E.M.; Mutanga, O.; Ndhlala, A.R. Predicting the spatial suitability distribution of Moringa oleifera cultivation using analytical hierarchical process modelling. S. Afr. J. Bot. 2020, 129, 161–168. [Google Scholar] [CrossRef]
- Mabapa, M.P.; Ayisi, K.K.; Mariga, I.K. Effect of planting density and harvest interval on the leaf yield and quality of moringa (Moringa oleifera Lam) under diverse agroecological conditions of Northern South Africa. Int. J. Agron. 2017, 1, 2941432. [Google Scholar]
- Liu, H.; Gu, H.; Ye, C.; Guo, C.; Zhu, Y.; Huang, H.; Liu, Y.; He, X.; Yang, M.; Zhu, S. Planting density affects Panax notoginseng growth and ginsenoside accumulation by balancing primary and secondary metabolism. Front. Plant Sci. 2021, 12, 628294. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Srivastava, P.; Wu, Q.S.; Giri, B. Salinity: An overview. In Microorganisms in Saline Environments: Strategies and Functions; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–18. [Google Scholar]
- Tuteja, N.; Peter Singh, L.; Gill, S.S.; Gill, R.; Tuteja, R. Salinity stress: A major constraint in crop production. In Improving Crop Resistance to Abiotic Stress; Wiley: Hoboken, NJ, USA, 2012; pp. 71–96. [Google Scholar]
- Sahay, R.; Singh, A.K.; Arora, S.; Singh, A.; Tiwari, D.K.; Maurya, R.C.; Chandra, V.; Singh, S. Effect of halophilic bioformulations on soil fertility and productivity of salt tolerant varieties of paddy in sodic soil. Int. J. Curr. Micro. App. Sci. 2018, 7, 1174–1179. [Google Scholar] [CrossRef]
- Okon, O.G. Effect of salinity on physiological processes in plants. Microorg. Saline Environ. Strateg. Funct. 2019, 10, 237–262. [Google Scholar]
- Hasanuzzaman, M.; Fujita, M. Plant oxidative stress: Biology, physiology and mitigation. Plants 2022, 11, 1185. [Google Scholar] [CrossRef] [PubMed]
- Augé, R.M.; Toler, H.D.; Saxton, A.M. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: A meta-analysis. Front. Plant Sci. 2014, 5, 562. [Google Scholar]
- Brundrett, M.C.; Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 2020, 367, 12–23. [Google Scholar] [CrossRef]
- Dar, M.; Razvi, S.M.; Singh, N.; Mushtaq, A.; Dar, S.; Hussain, S. Arbuscular mycorrhizal fungi for salinity stress: Anti-stress role and mechanisms. Pedosphere 2023, 33, 212–224. [Google Scholar] [CrossRef]
- Di Martino, C.; Crawford, T.W. Roles and implications of arbuscular mycorrhizas in plant nutrition. In Handbook of Plantand Crop Physiology; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 321–341. [Google Scholar]
- Vieira, C.K.; Marascalchi, M.N.; Rozmoš, M.; Benada, O.; Belova, V.; Jansa, J. Arbuscular mycorrhizal fungal highways–What, how and why? Soil Biol. Biochem. 2025, 202, 109702. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; George, T.S.; Limpens, E.; Feng, G. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci. 2022, 27, 402–411. [Google Scholar] [CrossRef]
- Sandhya, A.; Vijaya, T.; Sridevi, A.; Narasimha, G. Influence of vesicular arbuscular mycorrhiza (VAM) and phosphate solubilizing bacteria (PSB) on growth and biochemical constituents of Marsdenia volubilis. Afr. J. Biotechnol. 2013, 12, 4–9. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 2nd ed.; Academic Press: Cambridge, MA, USA, 1997; Volume 3, pp. 6–17. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008; Volume 4, pp. 3–12. [Google Scholar]
- Read, D.J. Mycorrhizas in ecosystems. Experientia 1991, 47, 376–391. [Google Scholar] [CrossRef]
- Brundrett, M.C. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 2009, 320, 37–77. [Google Scholar] [CrossRef]
- Willis, A.; Rodrigues, B.F.; Harris, J. The ecology of Arbuscular Mycorrhizal Fungi. Crit. Rev. Plant Sci. 2013, 32, 1–20. [Google Scholar] [CrossRef]
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Parihar, M.; Rakshit, A.; Meena, V.S.; Gupta, V.K.; Rana, K.; Choudhary, M.; Tiwari, G.; Mishra, K.; Pattanayak, A.; Bisht, J.K.; et al. The potential of Arbuscular Mycorrhizal Fungi in C cycling: A review. Arch. Microbiol. 2020, 202, 1581–1596. [Google Scholar] [CrossRef]
- Bennett, A.E.; Groten, K. The costs and benefits of plant–Arbuscular Mycorrhizal Fungal interactions. Annu. Rev. Plant Biol. 2022, 73, 649–672. [Google Scholar] [CrossRef]
- López-Ráez, J.; Pozo, M. Chemical Signalling in the Arbuscular Mycorrhizal Symbiosis: Biotechnological Applications. In Symbiotic Endophytes; Springer: Berlin/Heidelberg, Germany, 2013; Volume 10, pp. 215–232. [Google Scholar]
- Mitra, D.; Djebaili, R.; Pellegrini, M.; Mahakur, B.; Sarker, A.; Chaudhary, P.; Khoshru, B.; Gallo, M.D.; Kitouni, M.; Barik, D.P.; et al. Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. J. Plant Nutr. 2021, 44, 1993–2028. [Google Scholar] [CrossRef]
- Saia, S.; Tamayo, E.; Schillaci, C.; De Vita, P. Arbuscular Mycorrhizal Fungi and nutrient cycling in cropping systems. In Carbon and Nitrogen Cycling in Soil; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–115. [Google Scholar]
- Roth, R.; Paszkowski, U. Plant carbon nourishment of Arbuscular Mycorrhizal Fungi. Curr. Opin. Plant Biol. 2017, 39, 50–56. [Google Scholar] [CrossRef]
- Bago, B.; Pfeffer, E.; Abubaker, J.; Jun, J.; Allen, J.W.; Brouillette, J.; Douds, D.D.; Lammers, J.; Shachar-Hill, Y. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol. 2003, 131, 1496–1507. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Branco, S.; Schauster, A.; Liao, H.L.; Ruytinx, J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. 2022, 235, 2158–2175. [Google Scholar] [CrossRef]
- Sessoms, F. Arbuscular Mycorrhizal Fungi: Tiny friends with big impact. Turfgrass Sci. 2020, 19, 2022. [Google Scholar]
- Martin, F.M.; van Der Heijden, M.G. The mycorrhizal symbiosis: Research frontiers in genomics, ecology, and agricultural application. New Phytol. 2024, 242, 1486–1506. [Google Scholar] [CrossRef] [PubMed]
- Buee, M.; De Boer, W.; Martin, F.; Van Overbeek, L.; Jurkevitch, E. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 2009, 7, 189–212. [Google Scholar] [CrossRef]
- Bonfante, P.; Genre, A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 2010, 1, 48. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wang, E. Mycorrhizal symbiosis in plant growth and stress adaptation: From genes to ecosystems. Annu. Rev. Plant Biol. 2023, 74, 569–607. [Google Scholar] [CrossRef]
- Ames, R.N.; Bethlenfalvay, G.J. Mycorrhizal fungi and the integration of plant and soil nutrient dynamics. J. Plant Nutr. 1987, 10, 1313–1321. [Google Scholar] [CrossRef]
- Cosme, M.; Franken, P.; Mewis, I.; Baldermann, S.; Wurst, S. Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 2014, 24, 565–570. [Google Scholar] [CrossRef]
- Rubio-Sanz, L.; Jaizme-Vega, M.C. Mycorrhization of Moringa oleifera improves growth and nutrient accumulation in leaves. J. Plant Nutr. 2022, 45, 1765–1773. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Kumar, U.; Senapati, A.; Parameswaran, C.; Anandan, A.; Kumar, A.; Jahan, A.; Padhy, S.R.; Nayak, A.K. Influence of elevated CO2 on arbuscular mycorrhizal fungal community elucidated using Illumina MiSeq platform in sub-humid tropical paddy soil. Appl. Soil Ecol. 2020, 145, 103344. [Google Scholar] [CrossRef]
- Milla, G.; Peñalver, R.; Nieto, G. Health benefits of uses and applications of Moringa oleifera in bakery products. Plants 2021, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Gandji, K.; Chadare, F.J.; Idohou, R.; Salako, V.K.; Assogbadjo, A.E.; Kakaï, R.G. Status and utilisation of Moringa oleifera Lam: A review. Afr. Crop Sci. J. 2018, 26, 137–156. [Google Scholar] [CrossRef]
- Dixit, S.; Tripathi, A.; Kumar, P. Medicinal properties of Moringa oleifera: A review. Int. J. Educ. Sci. Res. Rev. 2016, 3, 173–185. [Google Scholar]
- Sharma, P.; Kachhwaha, S.; Mahendrakar, M.D.; Kothari, S.L.; Singh, R.B. Assessment of the genetic diversity and population structure in Moringa oleifera accessions using DNA markers and phenotypic descriptors. Plant Gene 2024, 39, 100462. [Google Scholar] [CrossRef]
- Islam, S.; Ali, M.; Banerjee, A.; Shah, M.H.; Rahman, S.S.; Ahammad, F.; Hossain, A. Moringa oleifera under stressful conditions. In Medicinal Plant Responses to Stressful Conditions; CRC Press: Boca Raton, FL, USA, 2023; Volume 2, pp. 201–222. [Google Scholar]
- Pérez-Rivera, E.P.; Montes-Ávila, J.; Castro-Tamayo, C.B.; Portillo-Loera, J.J.; Castillo-López, R.I. Agronomical aspects of Moringa oleifera. In Biological and Pharmacological Properties of the Genus Moringa; CRC Press: Boca Raton, FL, USA, 2021; Volume 3, pp. 39–63. [Google Scholar]
- Huang, Q. Enhancing Soil health and biodiversity through nitrogen fixation symbiosis in Leguminous plants. Mol. Microbiol. Res. 2024, 14, 18–56. [Google Scholar] [CrossRef]
- Kumar, A. Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management; Springer Nature: Berlin/Heidelberg, Germany, 2022; Volume 1, pp. 1–9. [Google Scholar]
- Isitua, C.C.; Ibeh, I.N.; Olayinka, J.N. Antibacterial activity of Moringa oleifera Lam leaves on enteric human pathogens. Indian J. Appl. Res. 2016, 6, 553–556. [Google Scholar]
- Lokesh, M.; Ravi Chandra Charyulu, K.; Harish Babu, B.; Ayyana, K.; Ashok, C. Experimental analysis of Moringa oleifera leaf thin layer drying modeling. J. Pharmacogn. Phytochem. 2019, 8, 697–701. [Google Scholar]
- Pal, D.; Thakur, S.; Sahu, T.; Hait, M. Exploring the Anticancer potential and phytochemistry of Moringa oleifera: A multi-targeted Medicinal Herb from Nature. ES Food Agrofor. 2023, 14, 982. [Google Scholar] [CrossRef]
- Mohanty, M.; Mohanty, S.; Bhuyan, S.K.; Bhuyan, R. Phytoperspective of Moringa oleifera for oral health care: An innovative ethnomedicinal approach. Phytother. Res. 2021, 35, 1345–1357. [Google Scholar] [CrossRef]
- Mahmood, K.T.; Mugal, T.; Haq, I.U. Moringa oleifera: A natural gift-A review. J. Pharm. Sci. Res. 2010, 2, 775. [Google Scholar]
- Fatima, N. Determination of Pharmacological Screening for Anti-arthritic Potential of Moringa oleifera in Rats Challenged with Formalin. Technol. Innov. Pharm. Res. 2021, 3, 44–56. [Google Scholar]
- Meireles, D.; Gomes, J.; Lopes, L.; Hinzmann, M.; Machado, J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med. 2020, 20, 495–515. [Google Scholar] [CrossRef]
- Jikah, A.N.; Edo, G.I. Moringa oleifera: A valuable insight into recent advances in medicinal uses and pharmacological activities. J. Sci. Food Agric. 2023, 103, 7343–7361. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W. Moringa oleifera: A review of the medicinal potential. In Proceedings of the I International Symposium on Moringa, Malina, Philippines, 15–18 November 2015; Volume 1158, pp. 209–224. [Google Scholar]
- Seifu, E. Actual and potential applications of Moringa stenopetala, underutilized indigenous vegetable of Southern Ethiopia: A review. Int. J. Agric. Food Res. 2015, 3, 30–48. [Google Scholar] [CrossRef]
- Chukwuebuka, E. Moringa oleifera “the mother’s best friend”. Int. J. Nutr. Food Sci. 2015, 4, 624–630. [Google Scholar]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Dalvand, A.; Elham, G.; Mohammad, R.; Ganjali, N.G.; Mohammad, K.; Hossein, K.; Sara, S.H.; Amir, H.M. Comparison of Moringa stenopetala seed extract as a clean coagulant with Alum and Moringa stenopetala-Alum hybrid coagulant to remove direct dye from Textile Wastewater. Environ. Sci. Pollut. Res. 2016, 23, 16396–16405. [Google Scholar] [CrossRef]
- Rashid, U.; Anwar, F.; Moser, B.R.; Knothe, G. Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol. 2008, 99, 8175–8179. [Google Scholar] [CrossRef]
- Srivastava, M.; Dhakad, P.; Srivastava, B. A Review on Medicinal Constituents and Therapeutic Potential of Moringa oleifera. Univers. J. Plant Sci. 2020, 8, 22–33. [Google Scholar] [CrossRef]
- Duc, N.H.; Vo, A.T.; Haddidi, I.; Daood, H.; Posta, K. Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front. Plant Sci. 2021, 11, 612299. [Google Scholar] [CrossRef]
- Caretto, S.; Linsalata, V.; Colella, G.; Mita, G.; Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 2015, 16, 26378–26394. [Google Scholar] [CrossRef] [PubMed]
- de Souza Freitas, W.E.; de Oliveira, A.B.; Mesquita, R.O.; de Carvalho, H.H.; Prisco, J.T.; Gomes-Filho, E. Sulfur-induced salinity tolerance in lettuce is due to a better P and K uptake, lower Na/K ratio and an efficient antioxidative defense system. Sci. Hortic. 2019, 257, 108764. [Google Scholar] [CrossRef]
- Bistgani, Z.E.; Hashemib, M.; DaCostab, M.; Crakerb, L.; Maggic, F.; Morshedloo, M.R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Boughalleb, F.; Abdellaoui, R.; Mahmoudi, M.; Bakhshandeh, E. Changes in phenolic profile, soluble sugar, proline, and antioxidant enzyme activities of Polygonum equisetiforme in response to salinity. Turk. J. Bot. 2020, 44, 25–35. [Google Scholar] [CrossRef]
- Azeem, M.; Pirjan, K.; Qasim, M.; Mahmood, A.; Javed, T.; Muhammad, H.; Yang, S.; Dong, R.; Ali, B.; Rahimi, M. Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci. Rep. 2023, 13, 2895. [Google Scholar] [CrossRef]
- Elhag, A.Z.; Abdalla, M.H. Investigation of sodium chloride tolerance of moringa (Moringa oleifera Lam.) Transplants. Univl. J. Agric. Res. 2014, 2, 45–49. [Google Scholar] [CrossRef]
- Mostofa, M.G.; Rahman, M.M.; Ghosh, T.K.; Kabir, A.H.; Abdelrahman, M.; Khan, M.A.R.; Mochida, K.; Tran, L.S.P. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol. Biochem. 2022, 186, 279–289. [Google Scholar] [CrossRef]
- Wakeel, A. Potassium–sodium interactions in soil and plant under saline-sodic conditions. J. Plant Nutr. Soil Sci. 2013, 176, 344–354. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef]
- Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, M.; Menzies, N.W. The effect of salinity on plant-available water. Plant Soil 2017, 418, 477–491. [Google Scholar] [CrossRef]
- Win, K.T.; Tanaka, F.; Okazaki, K.; Ohwaki, Y. The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol. Biochem. 2018, 127, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liu, J.; Huang, Q.; Liu, S.; Jiang, Y. Moringa oleifera: A systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J. Pharm. Pharmacol. 2022, 74, 296–320. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.; Kishore, A.; Singh, K. Phenolic, antioxidant and free radical-scavenging properties of various parts of Indian moringa (Moringa oleifera) during the winter season: Phenolic, Antioxidant and Free Radical-Scavenging Properties of Indian Moringa. J. Rural. Adv. 2022, 10, 1–7. [Google Scholar]
- Wang, Y.; Gao, Y.; Ding, H.; Liu, S.; Han, X.; Gui, J.; Liu, D. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem. 2017, 218, 152–158. [Google Scholar] [CrossRef]
- Pakade, V.; Cukrowska, E.; Chimuka, L. Metal and flavonol contents of Moringa oleifera grown in South Africa. S. Afr. J. Sci. 2013, 109, 1–7. [Google Scholar] [CrossRef]
- Leone, A.; Fiorillo, G.; Criscuoli, F.; Ravasenghi, S.; Santagostini, L.; Fico, G.; Spadafranca, A.; Battezzati, A.; Schiraldi, A.; Pozzi, F.; et al. Nutritional characterization and phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi Refugee Camps, and Haiti. Int. J. Mol. Sci. 2015, 16, 18923–18937. [Google Scholar] [CrossRef]
- Mumtaz, M.Z.; Kausar, F.; Hassan, M.; Javaid, S.; Malik, A. Anticancer activities of phenolic compounds from Moringa oleifera leaves: In vitro and in silico mechanistic study. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 12. [Google Scholar] [CrossRef]
- Alam, M.N.; Kaushik, R.; Hussain, M.S.; Singh, L.; Khan, N.A. Scientific Basis of Ethno-pharmacological Claims of Moringa Oleifera Lam. Nature 2022, 1, 2. [Google Scholar] [CrossRef]
- Park, E.J.; Cheenpracha, S.; Chang, L.C.; Kondratyuk, T.P.; Pezzuto, J.M. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2′-O-acetyl-α-L-rhamnosyloxy) benzyl] isothiocyanate from Moringa oleifera. Nutr. Cancer 2011, 63, 971–982. [Google Scholar] [CrossRef]
- Padla, E.P.; Solis, L.T.; Levida, R.M.; Shen, C.C.; Ragasa, C.Y. Antimicrobial isothiocyanates from the seeds of Moringa oleifera Lam. Z. Für Naturforschung 2012, 67, 557–564. [Google Scholar] [CrossRef]
- Waterman, C.; Cheng, D.M.; Rojas-Silva, P.; Poulev, A.; Dreifus, J.; Lila, M.A.; Raskin, I. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry 2014, 103, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rodriguez, N.A.; Gaytán-Martínez, M.; de la Luz Reyes-Vega, M.; Loarca-Piña, G. Glucosinolates and isothiocyanates from Moringa oleifera: Chemical and biological approaches. Plant Foods Hum. Nutr. 2020, 75, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Shetty, N.P.; Giridhar, P. Carotenoid content in vegetative and reproductive parts of commercially grown Moringa oleifera Lam. cultivars from India by LC–APCI–MS. Eur. Food Res. Technol. 2014, 238, 971–978. [Google Scholar] [CrossRef]
- Saini, R.K.; Harish Prashanth, K.V.; Shetty, N.P.; Giridhar, P. Elicitors, SA and MJ enhance carotenoids carotenoids and tocopherol biosynthesis and expression of antioxidant related genes in Moringa oleifera Lam. leaves. Acta Physiol. Plant. 2014, 36, 2695–2704. [Google Scholar] [CrossRef]
- Amle, V.S.; Rathod, D.A.; Keshamma, E.; Kumar, V.; Kumar, R.; Saha, P. Bioactive herbal medicine use for eyesight: A meta-analysis. J. Res. Appl. Sci. Biotechnol. 2022, 1, 42–50. [Google Scholar] [CrossRef]
- Camilleri, E.; Blundell, R.A. Comprehensive review of the phytochemicals, health benefits, pharmacological safety and medicinal prospects of Moringa oleifera. Heliyon 2024, 2, 12–17. [Google Scholar] [CrossRef]
- Punia, J.; Singh, R. Phytochemistry and pharmacological properties of leaves of Moringa oleifera: An overview. Int. J. Commun. Syst. 2018, 6, 3369–3375. [Google Scholar]
- Vudhgirl, S.; Prasad, R.B.N.; Kota, A. Synthesis and biological evaluation of Marumoside A isolated from Moringa oleifera and its lipid derivatives. Int. J. Pharm. Sci. Rev. Res. 2016, 2, 607–617. [Google Scholar]
- Otia, M.; Chorotiya, H.; Yadav, M.K.; Kashinath, G.M.; SR, S.K.; Sarwade, P.; Ahmed, S.; Machhi, D.A. Pharmacological Activities, Phytochemistry and Traditional Uses of Moringa oleifera. J. Res. Appl. Sci. Biotechnol. 2024, 3, 185–193. [Google Scholar] [CrossRef]
- Hashim, M.A.; Yam, M.F.; Hor, S.Y.; Lim, C.P.P.; Asmawi, M.Z.; Sadikun, A. Anti-hyperglycaemic activity of swietenia macrophylla king (meliaceae) seed extracts in normoglycaemic rats undergoing glucose tolerance tests. Chin. Med. 2013, 8, 11. [Google Scholar] [CrossRef]
- Laka, T.; Masenya, T.A.; Mabila, W.S.; Mabuela, A.; Nokuthula, K. Exploring the Impact of Vesicular Arbuscular Mycorrhiza on Phytochemical Profiles, Productivity Enhancement and Saline Stress Alleviation in Moringa Oleifera. Rev. Agric. Sci. 2024, 12, 213–236. [Google Scholar] [CrossRef] [PubMed]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- Ahmed, N.; Li, J.; Li, Y.; Deng, L.; Deng, L.; Chachar, M.; Chachar, Z.; Chachar, S.; Hayat, F.; Raza, A.; et al. Symbiotic synergy: How Arbuscular Mycorrhizal Fungi enhance nutrient uptake, stress tolerance, and soil health through molecular mechanisms and hormonal regulation. IMA Fungus 2025, 16, e144989. [Google Scholar] [CrossRef] [PubMed]
- Islam, W.; Noman, A.; Naveed, H.; Huang, Z.; Chen, H.Y. Role of environmental factors in shaping the soil microbiome. Environ. Sci. Pollut. Res. 2020, 27, 41225–41247. [Google Scholar] [CrossRef]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef]
- Allen, M.F. Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone J. 2007, 6, 291–297. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, L.; Zhou, J.; George, T.S.; Feng, G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 2021, 230, 304–315. [Google Scholar] [CrossRef]
- Pooja, P.; Devi, S.; Tallapragada, S.; Ahlawat, Y.K.; Sharma, N.; Kasnia, P.; Lakra, N.; Porcel, R.; Mulet, J.M.; Elhindi, K.M. Impact of Arbuscular Mycorrhizal Symbiosis on Photosynthetic, Antioxidant Enzyme, and Water Flux Parameters in Salt-Stressed Chickpea (Cicer arietinum) Plants. Agronomy 2025, 15, 247. [Google Scholar] [CrossRef]
- Van Aarle, I.M.; Olsson, A.; Söderström, B. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol. 2002, 155, 173–182. [Google Scholar] [CrossRef]
- Chagnon, L.; Bradley, R.L.; Maherali, H.; Klironomos, J.N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 2013, 18, 484–491. [Google Scholar] [CrossRef]
- Stürmer, S.L.; Oliveira, L.Z.; Morton, J.B. Gigasporaceae versus Glomeraceae (phylum Glomeromycota): A biogeographic tale of dominance in maritime sand dunes. Fungal Ecol. 2018, 32, 49–56. [Google Scholar] [CrossRef]
- Abbott, L.K.; Robson, A.D. The effect of soil pH on the formation of VA mycorrhizas by two species of Glomus. Soil Res. 1985, 23, 253–261. [Google Scholar] [CrossRef]
- Gondal, A.H.; Hussain, I.; Ijaz, A.B.; Zafar, A.; Ch, B.I.; Zafar, H.; Sohail, M.D.; Niazi, H.; Touseef, M.; Khan, A.A.; et al. Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. Int. J. Agric. Biol. Sci. 2021, 5, 71–81. [Google Scholar]
- Yang, W.; Gu, S.; Xin, Y.; Bello, A.; Sun, W.; Xu, X. Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil. Front. Microbiol. 2018, 9, 169ahmed. [Google Scholar] [CrossRef]
- Zhang, Q.; Dai, W. Plant response to salinity stress. In Stress Physiology of Woody Plants; CRC Press: Boca Raton, FL, USA, 2019; Volume 31, pp. 155–173. [Google Scholar]
- El Ghazali, G.E. Suaeda vermiculata Forssk. ex JF Gmel.: Structural characteristics and adaptations to salinity and drought: A review. Int. J. Syst. Sci. 2020, 9, 28–33. [Google Scholar]
- Navada, S.; Vadstein, O.; Gaumet, F.; Tveten, A.K.; Spanu, C.; Mikkelsen, Ø.; Kolarevic, J. Biofilms remember: Osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Res. 2020, 176, 115732. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- El-Dabh, R.S.; El-Khateeb, M.A.; Mazher, A.A.M.; El-Badaie, A. Effect of salinity on growth and chemical constituents of Moringa oleifera Lam. Egypt. J. Agric. Sci. 2011, 62, 378–386. [Google Scholar] [CrossRef]
- Muthuchelian, K.; Murugan, C.; Harigovindan, R.; Nedunchezhian, N.; Kulandaivelu, G. Ameliorating effect of triacontanol on salt stressed Erythrina variegate seedlings. Changes in growth, biomass, pigments and solute accumulation. Biol. Plant. 1996, 38, 133–136. [Google Scholar]
- Rawat, J.S.; Banerjee, S.P. The influence of salinity on growth, biomas production and photosynthesis of Eucalyptus camaldulensis, Dehnh. and Dalbergia sissoo Roxb. seedlings. Plant. Soil 1998, 205, 163–169. [Google Scholar] [CrossRef]
- Patel, A.D.; Pandey, A.N. Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Cassia montana (Fabaceae). J. Arid. Environ. 2007, 70, 174–182. [Google Scholar] [CrossRef]
- Diagne, N.; Ndour, M.; Djighaly, I.; Ngom, D.; Ngom, M.C.N.; Ndong, G.; Svistoonoff, S.; Cherif-Silini, H. Effect of plant growth promoting rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Front. Sustain. Food Syst. 2020, 4, 601004. [Google Scholar] [CrossRef]
- Yadav, B.S.; Kumar, R.; Kumar, N. Effect of soil salinity on germination and seedling growth of Albizia lebbeck (L.) Benth. and Melia azedarach L. Indian J. For. 2005, 28, 132–135. [Google Scholar] [CrossRef]
- Villagra, P.E.; Cavagnaro, J.B. Effects of salinity on the establishment and early growth of Prosopis argentina and Prosopis alpataco seedlings in two contrasting soils: Implications for their ecological success. Austral Ecol. 2005, 30, 325–335. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Ramoliya, P.J.; Patel, H.M.; Joshi, J.B.; Pandey, A.N. Effect of salinization of soil on growth and nutrient accumulation in seedlings of Prosopis cineraria. J. Plant Nutr. 2006, 29, 283–303. [Google Scholar] [CrossRef]
- Agarwal, S.; Pandey, V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol. Plant. 2014, 48, 555–560. [Google Scholar] [CrossRef]
- de Freitas, A.F.; de Carvalho, H.H.; Costa, J.H.; Miranda, R.D.S.; Saraiva, K.D.D.C.; de Oliveira, F.D.B.; Coelho, D.G.; Prisco, J.T.; Gomes-Filho, E. Salt acclimation in sorghum plants by exogenous proline: Physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep. 2019, 38, 403–416. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- D’Amelia, L.; Dell’Aversana, E.; Woodrow, P.; Ciarmiello, L.F.; Carillo, P. Metabolomics for crop improvement against salinity stress. Salin. Responses Toler. Plants 2018, 2, 267–287. [Google Scholar]
- Krumova, K.; Cosa, G. Overview of reactive oxygen species. In Singlet Oxygen; Royal Society of Chemistry: London, UK, 2016. [Google Scholar]
- Suman, S.; Bagal, D.; Jain, D.; Singh, R.; Singh, I.K.; Singh, A. Biotic stresses on plants: Reactive oxygen species generation and antioxidant mechanism. In Frontiers in Plant-Soil Interaction; Academic Press: Cambridge, MA, USA, 2021; Volume 5, pp. 381–411. [Google Scholar]
- Fahnenstich, H.; Scarpeci, T.E.; Valle, E.M.; Flugge, U.I.; Maurino, V.G. Generation of hydrogen peroxide in chloroplasts of Arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol. 2008, 148, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Sofo, A.; Scopa, A.; Nuzzaci, M.; Vitti, A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci. 2015, 16, 13561–13578. [Google Scholar] [CrossRef] [PubMed]
- Averill-Bates, D.A. The antioxidant glutathione. In Vitamins and Hormones; Academic Press: Cambridge, MA, USA, 2023; Volume 121, pp. 109–141. [Google Scholar]
- Orabi, S.A.; Abou-Hussein, S.D. Antioxidant defense mechanisms enhance oxidative stress tolerance in plants: A review. Curr. Sci. Int. 2019, 8, 565–576. [Google Scholar]
- Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol. 2014, 5, 196. [Google Scholar] [CrossRef]
- Ntsangani, L. Assessing the Effect of Extreme Temperature Conditions on the Morphology, Anatomy and Phytochemistry of Moringa Oleifera Leaves. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2018; pp. 35–58. [Google Scholar]
- Desoky, E.S.M.; Elrys, A.S.; Mohamed, G.F.; Rady, M.M. Exogenous application of moringa seed extract positively alters fruit yield and its contaminant contents of Capsicum annuum plants grown on a saline soil contaminated with heavy metals. Adv. Plants Agric. Res. 2018, 8, 591–601. [Google Scholar]
- Hasanuzzaman, M.; Parvin, K.; Bardhan, K.; Nahar, K.; Anee, T.I.; Masud, A.A.C.; Fotopoulos, V. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells 2021, 10, 2537. [Google Scholar] [CrossRef]
- Zada, H.; Ortas, I. Mycorrhiza: A solution to the crisis of soil health, plant nutrition and food security. A Solut. Cris. Soil Water Clim. Plant Prod. 2023, 3, 126–130. [Google Scholar]
- Singh, H.B.; Vaishnav, A. New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals; Elsevier: Amsterdam, The Netherlands, 2022; Volume 3, pp. 20–36. [Google Scholar]
- Islam, M.; Islam, M.; Hasan, M.; Hafeez, A.; Chowdhury, M.; Pramanik, M.; Iqbal, M.; Erman, M.; Barutcular, C.; Konuşkan, Ö.; et al. Salinity Stress in Maize: Consequences, Tolerance Mechanisms, and Management Strategies. OBM Genet. 2024, 8, 1–10. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Abiotic stress, generation of reactive oxygen species, and their consequences: An overview. In Reactive Oxygen Species in Plants: Boon or Bane—Revisiting the Role of ROS; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 23–50. [Google Scholar]
- Timme-Laragy, A.R.; Di Giulio, R.T.; Meyer, J.N. Reactive Oxygen Species and Redox Stress. In Toxicology of Fishes; CRC Press: Boca Raton, FL, USA, 2024; Volume 4, pp. 121–155. [Google Scholar]
- Sharma, P.; Arora, P.; Verma, V.; Khanna, K.; Saini, P.; Bhardwaj, R. Role and regulation of ROS and antioxidants as signaling molecules in response to abiotic stresses. In Plant Signaling Molecules; Woodhead Publishing: Cambridge, UK, 2019; pp. 141–156. [Google Scholar]
- Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free. Radic. Biol. Med. 2010, 48, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Sokolovska, I.; Kutsak, A.; Gordienko, L.; Bulanov, V.; Hryshyna, T.; Zarytska, V.; Plakhotnik, O.; Semeniv, I.; Kotuza, A.; Zazirnyi, I.; et al. Riskometric assessment of factors affecting population health in situational analysis features of cytochemical indicators of activity circulating and tissue leukocytes and oxidative stress as a factor of chronic inflammation. Fr.-Ukr. J. Chem. 2020, 8, 43–57. [Google Scholar] [CrossRef]
- Sadak, M.S. Physiological role of signal molecules in improving plant tolerance under abiotic stress. Int. J. ChemTech Res. 2016, 9, 46–60. [Google Scholar]
- Gómez, R.; Vicino, P.; Carrillo, N.; Lodeyro, A.F. Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops. From damage to signaling to tolerance. Crit. Rev. Biotechnol. 2019, 39, 693–708. [Google Scholar] [CrossRef]
- Glaze-Corcoran, S.; Hashemi, M.; Sadeghpour, A.; Jahanzad, E.; Afshar, R.K.; Liu, X.; Herbert, S.J. Understanding intercropping to improve agricultural resiliency and environmental sustainability. Adv. Agron. 2020, 162, 199–256. [Google Scholar]
- Torres-Quezada, E.; Gandini-Taveras, R.J. Plant density recommendations and plant nutrient status for high tunnel tomatoes in Virginia. Horticulturae 2023, 9, 1063. [Google Scholar] [CrossRef]
- Black, C.A. Soil-Plant Relationships, 1st ed.; John Wiley Sons: New York, NY, USA, 1957. [Google Scholar]
- Francis, R.; Decoteau, D.R. Developing an effective southern pea and sweet corn intercrop system. HortTechnology 1993, 3, 178–184. [Google Scholar] [CrossRef]
- Sonbol, H.; Korany, S.M.; Nhs, M.; Abdi, I.; Maridueña-Zavala, M.G.; Alsherif, E.A.; Aldailami, D.A.; Elsheikh, S.Y.S. Exploring the benefits of AMF colonization for improving wheat growth, physiology and metabolism, and antimicrobial activity under biotic stress from aphid infection. BMC Plant Biol. 2025, 25, 198. [Google Scholar] [CrossRef]
- Mahaveerchand, H.; Abdul Salam, A.A. Environmental, industrial, and health benefits of Moringa oleifera. Phytochem. Rev. 2024, 23, 1497–1556. [Google Scholar] [CrossRef]
- Wilson, S.D.; Tilman, D. Plant competition and resource availability in response to disturbance and fertilization. Ecology 1993, 74, 599–611. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Nguyen, P.; Lin, C. Chapter Seven-Cryptochrome-Mediated Light Responses in Plants. In The Enzimes; Machida, Y., Lin, C., Tamanoi, F., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 35, pp. 167–189. [Google Scholar]
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef] [PubMed]
- Rehling, F.; Sandner, T.M.; Matthies, D. Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: A study of 43 plant species. J. Ecol. 2021, 109, 2219–2233. [Google Scholar] [CrossRef]
- Goss, M. A study of the initial establishment of multi—Purpose moringa (Moringa oleifera Lam) at various plant densities, their effect on biomass accumulation and leaf yield when grown as vegetable. Afr. J. Plant Sci. 2012, 6, 125–129. [Google Scholar]
- Nouman, W.; Siddiqui, M.T.; Bastra, S.; Ahmed, M.; Farooq, H.; Zubair, M.; Gull, T. Biomass production and nutritional quality of Moringa oleifera as a field crop. Turk. J. Agric. For. 2013, 37, 410–419. [Google Scholar] [CrossRef]
- Amaglo, N.K.; Timpo, G.M.; Ellis, W.O.; Bennett, R.N.; Foidl, N. Effect of spacing and harvest frequency on the growth and leaf yield of moringa (Moringa oleifera Lam.), a leafy vegetable crop. Ghana J. Hortic. 2006, 6, 33–40. [Google Scholar]
- Fadiyimu, A.A.; Fajemisin, A.N.; Alokan, J.A.; Aladesanwa, R.D. Effect of cutting regimes on seasonal fodder yields of Moringa oleifera in the tropical rainforest of Nigeria. Livest. Res. Rural. Dev. 2011, 23, 11–35. [Google Scholar]
- Gadzirayi, C.T.; Mudyiwa, S.M.; Mupangwa, J.F.; Gotosa, J. Cultivation practices and utilization of Moringa oleifera provenances by small holder farmers: Case of Zimbabwe. Asian J. Agric. Ext. Econ. Sociol. 2013, 2, 152–162. [Google Scholar]
- Gadzirayi, C.T.; Kubiku, F.; Mupangwa, J.; Masamha, B.; Mujuru, L. The Effect of Provenance, Plant Spacing and Cutting Interval on Leaf Biomass Yield of Moringa Oleifera Lam. East Afr. Agric. For. J. 2019, 83, 25–33. [Google Scholar] [CrossRef]
- Caldwell, M.M. Competition between root systems in natural communities. Root Dev. Funct. 1987, 13, 167–185. [Google Scholar]
- Peng, J.; Rezaei, E.E.; Zhu, W.; Wang, D.; Li, H.; Yang, B.; Sun, Z. Plant Density Estimation Using UAV Imagery and Deep Learning. Remote Sens. 2022, 14, 5923. [Google Scholar] [CrossRef]
- Issaka, D.S.; Gross, O.; Ayilara, I.; Schabes, T.; DeMalach, N. Density-dependent and independent mechanisms jointly reduce species performance under nitrogen enrichment. Oikos 2023, 7, 09838. [Google Scholar] [CrossRef]
- Springer, T.L.; Gillen, R.L. How does plant population density affect the yield, quality, and canopy of native bluestem (Andropogon spp.) forage. Crop Sci. 2007, 47, 77–82. [Google Scholar] [CrossRef]
- Marquard, E.; Weigelt, A.; Roscher, C.; Gubsch, M.; Lipowsky, A.; Schmid, B. Positive biodiversity–productivity relationship due to increased plant density. J. Ecol. 2009, 97, 696–704. [Google Scholar] [CrossRef]
- Zhao, W.; Ren, T.H.; Huang, X.Y.; Xu, Z.; Zhou, Y.Z.; Yin, C.L.; Zhao, R.; Liu, S.B.; Ning, T.Y.; Li, G. Leaf shape, planting density, and nitrogen application affect soybean yield by changing direct and diffuse light distribution in the canopy. Plant Physiol. Biochem. 2023, 204, 108071. [Google Scholar] [CrossRef] [PubMed]
- Mendieta-Araica, B.; Spörndly, E.; Reyes-Sánchez, N.; Salmerón-Miranda, F.; Halling, M. Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization. Agrofor. Syst. 2013, 87, 81–92. [Google Scholar] [CrossRef]
- Foidl, N.; Makkar, H.P.S.; Becker, K. The Potential of Moringa oleifera For Agricultural and Industrial Uses. In The Miracle Tree: The Multiple Attributes of Moringa; CWS: New York, NY, USA, 2001. [Google Scholar]
- Kassa, G.; Ferde, T.; Nigatu, A. Improving growth and productivity of Cordia africana trees using moringa leaf juice in NorthWestern Ethiopia. Cogent Food Agric. 2020, 6, 1762980. [Google Scholar] [CrossRef]
- Bharath, P.; Gahir, S.; Raghavendra, A.S. Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Front. Plant Sci. 2021, 12, 615114. [Google Scholar] [CrossRef]
- Mvumi, C.; Marais, D.; Ngadze, E.; du Toit, E.S.; Tsindi, A. Effect of moringa extract on the leaf anatomy and yield potential of tomato infected by Alternaria solani. S. Afr. J. Plant Soil 2018, 35, 389–392. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Alonso-Alvarez, C. Oxidative stress as a life-history constraint: The role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 2010, 24, 984–996. [Google Scholar] [CrossRef]
- Biswas, A.K.; Hoque, T.S.; Abedin, M.A. Effects of moringa leaf extract on growth and yield of maize. Progress. Agric. 2016, 27, 136–143. [Google Scholar] [CrossRef]
- Violle, C.; Garnier, E.; Lecoeur, J.; Roumet, C.; Podeur, C.; Blanchard, A.; Navas, M.L. Competition, traits and resource depletion in plant communities. Oecologia 2009, 160, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Fritschi, F.B.; Zandalinas, S.I.; Mittler, R. The impact of stress combination on reproductive processes in crops. Plant Sci. 2021, 311, 111007. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Shao, H.; Wu, X.; Duan, J.; Zhu, F.; Chi, H.; Liu, J.; Shi, W.; Xu, Y.; Wei, Z.; Mi, G. How does increasing planting density regulate biomass production, allocation, and remobilization of maize temporally and spatially: A global meta-analysis. Field Crops Res. 2024, 315, 109430. [Google Scholar] [CrossRef]
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Iavicoli, I.; Di Paola, R.; Koverech, A.; Cuzzocrea, S.; Rizzarelli, E.; Calabrese, E.J. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 753–783. [Google Scholar] [CrossRef] [PubMed]
- Postma, J.A.; Hecht, V.L.; Hikosaka, K.; Nord, E.A.; Pons, T.L.; Poorter, H. Dividing the pie: A quantitative review on plant density responses. Plant Cell Environ. 2021, 44, 1072–1094. [Google Scholar] [CrossRef] [PubMed]
- Czembor, E.; Tratwal, A.; Pukacki, J.; Krystek, M.; Czembor, J.H. Managing fungal pathogens of field crops in sustainable agriculture and AgroVariety internet application as a case study. J. Plant Prot. Res. 2025, 65, 2. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Miller, T.; Kisiel, A.; Cembrowska-Lech, D.; Mikiciuk, M.; Łobodzińska, A.; Bokszczanin, K. Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations. Agriculture 2024, 14, 2228. [Google Scholar] [CrossRef]
- Salomon, M.J.; Watts-Williams, S.J.; McLaughlin, M.J.; Bücking, H.; Singh, B.K.; Hutter, I.; Schneider, C.; Martin, F.M.; Vosatka, M.; Guo, L.; et al. Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. iScience 2022, 25, 104636. [Google Scholar] [CrossRef]
- Pill, W.G. Low water potential and presowing germination treatments to improve seed quality. In Seed Quality; CRC Press: Boca Raton, FL, USA, 2020; pp. 319–359. [Google Scholar]
- Begum, N.; Wang, L.; Ahmad, H.; Akhtar, K.; Roy, R.; Khan, M.I.; Zhao, T. Co-inoculation of arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microb. Ecol. 2022, 83, 971–988. [Google Scholar] [CrossRef]
- Krishna, S.; Bhutia, D.D.; Chaubey, R.K.; Sudhir, I. Exploring plant microbiome: A holistic approach to sustainable agriculture. In Microbiome Drivers of Ecosystem Function; Academic Press: Cambridge, MA, USA, 2024; pp. 61–77. [Google Scholar]
- Duan, S.; Feng, G.; Limpens, E.; Bonfante, P.; Xie, X.; Zhang, L. Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat. Rev. Microbiol. 2024, 22, 773–790. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, R.; Venkatramanan, V.; Senthilkumar, M.; Anandham, R.; Kumutha, K.; Sa, T. Management of heavy metal polluted soils: Perspective of arbuscular mycorrhizal fungi. Sustain. Green Technol. Environ. Manag. 2019, 67–85. [Google Scholar]
- de Araujo Pereira, A.P.; Santana, M.C.; Bonfim, J.A.; de Lourdes Mescolotti, D.; Cardoso, E.J.B.N. Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Appl. Soil Ecol. 2018, 128, 1–11. [Google Scholar] [CrossRef]
- Afrangan, F.; Kazemeini, S.A.; Alinia, M.; Mastinu, A. Glomus versiforme and Micrococcus yunnanensis reduce the negative effects of salinity stress by regulating the redox state and ion homeostasis in Brassica napus L. crops. In Biologia; Springer: New York, NY, USA, 2023; pp. 1–13. [Google Scholar]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Giri, B.; Kapoor, R.; Mukerji, K.G. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb. Ecol. 2007, 54, 753–760. [Google Scholar] [CrossRef]
- Al-Karaki, G.N. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 2000, 10, 51–54. [Google Scholar] [CrossRef]
- Matamoros, M.A.; Baird, L.M.; Escuredo, R.; Dalton, D.A.; Minchin, F.R.; Iturbe-Ormaetxe, I.; Rubio, M.C.; Moran, J.F.; Gordon, A.J.; Becana, M. Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol. 1999, 121, 97–112. [Google Scholar] [CrossRef]
- Shokri, S.; Maadi, B. Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J. Agron. 2009, 1, 79–83. [Google Scholar] [CrossRef]
- Feng, G.; Li, X.L.; Zhang, F.S.; Li, S.X. Effects of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment. Plant Res Environ. 2002, 9, 22–26. [Google Scholar]
- Ait-El-Mokhtar, M.; Laouane, R.B.; Anli, M.; Boutasknit, A.; Wahbi, S.; Meddich, A. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hortic. 2019, 253, 429–438. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Boughattas, S.; Hu, S.; Oh, S.H.; Sa, T.A. Meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 2014, 24, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Chanratana, M.; Kim, K.; Seshadri, S.; Sa, T. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front. Plant Sci. 2019, 10, 457. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dames, J.F.; Gupta, A.; Sharma, S.; Gilbert, J.A.; Ahmad, P. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: A biotechnological perspective. Crit. Rev. Biotechnol. 2015, 35, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Elhindi, K.M.; El-Din, A.S.; Elgorban, A.M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 2017, 24, 170–179. [Google Scholar] [CrossRef]
- Borde, M.; Dudhane, M.; Jite, K. Arbuscular mycorrhizal fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Not. Sci. Biol. 2010, 2, 64–71. [Google Scholar] [CrossRef]
- Beltrano, J.; Ruscitti, M.; Arango, M.C.; Ronco, M. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J. Soil Sci. Plant Nutr. 2013, 13, 123–141. [Google Scholar] [CrossRef]
- Cosme, M.; Wurst, S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol. Biochem. 2013, 57, 436–443. [Google Scholar] [CrossRef]
- Sharma, K.; Gupta, S.; Thokchom, S.D.; Jangir, P.; Kapoor, R. Arbuscular mycorrhiza-mediated regulation of polyamines and aquaporins during abiotic stress: Deep insights on the recondite players. Front. Plant Sci. 2021, 12, 642101. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M.; Zamarreño, Á.M.; Paz, J.A.; García-Mina, J.M.; Pozo, M.J.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 2013, 170, 47–55. [Google Scholar] [CrossRef]
- Goss, M.J.; Carvalho, M.; Brito, I. Functional Diversity of Mycorrhiza and Sustainable Agriculture: Management to Overcome Biotic and Abiotic Stresses; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J. Salinity stress in arid and semi-arid climates: Effects and management in field crops. Clim. Change Agric. 2019, 13, 201–226. [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Omar, M.M.; Shitindi, M.J.; Massawe, B.J.; Fue, K.G.; Meliyo, J.L.; Pedersen, O. Salt-affected soils in Tanzanian agricultural lands: Type of soils and extent of the problem. Sustain. Environ. 2023, 9, 2205731. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Butcher, K.; Wick, A.F.; Desutter, T.; Chatterjee, A.; Harmon, J. Soil salinity: A threat to global food security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Tully, K.; Sullivan, C.; Weil, R.; Sanchez, P. The state of soil degradation in sub-Saharan Africa: Baselines, trajectories, and solutions. Sustainability 2015, 7, 6523–6552. [Google Scholar] [CrossRef]
- FAO. Land resource potential and constraints at regional and country levels. World Soil Resour. Rep. 2000, 1, 90. [Google Scholar]
- Ahmed, M.; Hasanuzzaman, M.; Raza, M.A.; Malik, A.; Ahmad, S. Plant nutrients for crop growth, development and stress tolerance. In Sustainable Agriculture in the Era of Climate Change; Springer: Berlin/Heidelberg, Germany, 2020; pp. 43–92. [Google Scholar]
- Sheppard, J.P.; Bohn Reckziegel, R.; Borrass, L.; Chirwa, W.; Cuaranhua, C.J.; Hassler, S.K.; Hoffmeister, S.; Kestel, F.; Maier, R.; Mälicke, M.; et al. Agroforestry: An appropriate and sustainable response to a changing climate in Southern Africa. Sustainability 2020, 12, 6796. [Google Scholar] [CrossRef]
- Otlewska, A.; Migliore, M.; Dybka-Stępień, K.; Manfredini, A.; Struszczyk-Świta, K.; Napoli, R.; Białkowska, A.; Canfora, L.; Pinzari, F. When salt meddles between plant, soil, and microorganisms. Front. Plant Sci. 2020, 11, 553087. [Google Scholar] [CrossRef]
- Pan, J.; Huang, C.; Peng, F.; Wang, T.; Liao, J.; Ma, S.; You, Q.; Xue, X. Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum bobr. under saline soil conditions. Res. Cold Arid. Reg. 2022, 14, 393–402. [Google Scholar] [CrossRef]
- Khaliq, A.; Perveen, S.; Alamer, K.H.; Zia Ul Haq, M.; Rafique, Z.; Alsudays, I.M.; Althobaiti, A.T.; Saleh, M.A.; Hussain, S.; Attia, H. Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability 2022, 14, 7840. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; Miransari, M. The role of arbuscular mycorrhizal fungi in alleviation of salt stress. In Use of Microbes for the Alleviation of Soil Stresses; Springer: Berlin/Heidelberg, Germany, 2014; Volume 2, pp. 23–38. [Google Scholar]
- Schroeder-Moreno, M.S.; Janos, D. P 2008. Intra-and inter-specific density affects plant growth responses to arbuscular mycorrhizas. Botany 2008, 86, 1180–1193. [Google Scholar] [CrossRef]
- Yang, X.Z.; Zhang, W.H.; He, Q.Y. Effects of intraspecific competition on growth, architecture and biomass allocation of Quercus liaotungensis. J. Plant Interact. 2019, 14, 284–294. [Google Scholar] [CrossRef]
- Bitterlich, M.; Mercy, L.; Arato, M.; Franken, P. Arbuscular mycorrhizal fungi as biostimulants for sustainable crop production. In Biostimulants for Sustainable Crop Production; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 227–271. [Google Scholar]
- Yan, Z.B.; Tian, D.; Huang, H.Y.; Sun, Y.F.; Hou, X.H.; Han, W.X.; Guo, Y.L.; Fang, J.Y. Interactive effects of plant density and nitrogen availability on the biomass production and leaf stoichiometry of Arabidopsis thaliana. J. Plant Ecol. 2023, 16, 101. [Google Scholar] [CrossRef]
- Ullah, A.; Gao, D.; Wu, F. Common mycorrhizal network: The predominant socialist and capitalist responses of possible plant–plant and plant–microbe interactions for sustainable agriculture. Front. Microbiol. 2024, 15, 1183024. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zou, Y.N.; Kuča, K.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Front. Microbiol. 2021, 12, 809473. [Google Scholar] [CrossRef]
- Duan, H.X.; Luo, C.L.; Zhu, S.Y.; Wang, W.; Naseer, M.; Xiong, Y.C. Density-and moisture-dependent effects of arbuscular mycorrhizal fungus on drought acclimation in wheat. Ecol. Appl. 2021, 31, e02444. [Google Scholar] [CrossRef]
- Bahadur, A.; Jin, Z.; Long, X.; Jiang, S.; Zhang, Q.; Pan, J.; Liu, Y.; Feng, H. Arbuscular mycorrhizal fungi alter plant interspecific interaction under nitrogen fertilization. Eur. J. Soil Biol. 2019, 93, 103094. [Google Scholar] [CrossRef]
- Bahadur, A.; Batool, A.; Nasir, F.; Jiang, S.; Mingsen, Q.; Zhang, Q.; Pan, J.; Liu, Y.; Feng, H. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 2019, 20, 4199. [Google Scholar] [CrossRef]
- Pease, A.P. The Relevance of Mycorrhizal Research to Conservation and Development Strategies in Semi-Arid Environments. Ph.D. Thesis, Open University, Milton Keynes, UK, 2002; pp. 67–90. [Google Scholar]
- Van Wees, S.C.; Van der Ent, S.; Pieterse, C.M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 2008, 11, 443–448. [Google Scholar] [CrossRef]
- Smith, G.R.; Steidinger, B.S.; Bruns, T.D.; Peay, K.G. Competition–colonization tradeoffs structure fungal diversity. ISME J. 2018, 12, 1758–1767. [Google Scholar] [CrossRef]
- Groten, K.; Yon, F.; Baldwin, I.T. Arbuscular mycorrhizal fungi influence the intraspecific competitive ability of plants under field and glasshouse conditions. Planta 2023, 258, 60. [Google Scholar] [CrossRef] [PubMed]
- Simard, S.W.; Perry, D.A.; Jones, M.D.; Myrold, D.D.; Durall, D.M.; Molina, R. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 1997, 388, 579–582. [Google Scholar] [CrossRef]
- Chiariello, N.; Hickman, J.C.; Mooney, H.A. Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science 1982, 217, 941–943. [Google Scholar] [CrossRef] [PubMed]
- Bruelheide, H.; Dengler, J.; Purschke, O.; Lenoir, J.; Jiménez-Alfaro, B.; Hennekens, S.M.; Botta-Dukát, Z.; Chytrý, M.; Field, R.; Jansen, F.; et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2018, 2, 1906–1917. [Google Scholar] [CrossRef]
- Giovannetti, M.; Avio, L.; Barale, R.; Ceccarelli, N.; Cristofani, R.; Iezzi, A.; Mignolli, F.; Picciarelli, P.; Pinto, B.; Reali, D.; et al. Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br. J. Nutr. 2012, 107, 242–251. [Google Scholar] [CrossRef]
- Schwarz, D.; Welter, S.; George, E.; Franken, P.; Lehmann, K.; Weckwerth, W.; Dölle, S.; Worm, M. Impact of arbuscular mycorrhizal fungi on the allergenic potential of tomato. Mycorrhiza 2011, 21, 341–349. [Google Scholar] [CrossRef]
- Baslam, M.; Esteban, R.; García-Plazaola, J.; Goicoechea, N. Effectiveness of Arbuscular Mycorrhizal Fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl. Microbiol. Biotechnol. 2013, 97, 3119–3128. [Google Scholar] [CrossRef]
- Tong, Y.; Gabriel-Neumann, E.; Ngwene, B.; Krumbein, A.; Baldermann, S.; Schreiner, M.; George, E. Effects of single and mixed inoculation with two Arbuscular Mycorrhizal Fungi in two different levels of phosphorus supply on β-carotene concentrations in sweet potato (Ipomoea batatas L.) tubers. Plant Soil 2013, 372, 361–374. [Google Scholar] [CrossRef]
- Cardarelli, M.; Rouphael, Y.; Rea, E.; Lucini, L.; Pellizzoni, M.; Colla, G. Effects of fertilization, arbuscular mycorrhiza, and salinity on growth, yield, and bioactive compounds of two Aloe species. Hortscience 2013, 48, 568–575. [Google Scholar] [CrossRef]
- Yuan, M.L.; Zhang, M.H.; Shi, Z.Y.; Yang, S.; Zhang, M.G.; Wang, Z.; Wu, S.W.; Gao, J.K. Arbuscular mycorrhizal fungi enhance active ingredients of medicinal plants: A quantitative analysis. Front. Plant Sci. 2023, 14, 1276918. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Bennett, R.N.; García-Garrido, J.M.; Piché, Y.; Vierheilig, H. Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application cannot be attributed to increased glucosinolate levels. J. Plant Physiol. 2002, 159, 517–523. [Google Scholar] [CrossRef]
- Knopf, E.; Blaschke, H.; Munch, J.C. Improving Moringa growth by using autochthonous and allochthonous arbuscular mycorrhizal fungi in Lake Victoria basin. West Afr. J. Appl. Ecol. Ecol. 2013, 21, 47–57. [Google Scholar]
- Asaolu, V.O.; Odeyinka, S.M.; Akinbamijo, O.O. The effects of four strains of mycorrhizal fungi and goat manure on fodder production by Moringa oleifera under rain-fed conditions in the Gambia. Agric. Biol. J. N. Am. 2012, 3, 365–373. [Google Scholar] [CrossRef]
Species | Part | Medicinal Use | References |
---|---|---|---|
Moringa oleifera | Gum | Fever, dysentery, asthma | [58] |
Seeds | Warts | [59] | |
Oil | Acute rheumatism, Gout | [60] | |
Flowers | Tumor, inflammation, hysteria, | [53] | |
Roots | Toothache, anthelmintic, ant paralytic | [61] | |
Bark | Stomach pain, ulcer, poor vision, joint pain, hypertension, anemia, diabetes, uterine disorders, impaired vision, joint pain, diabetes, anemia, hypertension, toothaches, hemorrhoids, and various stomach ailments, including ulcers and digestive problems | [53,62] | |
Leaves | Malaria, arthritis, hypertension, diabetes, swelling, stomach pain, common cold, elicit lactation | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoza, T.; Masenya, A.; Khanyile, N.; Thosago, S. Alleviating Plant Density and Salinity Stress in Moringa oleifera Using Arbuscular Mycorrhizal Fungi: A Review. J. Fungi 2025, 11, 328. https://doi.org/10.3390/jof11040328
Khoza T, Masenya A, Khanyile N, Thosago S. Alleviating Plant Density and Salinity Stress in Moringa oleifera Using Arbuscular Mycorrhizal Fungi: A Review. Journal of Fungi. 2025; 11(4):328. https://doi.org/10.3390/jof11040328
Chicago/Turabian StyleKhoza, Tshepiso, Absalom Masenya, Nokuthula Khanyile, and Standford Thosago. 2025. "Alleviating Plant Density and Salinity Stress in Moringa oleifera Using Arbuscular Mycorrhizal Fungi: A Review" Journal of Fungi 11, no. 4: 328. https://doi.org/10.3390/jof11040328
APA StyleKhoza, T., Masenya, A., Khanyile, N., & Thosago, S. (2025). Alleviating Plant Density and Salinity Stress in Moringa oleifera Using Arbuscular Mycorrhizal Fungi: A Review. Journal of Fungi, 11(4), 328. https://doi.org/10.3390/jof11040328