Xenorhabdus and Photorhabdus Metabolites for Fungal Biocontrol and Application in Soybean Seed Protection
Abstract
1. Introduction
2. Materials and Methods
2.1. Maintenance of Phytopathogenic Fungal Cultures
2.2. Xenorhabdus spp. and Photorhabdus spp. Sources
2.3. Preparation of Bacterial Supernatants
2.4. Antifungal Activity of Cell-Free Supernatants of Wildtype Xenorhabdus spp. and Photorhabdus spp.
2.5. Determination of Antifungal Bioactive Compounds Produced by X. szentirmaii and X. doucetiae
2.6. Determination of Bioactive Compounds Using easyPACId Strains
2.7. Shelf Stability of X. szentirmaii Secondary Metabolites
2.8. Efficacy of X. szentirmaii Broth Culture and Its Cell-Free Supernatant in Soybean Seed Protection
2.9. Data Analysis
3. Results
3.1. Antifungal Activity of Cell-Free Supernatants of Wildtype Xenorhabdus spp. and Photorhabdus spp.
3.2. Antifungal Compounds Produced by Xenorhabdus szentirmaii and X. doucetiae
3.3. Shelf Stability of Xenorhabdus szentirmaii Secondary Metabolites
3.4. Efficacy of Xenorhabdus szentirmaii Broth Culture and Its Cell-Free Supernatant for Soybean Seed Protection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant Pathogenic Fungi. Microbiol. Spectr. 2017, 5, 5.1.14. [Google Scholar] [CrossRef]
- Termorshuizen, A.J. Ecology of Fungal Plant Pathogens. Microbiol. Spectr. 2016, 4, 1–11. [Google Scholar] [CrossRef]
- Fisher, M.C.; Gurr, S.J.; Cuomo, C.A.; Blehert, D.S.; Jin, H.; Stukenbrock, E.H.; Stajich, J.E.; Kahmann, R.; Boone, C.; Denning, D.W.; et al. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020, 11, e00449-20. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Hartman, G.L.; Rupe, J.C.; Sikora, E.J.; Domier, L.L.; Davis, J.A.; Steffey, K.L. (Eds.) Compendium of Soybean Diseases and Pests, 5th ed.; Disease Compendium Series; APS Press, The American Phytopathological Society: St. Paul, MN, USA, 2015; ISBN 978-0-89054-473-0. [Google Scholar]
- Hosseini, B.; Voegele, R.T.; Link, T.I. Diagnosis of Soybean Diseases Caused by Fungal and Oomycete Pathogens: Existing Methods and New Developments. J. Fungi 2023, 9, 587. [Google Scholar] [CrossRef]
- Yang, X.B.; Feng, F. Ranges and Diversity of Soybean Fungal Diseases in North America. Phytopathology 2001, 91, 769–775. [Google Scholar] [CrossRef][Green Version]
- Valdes, C.; Gillespie, J.; Dohlman, E.N.; United States Department of Agriculture Economic Research Service. Soybean Production, Marketing Costs, and Export Competitiveness in Brazil and the United States; Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2023. [Google Scholar][Green Version]
- Martins, P.M.M.; Merfa, M.V.; Takita, M.A.; De Souza, A.A. Persistence in Phytopathogenic Bacteria: Do We Know Enough? Front. Microbiol. 2018, 9, 1099. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I. Chapter 7—Phytopathogenic Fungi and Their Biocontrol Applications. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology; Sharma, V.K., Shah, M.P., Parmar, S., Kumar, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 155–188. ISBN 978-0-12-821394-0. [Google Scholar]
- Davies, C.R.; Wohlgemuth, F.; Young, T.; Violet, J.; Dickinson, M.; Sanders, J.-W.; Vallieres, C.; Avery, S.V. Evolving Challenges and Strategies for Fungal Control in the Food Supply Chain. Fungal Biol. Rev. 2021, 36, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-F.; Wang, C.-L.; Hu, Y.-F.; Wen, Y.-C.; Sun, Z.-B. Biocontrol of Three Severe Diseases in Soybean. Agriculture 2022, 12, 1391. [Google Scholar] [CrossRef]
- Galeano, R.M.S.; Ribeiro, J.V.S.; Silva, S.M.; De Oliveira Simas, A.L.; De Alencar Guimarães, N.C.; Masui, D.C.; Corrêa, B.O.; Giannesi, G.C.; De Lima, S.F.; Da Silva Brasil, M.; et al. New Strains of Trichoderma with Potential for Biocontrol and Plant Growth Promotion Improve Early Soybean Growth and Development. J. Plant Growth Regul. 2024, 43, 4099–4119. [Google Scholar] [CrossRef]
- Villavicencio-Vásquez, M.; Espinoza-Lozano, F.; Espinoza-Lozano, L.; Coronel-León, J. Biological Control Agents: Mechanisms of Action, Selection, Formulation and Challenges in Agriculture. Front. Agron. 2025, 7, 1578915. [Google Scholar] [CrossRef]
- de Faria, A.F.; Schulman, P.; Meyer, M.C.; Campos, H.D.; Cruz-Magalhães, V.; Godoy, C.V.; Guimarães, R.A.; da Silva, L.H.C.P.; Goussain, M.M.; Martins, M.C.; et al. Seven Years of White Mold Biocontrol Product’s Performance Efficacy on Sclerotinia sclerotiorum Carpogenic Germination in Brazil: A Meta-Analysis. Biol. Control 2022, 176, 105080. [Google Scholar] [CrossRef]
- Cheam, D.; Nishiguchi, M. Symbiosis: A Review of Different Forms of Interactions Among Organisms. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-12-809633-8. [Google Scholar]
- Wall, D.H.; Moore, J.C. Interactions Underground: Soil Biodiversity, Mutualism, and Ecosystem Processes. BioScience 1999, 49, 109–117. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Wilkinson, B. Insects and Their Antibiotic-Producing Bacteria. Microbiota Host 2023, 1, e230008. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Palmer, T.; Harrington, D.J.; Sutcliffe, I.C. Lipoprotein Biogenesis in Gram-Positive Bacteria: Knowing When to Hold ’em, Knowing When to Fold ’Em. Trends Microbiol. 2009, 17, 13–21. [Google Scholar] [CrossRef]
- Bode, H.B. Entomopathogenic Bacteria as a Source of Secondary Metabolites. Curr. Opin. Chem. Biol. 2009, 13, 224–230. [Google Scholar] [CrossRef]
- Stock, S.P.; Hazir, S. The Bacterial Symbionts of Entomopathogenic Nematodes and Their Role in Symbiosis and Pathogenesis. J. Invertebr. Pathol. 2025, 211, 108295. [Google Scholar] [CrossRef] [PubMed]
- Forst, S.; Dowds, B.; Boemare, N.; Stackebrandt, E. Xenorhabdus and Photorhabdus spp.: Bugs That Kill Bugs. Annu. Rev. Microbiol. 1997, 51, 47–72. [Google Scholar] [CrossRef] [PubMed]
- Koppenhöfer, A.M.; Shapiro-Ilan, D.I.; Hiltpold, I. Entomopathogenic Nematodes in Sustainable Food Production. Front. Sustain. Food Syst. 2020, 4, 125. [Google Scholar] [CrossRef]
- Raja, R.K.; Arun, A.; Touray, M.; Hazal Gulsen, S.; Cimen, H.; Gulcu, B.; Hazir, C.; Aiswarya, D.; Ulug, D.; Cakmak, I.; et al. Antagonists and Defense Mechanisms of Entomopathogenic Nematodes and Their Mutualistic Bacteria. Biol. Control 2021, 152, 104452. [Google Scholar] [CrossRef]
- Kaya, H.K. Natural Enemies and Other Antagonists. In Entomopathogenic Nematology; CABI Books: London, UK, 2002; pp. 189–203. ISBN 978-0-85199-567-0. [Google Scholar]
- Půža, V.; Machado, R.A.R. Systematics and Phylogeny of the Entomopathogenic Nematobacterial Complexes Steinernema–Xenorhabdus and Heterorhabditis–Photorhabdus. Zool. Lett. 2024, 10, 13. [Google Scholar] [CrossRef]
- Bock, C.H.; Shapiro-Ilan, D.I.; Wedge, D.E.; Cantrell, C.L. Identification of the Antifungal Compound, Trans-Cinnamic Acid, Produced by Photorhabdus luminescens, a Potential Biopesticide against Pecan Scab. J. Pest Sci. 2014, 87, 155–162. [Google Scholar] [CrossRef]
- Chacón-Orozco, J.G.; Bueno, C.J.; Shapiro-Ilan, D.I.; Hazir, S.; Leite, L.G.; Harakava, R. Antifungal Activity of Xenorhabdus Spp. and Photorhabdus Spp. against the Soybean Pathogenic Sclerotinia sclerotiorum. Sci. Rep. 2020, 10, 20649. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, M.; Tang, Q.; Wang, Y.; Zhang, X. Inhibitory Effect of Xenorhabdus Nematophila TB on Plant Pathogens Phytophthora Capsici and Botrytis Cinerea in Vitro and in Planta. Sci. Rep. 2014, 4, 4300. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.L.; Li, Z.Z.; Wang, Y.H.; Zhang, X. In Vitro and in Vivo Antimicrobial Activity of Xenorhabdus Bovienii YL002 against Phytophthora Capsici and Botrytis Cinerea. J. Appl. Microbiol. 2011, 111, 145–154. [Google Scholar] [CrossRef]
- Gülcü, B.; Altın, N. Control Potency of Trans-Cinnamic Acid and Antifungal Metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola. Düzce Üniversitesi Bilim Ve Teknol. Derg. 2024, 12, 365–374. [Google Scholar] [CrossRef]
- Hazir, S.; Shapiro-Ilan, D.I.; Bock, C.H.; Leite, L.G. Trans-Cinnamic Acid and Xenorhabdus szentirmaii Metabolites Synergize the Potency of Some Commercial Fungicides. J. Invertebr. Pathol. 2017, 145, 1–8. [Google Scholar] [CrossRef]
- Hazir, S.; Shapiro-Ilan, D.I.; Bock, C.H.; Hazir, C.; Leite, L.G.; Hotchkiss, M.W. Relative Potency of Culture Supernatants of Xenorhabdus and Photorhabdus spp. on Growth of Some Fungal Phytopathogens. Eur. J. Plant Pathol. 2016, 146, 369–381. [Google Scholar] [CrossRef]
- Otoya-Martinez, N.; Leite, L.G.; Harakava, R.; Touray, M.; Hazir, S.; Chacon-Orozco, J.; Bueno, C.J. Disease Caused by Neofusicoccum Parvum in Pruning Wounds of Grapevine Shoots and Its Control by Trichoderma spp. and Xenorhabdus szentirmaii. Fungal Biol. 2023, 127, 865–871. [Google Scholar] [CrossRef] [PubMed]
- San-Blas, E.; Parra, Y.; Carrillo, Z. Effect of Xenorhabdus and Photorhabdus Bacteria (Enterobacteriales: Enterobacteriaceae) and Their Exudates on the Apical Rotten Fruit Disease Caused by Dothiorella sp. in Guava (Psidium Guajava). Arch. Phytopathol. Plant Prot. 2013, 46, 2294–2303. [Google Scholar] [CrossRef]
- San-Blas, E.; Carrillo, Z.; Parra, Y. Effect of Xenorhabdus and Photorhabdus Bacteria and Their Exudates on Moniliophthora Roreri. Arch. Phytopathol. Plant Prot. 2012, 45, 1950–1967. [Google Scholar] [CrossRef]
- Shi, D.; An, R.; Zhang, W.; Zhang, G.; Yu, Z. Stilbene Derivatives from Photorhabdus Temperata SN259 and Their Antifungal Activities against Phytopathogenic Fungi. J. Agric. Food Chem. 2017, 65, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Joyce, S.A.; Lango, L.; Clarke, D.J. The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium Photorhabdus luminescens. In Advances in Applied Microbiology; Laskin, A.I., Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 76, pp. 1–25. [Google Scholar]
- Tobias, N.J.; Shi, Y.-M.; Bode, H.B. Refining the Natural Product Repertoire in Entomopathogenic Bacteria. Trends Microbiol. 2018, 26, 833–840. [Google Scholar] [CrossRef]
- Shi, Y.-M.; Hirschmann, M.; Shi, Y.-N.; Ahmed, S.; Abebew, D.; Tobias, N.J.; Grün, P.; Crames, J.J.; Pöschel, L.; Kuttenlochner, W.; et al. Global Analysis of Biosynthetic Gene Clusters Reveals Conserved and Unique Natural Products in Entomopathogenic Nematode-Symbiotic Bacteria. Nat. Chem. 2022, 14, 701–712. [Google Scholar] [CrossRef]
- Cimen, H.; Touray, M.; Gulsen, S.H.; Erincik, O.; Wenski, S.L.; Bode, H.B.; Shapiro-Ilan, D.; Hazir, S. Antifungal Activity of Different Xenorhabdus and Photorhabdus Species against Various Fungal Phytopathogens and Identification of the Antifungal Compounds from X. Szentirmaii. Appl. Microbiol. Biotechnol. 2021, 105, 5517–5528. [Google Scholar] [CrossRef]
- Houard, J.; Aumelas, A.; Noël, T.; Pages, S.; Givaudan, A.; Fitton-Ouhabi, V.; Villain-Guillot, P.; Gualtieri, M. Cabanillasin, a New Antifungal Metabolite, Produced by Entomopathogenic Xenorhabdus Cabanillasii JM26. J. Antibiot. 2013, 66, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qiu, D.; Yang, H.; Liu, Z.; Zeng, H.; Yuan, J. Antifungal Activity of Xenocoumacin 1 from Xenorhabdus nematophilus Var. Pekingensis against Phytophthora infestans. World J. Microbiol. Biotechnol. 2011, 27, 523–528. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, A.L.; Ali, L.; Khan, A.R.; Waqas, M.; Hussain, J.; Lee, I.-J.; Shin, J.-H. Benzaldehyde as an Insecticidal, Antimicrobial, and Antioxidant Compound Produced by Photorhabdus temperata M1021. J. Microbiol. 2015, 53, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Le Saux, M.; Viallard, V.; Brunel, B.; Normand, P.; Boemare, N.E. Polyphasic Classification of the Genus Photorhabdus and Proposal of New Taxa: P. luminescens Subsp. Luminescens Subsp. Nov., P. luminescens Subsp. Akhurstii Subsp. Nov., P. luminescens Subsp. Laumondii Subsp. Nov., P. temperata sp. Nov., P. temperata Subsp. Temperata Subsp. Nov. and P. asymbiotica sp. Nov. Int. J. Syst. Bacteriol. 1999, 49 Pt 4, 1645–1656. [Google Scholar] [CrossRef] [PubMed]
- Incedayi, G.; Cimen, H.; Ulug, D.; Touray, M.; Bode, E.; Bode, H.B.; Orenlili Yaylagul, E.; Hazir, S.; Cakmak, I. Relative Potency of a Novel Acaricidal Compound from Xenorhabdus, a Bacterial Genus Mutualistically Associated with Entomopathogenic Nematodes. Sci. Rep. 2021, 11, 11253. [Google Scholar] [CrossRef]
- Touray, M.; Ulug, D.; Gulsen, S.H.; Cimen, H.; Hazir, C.; Bode, H.B.; Hazir, S. Natural Products from and Show Promise as Biolarvicides Against. Pest Manag. Sci. 2024, 80, 4231–4242. [Google Scholar] [CrossRef]
- Cevizci, D.; Ulug, D.; Cimen, H.; Touray, M.; Hazir, S.; Cakmak, I. Mode of Entry of Secondary Metabolites of the Bacteria Xenorhabdus szentirmaii and X. Nematophila into Tetranychus Urticae, and Their Toxicity to the Predatory Mites Phytoseiulus Persimilis and Neoseiulus Californicus. J. Invertebr. Pathol. 2020, 174, 107418. [Google Scholar] [CrossRef] [PubMed]
- Bode, E.; Heinrich, A.K.; Hirschmann, M.; Abebew, D.; Shi, Y.-N.; Vo, T.D.; Wesche, F.; Shi, Y.-M.; Grün, P.; Simonyi, S.; et al. Promoter Activation in Δhfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angew. Chem. Int. Ed. Engl. 2019, 58, 18957–18963. [Google Scholar] [CrossRef] [PubMed]
- Gulsen, S.H.; Tileklioglu, E.; Bode, E.; Cimen, H.; Ertabaklar, H.; Ulug, D.; Ertug, S.; Wenski, S.L.; Touray, M.; Hazir, C.; et al. Antiprotozoal Activity of Different Xenorhabdus and Photorhabdus Bacterial Secondary Metabolites and Identification of Bioactive Compounds Using the easyPACId Approach. Sci. Rep. 2022, 12, 10779. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Díez, I.; Moreira, X.; Pastor, V.; Vilanova, M.; Pou, A.; Campos-Herrera, R. Control of Post-Harvest Gray Mold (Botrytis cinerea) on Grape (Vitis vinifera) and Tomato (Solanum lycopersicum) Using Volatile Organic Compounds Produced by Xenorhabdus Nematophila and Photorhabdus laumondii Subsp. Laumondii. BioControl 2023, 68, 549–563. [Google Scholar] [CrossRef]
- Chen, G.; Dunphy, G.B.; Webster, J.M. Antifungal Activity of Two Xenorhabdus Species and Photorhabdus luminescens, Bacteria Associated with the Nematodes Steinernema Species and Heterorhabditis megidis. Biol. Control 1994, 4, 157–162. [Google Scholar] [CrossRef]
- Lalramchuani, M.; Lalramnghaki, H.C.; Vanlalsangi, R.; Lalhmingliani, E. Characterization and Screening of Antifungal Activity of Bacteria Associated with Entomopathogenic Nematodes from Mizoram, North-Eastern India. J. Environ. Biol. 2020, 41, 942–950. [Google Scholar] [CrossRef]
- Cooney, J.M.; Lauren, D.R.; di Menna, M.E. Impact of Competitive Fungi on Trichothecene Production by Fusarium graminearum. J. Agric. Food Chem. 2001, 49, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Menna, A.; Dora, S.; Sancho-Andrés, G.; Kashyap, A.; Meena, M.K.; Sklodowski, K.; Gasperini, D.; Coll, N.S.; Sánchez-Rodríguez, C. A Primary Cell Wall Cellulose-Dependent Defense Mechanism against Vascular Pathogens Revealed by Time-Resolved Dual Transcriptomics. BMC Biol. 2021, 19, 161. [Google Scholar] [CrossRef]
- Naqvi, S.A.H.; Farhan, M.; Ahmad, M.; Kiran, R.; Shahbaz, M.; Abbas, A.; Hakim, F.; Shabbir, M.; Tan, Y.S.; Sathiya Seelan, J.S. Fungicide Resistance in Fusarium Species: Exploring Environmental Impacts and Sustainable Management Strategies. Arch. Microbiol. 2025, 207, 31. [Google Scholar] [CrossRef]
- Fuchs, S.W.; Grundmann, F.; Kurz, M.; Kaiser, M.; Bode, H.B. Fabclavines: Bioactive Peptide-Polyketide-Polyamino Hybrids from Xenorhabdus. Chembiochem 2014, 15, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Wenski, S.L.; Cimen, H.; Berghaus, N.; Fuchs, S.W.; Hazir, S.; Bode, H.B. Fabclavine Diversity in Xenorhabdus Bacteria. Beilstein J. Org. Chem. 2020, 16, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Han, Y.; Wang, L.; Han, J.; Yan, Z.; Wang, Y.; Wang, Y. Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from Xenorhabdus Nematophila against Sclerotinia sclerotiorum. J. Fungi 2024, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Zumbrunn, C.; Krüsi, D.; Stamm, C.; Caspers, P.; Ritz, D.; Rueedi, G. Synthesis and Structure-Activity Relationship of Xenocoumacin 1 and Analogues as Inhibitors of Ribosomal Protein Synthesis. ChemMedChem 2021, 16, 891–897. [Google Scholar] [CrossRef]
- Reimer, D.; Nollmann, F.I.; Schultz, K.; Kaiser, M.; Bode, H.B. Xenortide Biosynthesis by Entomopathogenic Xenorhabdus nematophila. J. Nat. Prod. 2014, 77, 1976–1980. [Google Scholar] [CrossRef]
- Donmez Ozkan, H.; Cimen, H.; Ulug, D.; Wenski, S.; Yigit Ozer, S.; Telli, M.; Aydin, N.; Bode, H.B.; Hazir, S. Nematode-Associated Bacteria: Production of Antimicrobial Agent as a Presumptive Nominee for Curing Endodontic Infections Caused by Enterococcus Faecalis. Front. Microbiol. 2019, 10, 2672. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Walia, S.; Ganguli, S.; Kundu, A. Analytical Characterization of Secondary Metabolites from Indian Xenorhabdus Species the Symbiotic Bacteria of Entomopatathogenic Nematode (Steinernema spp.) as Antifungal Agent. Natl. Acad. Sci. Lett. 2016, 39, 175–180. [Google Scholar] [CrossRef]
- Meesil, W.; Muangpat, P.; Sitthisak, S.; Rattanarojpong, T.; Chantratita, N.; Machado, R.A.R.; Shi, Y.-M.; Bode, H.B.; Vitta, A.; Thanwisai, A. Genome Mining Reveals Novel Biosynthetic Gene Clusters in Entomopathogenic Bacteria. Sci. Rep. 2023, 13, 20764. [Google Scholar] [CrossRef] [PubMed]
- Hazir, S.; Shapiro-Ilan, D.; Bock, C.; Leite, L. Thermo-Stability, Dose Effects and Shelf-Life of Antifungal Metabolite-Containing Supernatants Produced by Xenorhabdus szentirmaii. Eur. J. Plant Pathol. 2017, 150, 297–306. [Google Scholar] [CrossRef]
MUTANT STRAIN | SECONDARY METABOLITE |
---|---|
X.szentirmaii Δhfq KS-16 | GameXPeptide |
X.szentirmaii Δhfq KS-22 | Pyrollizixenamide |
X.szentirmaii Δhfq LP-56 | Fabclavine |
X.szentirmaii Δhfq SVS-204 | Szentirazine |
X.szentirmaii Δhfq SVS-208 | Szentiamide |
X.szentirmaii Δhfq SVS-212 | Xenobactine |
X.szentirmaii Δhfq SVS-240 | Rhabduscine |
X.szentirmaii Δhfq SVS-247 | Rhabdopeptide |
X.szentirmaii Δhfq | - |
X.szentirmaii Δpptase | - |
X. doucetiae HBLC-289 | Xenorhabdin |
X. doucetiae HBLC-107 | Xenocoumacin |
X. doucetiae HBLC-290 | Phenylethylamides/Tryptamides |
Time (days) | Temperature (Mean ± SD) | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 °C | 25 °C | 35 °C | |||||||
0 | 99.30 ± 1.49 | a 1 | A 2 | 99.30 ± 1.49 | a | A | 99.30 ± 1.49 | a | A |
7 | 97.89 ± 1.72 | ab | C | 98.95 ± 1.46 | a | AB | 99.34 ± 1.39 | a | A |
15 | 94.84 ± 4.23 | cd | B | 96.68 ± 3.46 | b | A | 94.77 ± 2.97 | cd | B |
30 | 95.94 ± 1.59 | c | A | 94.77 ± 1.54 | c | AB | 93.90 ± 1.07 | d | C |
60 | 98.32 ± 1.64 | a | A | 98.55 ± 1.29 | ab | A | 96.13 ± 2.21 | bc | B |
90 | 97.77 ± 0.86 | ab | A | 98.13 ± 0.76 | ab | A | 94.84 ± 0.68 | cd | B |
120 | 99.18 ± 2.17 | a | A | 93.40 ± 2.47 | c | B | 93.36 ± 1.26 | d | B |
150 | 92.58 ± 1.68 | e | B | 94.45 ± 3.27 | c | A | 86.68 ± 7.28 | f | C |
210 | 98.55 ± 1.25 | a | A | 94.83 ± 1.61 | c | B | 88.16 ± 1.12 | d | B |
240 | 93.91 ± 1.73 | de | A | 83.59 ± 3.68 | d | C | 84.61 ± 0.65 | e | B |
270 | 94.42 ± 0.74 | cde | A | 94.12 ± 0.76 | c | A | 89.67 ± 0.56 | bcd | B |
300 | 97.97 ± 1.02 | a | A | 93.71 ± 0.21 | c | AB | 89.12 ± 0.64 | cd | C |
330 | 97.85 ± 1.40 | ab | A | 93.75 ± 0 | c | B | 91.07 ± 0.70 | b | B |
360 | 96.13 ± 1.63 | bc | A | 94.12 ± 0.76 | c | AB | 89.48 ± 0.61 | bcd | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otoya-Martinez, N.; Touray, M.; Cimen, H.; Bode, E.; Bode, H.B.; Hazir, S.; Chacon-Orozco, J.G.; Bueno, C.J.; Leite, L.G. Xenorhabdus and Photorhabdus Metabolites for Fungal Biocontrol and Application in Soybean Seed Protection. J. Fungi 2025, 11, 691. https://doi.org/10.3390/jof11100691
Otoya-Martinez N, Touray M, Cimen H, Bode E, Bode HB, Hazir S, Chacon-Orozco JG, Bueno CJ, Leite LG. Xenorhabdus and Photorhabdus Metabolites for Fungal Biocontrol and Application in Soybean Seed Protection. Journal of Fungi. 2025; 11(10):691. https://doi.org/10.3390/jof11100691
Chicago/Turabian StyleOtoya-Martinez, Nathalie, Mustapha Touray, Harun Cimen, Edna Bode, Helge B. Bode, Selcuk Hazir, Julie Giovanna Chacon-Orozco, César Júnior Bueno, and Luís Gárrigos Leite. 2025. "Xenorhabdus and Photorhabdus Metabolites for Fungal Biocontrol and Application in Soybean Seed Protection" Journal of Fungi 11, no. 10: 691. https://doi.org/10.3390/jof11100691
APA StyleOtoya-Martinez, N., Touray, M., Cimen, H., Bode, E., Bode, H. B., Hazir, S., Chacon-Orozco, J. G., Bueno, C. J., & Leite, L. G. (2025). Xenorhabdus and Photorhabdus Metabolites for Fungal Biocontrol and Application in Soybean Seed Protection. Journal of Fungi, 11(10), 691. https://doi.org/10.3390/jof11100691