Next Article in Journal
Postharvest Disease Management of ‘Akizuki’ Pear in China: Identification of Fungal Pathogens and Control Efficacy of Chlorine Dioxide
Previous Article in Journal
Xenorhabdus and Photorhabdus Metabolites for Fungal Biocontrol and Application in Soybean Seed Protection
Previous Article in Special Issue
Impact of Biofilm Formation by Vaginal Candida albicans and Candida glabrata Isolates and Their Antifungal Resistance: A Comprehensive Study in Ecuadorian Women
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Advances in Fungal Infection Research: From Novel Diagnostics to Innovative Therapeutics

by
Célia Fortuna Rodrigues
1,2,3,* and
Lucia Černáková
4
1
Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
2
UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
3
LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
4
Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
*
Author to whom correspondence should be addressed.
J. Fungi 2025, 11(10), 693; https://doi.org/10.3390/jof11100693
Submission received: 5 September 2025 / Accepted: 19 September 2025 / Published: 25 September 2025
(This article belongs to the Special Issue Fungal Infections: New Challenges and Opportunities, 3rd Edition)
Invasive and superficial fungal infections continue to impose a significant global health burden, with rising morbidity and mortality rates particularly affecting immunocompromised populations [1,2]. The emergence of antifungal resistance (AFR), coupled with the rise in the prevalence of opportunistic fungal pathogens, underscores the urgent need for innovative diagnostic approaches and alternative therapeutic strategies [3,4]. Indeed, fungal infections represent one of the most complex challenges in modern medicine, affecting millions of patients worldwide [5,6]. The clinical spectrum ranges from superficial mucocutaneous infections to life-threatening invasive diseases, with opportunistic pathogens such as Candida, Aspergillus, and Pneumocystis species leading the epidemiological burden [7,8], particularly in immunocompromised patients, including those undergoing chemotherapy, organ transplantation, or living with HIV/AIDS, who comprise an expanding population at risk for severe mycoses [9,10].
The diagnostic landscape for fungal infections has undergone significant transformation in recent decades [11,12]. Traditional culture-based methods, while remaining the gold standard, are often time-consuming and may lack sensitivity for certain pathogens [13]. The development of molecular diagnostic techniques, including real-time PCR assays and next-generation sequencing, has revolutionized pathogen detection and identification, including in fungal species [14,15]. These methods enable rapid, accurate diagnosis that can be decisive for patient outcomes, especially in critically ill populations where an early intervention is crucial [16,17].
While the antifungal therapeutic arsenal has expanded considerably, challenges persist [18,19]. The limited number of antifungal drug classes, combined with the emergence of AFR, poses major obstacles to effective treatments [20,21]. Azole resistance in Aspergillus fumigatus, echinocandin resistance in Candida species, and the global spread of multidrug-resistant Candida auris exemplify the evolving threat landscape [22,23]. Novel therapeutic approaches are being explored across multiple fronts [24,25]. Structure-based drug design has yielded promising compounds targeting specific fungal pathways, while drug repurposing strategies have identified unexpected antifungal properties in existing medications [26,27]. Additionally, natural products and antimicrobial peptides represent other opportunities for therapeutic development, offering potential alternatives to conventional drugs [28,29].
The importance of systematic surveillance in healthcare settings cannot be overstated [30,31]. Effective monitoring programs enable early detection of outbreaks, facilitate antimicrobial stewardship, and guide infection prevention strategies [32]. The implementation of screening protocols for high-risk patients has proven valuable in predicting disease progression and optimizing therapeutic interventions [33,34]. Indeed, healthcare-associated fungal infections require comprehensive infection control measures [35]. The emergence of environmental pathogens and the challenges posed by biofilm formation (on medical devices) require multidimensional prevention policies [36,37]. Understanding the epidemiology of healthcare-associated mycoses is imperative for developing targeted interventions and reducing transmission risks [38].
Recent advances in understanding fungal pathogenesis have revealed the complexity of host–pathogen interactions [39,40]. The role of host immunity, particularly in immunocompromised patients, determines disease susceptibility and progression [41,42]. Fungal virulence factors, including morphological transitions, biofilm formation, and immune evasion mechanisms, contribute to pathogenic success [43,44]. In addition, the concept of polymicrobial infections has gained attention, with evidence suggesting that inter-microbial interactions can significantly influence disease outcomes [45,46]. These interactions may involve competitive or synergistic relationships between different fungal species or between fungi and bacteria, potentially affecting treatment strategies and patient prognosis [47].
Epidemiological studies continue to identify key risk factors for fungal infections across diverse populations [48,49]. Diabetes mellitus, advanced age, immunosuppressive therapy, and prolonged hospitalization represent well-established predisposing factors [50,51]. Understanding these risk profiles enables targeted screening and prevention strategies for high-risk populations [52]. Geographic variation in fungal disease burden reflects environmental factors, endemic species distribution, and healthcare infrastructure differences [53,54]. Regional studies offer basic insights for public health planning and resource allocation, particularly in areas with limited diagnostic capabilities or restricted access to antifungal therapy [55,56].
The integration of artificial intelligence and machine learning into diagnostic platforms promises to enhance disease detection and prediction capabilities [57,58]. Advanced imaging techniques, biomarker discovery, and point-of-care testing exemplify emerging frontiers in fungal diagnostics [59,60]. Precision medicine approaches, incorporating host genetic factors, pathogen characteristics, and environmental variables, may enable individualized treatment strategies [61,62]. The development of immunotherapeutic approaches, including vaccine strategies and immune modulators, offers additional therapeutic possibilities [63,64].
This Special Issue encompasses diverse research contributions that advance our understanding of fungal infections from diagnostic innovation and clinical assessment, surveillance and risk stratification, therapeutic innovations and drug development, clinical insights and disease mechanisms, epidemiological perspectives and risk factors, through to future directions and clinical implications of AMR and mycology. The multidisciplinary nature of this research, spanning microbiology, immunology, pharmacology, and epidemiology, reflects the complexity of medical mycology as a field.
The collaborative efforts of researchers, clinicians, and public health professionals represented in this collection underscore the global commitment to addressing fungal disease challenges. As we continue to face evolving threats from emerging pathogens and drug resistance, such collaborative research initiatives remain essential for improving patient outcomes and advancing the field of medical mycology. We extend our sincere gratitude to all contributing authors, reviewers, and editorial staff who made this Special Issue possible. Their dedication to advancing fungal infection research will undoubtedly benefit patients and healthcare systems worldwide.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef]
  2. Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
  3. Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
  4. Denning, D.W.; Bromley, M.J. Infectious Disease. How to bolster the antifungal pipeline. Science 2015, 347, 1414–1416. [Google Scholar] [CrossRef]
  5. Rodrigues, M.L. The multifunctional fungal ergosterol. mBio 2018, 9, e01755-18. [Google Scholar] [CrossRef]
  6. Casadevall, A.; Coelho, C.; Cordero, R.J.; Dragotakes, Q.; Jung, E.; Vij, R.; Wear, M.P. The capsule of Cryptococcus neoformans. Virulence 2019, 10, 822–831. [Google Scholar] [CrossRef]
  7. Kullberg, B.J.; Arendrup, M.C. Invasive candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef]
  8. Patterson, T.F.; Thompson, G.R.; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
  9. Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
  10. Singh, N.; Perfect, J.R. Immune reconstitution syndrome and exacerbation of infections after pregnancy. Clin. Infect. Dis. 2007, 45, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
  11. Lass-Flörl, C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 2009, 52, 197–205. [Google Scholar] [CrossRef]
  12. White, P.L.; Wingard, J.R.; Bretagne, S.; Löffler, J.; Patterson, T.F.; Slavin, M.A.; Barnes, R.A.; Pappas, P.G.; Donnelly, J.P. Aspergillus polymerase chain reaction: Systematic review of evidence for clinical use in comparison with antigen testing. Clin. Infect. Dis. 2015, 61, 1293–1303. [Google Scholar] [CrossRef]
  13. Lionakis, M.S.; Kontoyiannis, D.P. Glucocorticoids and invasive fungal infections. Lancet 2003, 362, 1828–1838. [Google Scholar] [CrossRef]
  14. McMullan, B.J.; Halliday, C.; Sorrell, T.C.; Judd, D.; Sleiman, S.; Marriott, D.; Olma, T.; Chen, S.C. Clinical utility of the FilmArray meningitis/encephalitis panel for the diagnosis of suspected central nervous system infections. Diagn. Microbiol. Infect. Dis. 2016, 85, 187–190. [Google Scholar]
  15. Arvanitis, M.; Anagnostou, T.; Fuchs, B.B.; Caliendo, A.M.; Mylonakis, E. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin. Microbiol. Rev. 2014, 27, 490–526. [Google Scholar] [CrossRef] [PubMed]
  16. Cornely, O.A.; Arikan-Akdagli, S.; Dannaoui, E.; Groll, A.H.; Lagrou, K.; Chakrabarti, A.; Lanternier, F.; Pagano, L.; Skiada, A.; Akova, M.; et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin. Microbiol. Infect. 2014, 20, 5–26. [Google Scholar] [CrossRef] [PubMed]
  17. Morrell, M.; Fraser, V.J.; Kollef, M.H. Delaying the empirical treatment of candida bloodstream infection until positive blood culture results are obtained: A potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef]
  18. Perlin, D.S. Mechanisms of echinocandin antifungal drug resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 1–11. [Google Scholar] [CrossRef]
  19. Sanglard, D. Emerging threats in antifungal-resistant fungal pathogens. Front. Med. 2016, 3, 11. [Google Scholar] [CrossRef]
  20. Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med. 2015, 5, a019752. [Google Scholar] [CrossRef]
  21. Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY antifungal surveillance program: Results for Candida species from 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef]
  22. Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [PubMed]
  23. van der Linden, J.W.; Arendrup, M.C.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.M.; Chryssanthou, E.; Mellado, E.; Kidd, S.E.; Tortorano, A.M.; et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041–1044. [Google Scholar] [CrossRef]
  24. Roemer, T.; Krysan, D.J. Antifungal drug development: Challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 2014, 4, a019703. [Google Scholar] [CrossRef] [PubMed]
  25. Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar] [CrossRef]
  26. Zhai, B.; Wu, C.; Wang, L.; Sachs, M.S.; Lin, X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob. Agents Chemother. 2012, 56, 3758–3766. [Google Scholar] [CrossRef]
  27. Butts, A.; Koselny, K.; Chabrier-Roselló, Y.; Semighini, C.P.; Brown, J.C.; Wang, X.; Annadurai, S.; DiDone, L.; Tabroff, J.; Childers, W.E.; et al. Estrogen receptor antagonists are anti-cryptococcal agents that directly bind EF hand proteins and synergize with fluconazole in vivo. mBio 2014, 5, e00765-13. [Google Scholar] [CrossRef]
  28. Villar-Vidal, M.; Coronado-Aceves, E.W.; Shibayama, M.; Tsutsumi, V.; Becerril-García, M.A.; García-de la Cruz, R.F.; González-Salazar, F.; Hernández-Delgado, N.C.; Muñoz-Hernández, O.; Silva-Miranda, M. Chitosan and its derivatives: Properties and applications in biotechnology. Polymers 2021, 13, 3108. [Google Scholar]
  29. Mookherjee, A.; Singh, S.; Maiti, M.K. Quorum sensing inhibitors: Can endophytes be prospective sources? Arch. Microbiol. 2019, 201, 355–369. [Google Scholar] [CrossRef] [PubMed]
  30. Pfaller, M.A.; Castanheira, M. Nosocomial candidiasis: Antifungal stewardship and the importance of rapid diagnosis. Med. Mycol. 2016, 54, 1–22. [Google Scholar] [CrossRef] [PubMed]
  31. Cleveland, A.A.; Farley, M.M.; Harrison, L.H.; Stein, B.; Hollick, R.; Lockhart, S.R.; Magill, S.S.; Derado, G.; Park, B.J.; Chiller, T.M. Changes in incidence and antifungal drug resistance in candidemia: Results from population-based laboratory surveillance in Atlanta and Baltimore, 2008–2011. Clin. Infect. Dis. 2012, 55, 1352–1361. [Google Scholar] [CrossRef]
  32. Andes, D.R.; Safdar, N.; Baddley, J.W.; Playford, G.; Reboli, A.C.; Rex, J.H.; Sobel, J.D.; Pappas, P.G.; Kullberg, B.J. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: A patient-level quantitative review of randomized trials. Clin. Infect. Dis. 2012, 54, 1110–1122. [Google Scholar] [CrossRef]
  33. Garey, K.W.; Rege, M.; Pai, M.P.; Mingo, D.E.; Suda, K.J.; Turpin, R.S.; Bearden, D.T. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: A multi-institutional study. Clin. Infect. Dis. 2006, 43, 25–31. [Google Scholar] [CrossRef]
  34. Clancy, C.J.; Nguyen, M.H. Finding the “missing 50%” of invasive candidiasis: How nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin. Infect. Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef]
  35. Salmanton-García, J.; Sprute, R.; Stemler, J.; Bartoletti, M.; Dupont, D.; Valerio, M.; Garcia-Vidal, C.; Falces-Romero, I.; Machado, M.; de la Villa, S.; et al. COVID-19-associated pulmonary aspergillosis, March-August 2020. Emerg. Infect. Dis. 2021, 27, 1077–1086. [Google Scholar] [CrossRef]
  36. Ramage, G.; Rajendran, R.; Gutierrez-Correa, M.; Jones, B.; Williams, C. Aspergillus biofilms: Clinical and industrial significance. FEMS Microbiol. Lett. 2011, 324, 89–97. [Google Scholar] [CrossRef] [PubMed]
  37. Nett, J.E.; Andes, D.R. Candida albicans biofilm development, modeling, and measurement. Curr. Protoc. Microbiol. 2006, 2, 17A.2.1–17A.2.20. [Google Scholar]
  38. Lortholary, O.; Renaudat, C.; Sitbon, K.; Madec, Y.; Denoeud-Ndam, L.; Wolff, M.; Fontanet, A.; Bretagne, S.; Dromer, F. Worrisome trends in incidence and mortality of candidemia in intensive care units (Paris area, 2002–2010). Intensive Care Med. 2014, 40, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
  39. Brown, G.D.; Denning, D.W.; Levitz, S.M. Tackling human fungal infections. Science 2012, 336, 647. [Google Scholar] [CrossRef]
  40. Cowen, L.E.; Anderson, J.B.; Kohn, L.M. Evolution of drug resistance in Candida albicans. Annu. Rev. Microbiol. 2002, 56, 139–165. [Google Scholar] [CrossRef] [PubMed]
  41. Lionakis, M.S. New insights into innate immune control of systemic candidiasis. Med. Mycol. 2014, 52, 555–564. [Google Scholar] [CrossRef]
  42. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 2011, 11, 275–288. [Google Scholar] [CrossRef]
  43. Sudbery, P.E. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 2011, 9, 737–748. [Google Scholar] [CrossRef]
  44. Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef]
  45. Harriott, M.M.; Noverr, M.C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance. Antimicrob. Agents Chemother. 2009, 53, 3914–3922. [Google Scholar] [CrossRef] [PubMed]
  46. Shirtliff, M.E.; Peters, B.M.; Jabra-Rizk, M.A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 2009, 299, 1–8. [Google Scholar] [CrossRef] [PubMed]
  47. Peleg, A.Y.; Hogan, D.A.; Mylonakis, E. Medically important bacterial-fungal interactions. Nat. Rev. Microbiol. 2010, 8, 340–349. [Google Scholar] [CrossRef]
  48. Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef] [PubMed]
  49. Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 2014, 20, 5–10. [Google Scholar] [CrossRef]
  50. Odds, F.C.; Hanson, M.F.; Davidson, A.D.; Jacobsen, M.D.; Wright, P.; Whyte, J.A.; Gow, N.A.; Jones, B.L. One year prospective survey of Candida bloodstream infections in Scotland. J. Med. Microbiol. 2007, 56, 1066–1075. [Google Scholar] [CrossRef]
  51. Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef]
  52. Bassetti, M.; Merelli, M.; Righi, E.; Diaz-Martin, A.; Rosello, E.M.; Luzzati, R.; Parra, A.; Trecarichi, E.M.; Sanguinetti, M.; Posteraro, B.; et al. Epidemiology, species distribution, antifungal susceptibility, and outcome of candidemia across five sites in Italy and Spain. J. Clin. Microbiol. 2013, 51, 4167–4172. [Google Scholar] [CrossRef]
  53. Denning, D.W.; Pleuvry, A.; Cole, D.C. Global burden of chronic pulmonary aspergillosis as a sequel to pulmonary tuberculosis. Bull. World Health Organ. 2011, 89, 864–872. [Google Scholar] [CrossRef] [PubMed]
  54. Chowdhary, A.; Sharma, C.; Meis, J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017, 13, e1006290. [Google Scholar] [CrossRef]
  55. Oladele, R.O.; Bongomin, F.; Gago, S.; Denning, D.W. HIV-associated cryptococcal disease in resource-limited settings: A case for “prevention is better than cure”? J. Fungi 2017, 3, 67. [Google Scholar] [CrossRef]
  56. Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef]
  57. Liao, Y.; Wang, Y.; Feng, Y.; Xu, Z.; Jiang, H.; Liu, G. Machine learning methods applied to predict ventilator-associated pneumonia with Pseudomonas aeruginosa infection via sensor array of electronic nose in intensive care unit. Biosens. Bioelectron. 2021, 173, 112717. [Google Scholar] [CrossRef]
  58. Segal, E.; Frenkel, M.; Vessman, A.; Carmeli, B.; Barhoom, S.; Vogelaer, D.; Rubin, C.; Raviv, Y.; Moses, A.E.; Block, C. Machine learning algorithm for early detection of end-stage renal disease. NPJ Digit. Med. 2020, 3, 78. [Google Scholar] [CrossRef]
  59. Cruciani, M.; Mengoli, C.; Loeffler, J.; Donnelly, P.; Barnes, R.; Jones, B.L.; Klingspor, L.; Maertens, J.; Morton, O.; White, P.L. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst. Rev. 2015, 2015, CD009551. [Google Scholar] [CrossRef] [PubMed]
  60. Posteraro, B.; Posteraro, P.; Sanguinetti, M. Diagnosis of invasive aspergillosis: The role of PCR. Expert Rev. Anti Infect. Ther. 2011, 9, 643–645. [Google Scholar]
  61. Lionakis, M.S.; Levitz, S.M. Host control of fungal infections: Lessons from basic studies and human cohorts. Annu. Rev. Immunol. 2018, 36, 157–191. [Google Scholar] [CrossRef] [PubMed]
  62. Johnson, M.D.; Perfect, J.R. Use of antifungal combination therapy: What laboratory and clinical studies tell us so far. Expert Rev. Anti Infect. Ther. 2007, 5, 1017–1029. [Google Scholar]
  63. Ashman, R.B.; Papadimitriou, J.M. Production and function of cytokines in natural and acquired immunity to Candida albicans infection. Microbiol. Rev. 1995, 59, 646–672. [Google Scholar] [CrossRef]
  64. Cassone, A.; Casadevall, A. Recent progress in vaccines against fungal diseases. Curr. Opin. Microbiol. 2012, 15, 427–433. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rodrigues, C.F.; Černáková, L. Advances in Fungal Infection Research: From Novel Diagnostics to Innovative Therapeutics. J. Fungi 2025, 11, 693. https://doi.org/10.3390/jof11100693

AMA Style

Rodrigues CF, Černáková L. Advances in Fungal Infection Research: From Novel Diagnostics to Innovative Therapeutics. Journal of Fungi. 2025; 11(10):693. https://doi.org/10.3390/jof11100693

Chicago/Turabian Style

Rodrigues, Célia Fortuna, and Lucia Černáková. 2025. "Advances in Fungal Infection Research: From Novel Diagnostics to Innovative Therapeutics" Journal of Fungi 11, no. 10: 693. https://doi.org/10.3390/jof11100693

APA Style

Rodrigues, C. F., & Černáková, L. (2025). Advances in Fungal Infection Research: From Novel Diagnostics to Innovative Therapeutics. Journal of Fungi, 11(10), 693. https://doi.org/10.3390/jof11100693

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop