Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = white mold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 776 KB  
Article
In Vitro and Field Effectiveness of the Combination of Four Trichoderma spp. Against Sclerotinia sclerotiorum and Its Impact on Potato (Solanum tuberosum L.) Crop Production
by Gabriel Herrera-Rodriguez, Ruben Felix-Gastelum, Maria Belen Irazoqui-Acosta, Sara Elodia Armenta-Lopez, Rosa Maria Longoria-Espinoza, Francisco Javier Orduño-Espinoza and Jessica Maria Parra-Parra
Plants 2026, 15(1), 156; https://doi.org/10.3390/plants15010156 - 4 Jan 2026
Viewed by 299
Abstract
White mold (Sclerotinia sclerotiorum) reduces potato yield and quality in Sinaloa, Mexico. This study first evaluated the in vitro efficacy of Trichoderma azevedoi, T. afroharzianum, T. asperellum and T. asperelloides in inhibiting S. sclerotiorum mycelial growth and sclerotia production. [...] Read more.
White mold (Sclerotinia sclerotiorum) reduces potato yield and quality in Sinaloa, Mexico. This study first evaluated the in vitro efficacy of Trichoderma azevedoi, T. afroharzianum, T. asperellum and T. asperelloides in inhibiting S. sclerotiorum mycelial growth and sclerotia production. Field experiments then assessed a combination of these antagonists, their alternating application with synthetic fungicides, and a fungicide-alone treatment for disease control, sclerotia reduction and yield increase. In vitro, all four Trichoderma species significantly inhibited the pathogen, achieving 60.1–63.1% mycelial suppression in dual culture and 90.3–94.1% via volatile metabolites, with the latter also completely suppressing sclerotia formation. In the field, the Trichoderma combination significantly controlled white mold, reducing plant incidence and severity to 66.0 and 27.1% in 2021 and 55.6 and 18.8% in 2022, while lowering sclerotia production to 32.7 and 14.6 on ten plants, respectively. This control extended to tubers, where incidence and severity were reduced to 1.6% and 0.4% in 2021, and 1.3% and 0.3% in 2022. The alternating application of Trichoderma with synthetic fungicides proved statistically equivalent to the Trichoderma-alone treatment in disease control, while the fungicides-alone treatment was significantly less effective. Potato yield was highest in plots treated with the Trichoderma combination (46.0 and 52.9 t ha−1 in 2021 and 2022, respectively). These results highlight the potential of using a mixture of these four Trichoderma species as a cornerstone of sustainable disease management in Sinaloa, offering effective control of potato white mold while significantly reducing dependence on synthetic fungicides. Full article
(This article belongs to the Special Issue Advances in Plant–Fungal Pathogen Interaction—2nd Edition)
Show Figures

Figure 1

20 pages, 1047 KB  
Article
Fingernail Onychomycosis: A Laboratory-Based Retrospective Study with Species Profiling and Antifungal Susceptibility of Yeasts
by Paweł Krzyściak, Zuzanna Tokarz, Monika Pomorska-Wesołowska, Magdalena Skóra, Andrzej Kazimierz Jaworek and Jadwiga Wójkowska-Mach
J. Clin. Med. 2026, 15(1), 325; https://doi.org/10.3390/jcm15010325 - 1 Jan 2026
Viewed by 313
Abstract
Background/Objectives: Fingernail onychomycosis differs etiologically and epidemiologically from toenail infections and is frequently complicated by colonization and mixed growth. Reliable interpretation of microscopy–culture correlations is essential for avoiding overdiagnosis and guiding therapy. This study aimed to characterize the diagnostic structure, species distribution, and [...] Read more.
Background/Objectives: Fingernail onychomycosis differs etiologically and epidemiologically from toenail infections and is frequently complicated by colonization and mixed growth. Reliable interpretation of microscopy–culture correlations is essential for avoiding overdiagnosis and guiding therapy. This study aimed to characterize the diagnostic structure, species distribution, and antifungal susceptibility patterns of fingernail onychomycosis in a large routine-laboratory cohort, and to evaluate the performance of a five-tier operational classification integrating microscopy and semi-quantitative culture. Methods: Laboratory records from 1075 patients with clinically suspected fingernail onychomycosis (including nail and periungual samples) were analyzed retrospectively (2017–2024). Direct microscopy with calcofluor white, semi-quantitative culture, and MALDI-TOF MS identification were performed. Cases were categorized based on predefined criteria combining microscopic elements with colony quantity and purity. Species distribution, age–sex patterns, diagnostic concordance between microscopy and culture, and results of EUCAST broth microdilution testing for selected yeasts were assessed. Results: The overall proportion of mycologically positive cases was similar in women and men, although age-dependent patterns differed. Microscopic findings correlated with culture outcomes, with hyphae predicting dermatophytes, yeast cells predicting ascomycetous yeasts, and negative slides aligning with the absence of growth. Yeasts predominated (Candida parapsilosis 30.9%, C. albicans 18.5%), dermatophytes were mainly Trichophyton rubrum, and molds were uncommon. Periungual swabs showed species distributions closely matching those from nail samples and demonstrated high analytical concordance. EUCAST MICs revealed species-dependent variation, including elevated amorolfine MICs in C. parapsilosis and reduced fluconazole activity in Wickerhamomyces pararugosa. Conclusions: Fingernail onychomycosis in this cohort was predominantly yeast-associated, with predictable microscopy–culture relationships and distinct age–sex patterns. The five-tier operational framework improved classification of infection versus colonization, and is proposed as a preliminary tool requiring clinical validation, while contemporary MIC data highlighted clinically relevant interspecies differences. The absence of clinical correlation data (symptoms, severity, treatment history) remains the primary limitation, preventing definitive distinction between infection and colonization in all cases. Full article
Show Figures

Figure 1

17 pages, 8805 KB  
Article
Effect of Electron Beam Irradiation on Friction and Wear Properties of Carbon Fiber-Reinforced PEEK at Different Injection Temperatures
by Yi Chen, Jiahong Li, Da Bian and Yongwu Zhao
Lubricants 2025, 13(12), 546; https://doi.org/10.3390/lubricants13120546 - 16 Dec 2025
Viewed by 445
Abstract
Polyetheretherketone (PEEK) is a high-performance engineering plastic widely used in aerospace, automotive, and other industries due to its heat resistance and mechanical strength. However, its high friction coefficient and low thermal conductivity limit its use in heavy-load environments. Existing studies have extensively explored [...] Read more.
Polyetheretherketone (PEEK) is a high-performance engineering plastic widely used in aerospace, automotive, and other industries due to its heat resistance and mechanical strength. However, its high friction coefficient and low thermal conductivity limit its use in heavy-load environments. Existing studies have extensively explored the individual effects of thermal processing or irradiation on PEEK. However, the synergistic mechanism between the initial microstructure formed by mold temperature and subsequent irradiation modification remains unclear. This paper investigates the coupled effects of injection molding temperature and electron beam irradiation on the tribology of carbon fiber-reinforced PEEK composites, with the aim of identifying process conditions that improve friction and wear performance under high load by controlling the crystal morphology and cross-linking network. Carbon fiber (CF) particles were mixed with PEEK particles at a 1:2 mass ratio, and specimens were prepared at injection molding temperatures of 150 °C, 175 °C, and 200 °C. Some specimens were irradiated with an electron beam dose of 200 kGy. The friction coefficient, wear rate, surface shape, and crystallinity of the material were obtained using friction and wear tests, white-light topography, SEM, and XRD. The results show that the injection molding temperature of the material influences the friction performance. Optimal performance is obtained at 175 °C with a friction coefficient of 0.12 and wear rate of 9.722 × 10−6 mm3/(N·m). After irradiation modification, the friction coefficient decreases to 0.10. This improvement is due to the moderate melt fluidity, adequate fiber infiltration, and dense crystallization at this temperature. In addition, cross-linking of chains occurs, and surface transfer films are created at this temperature. However, irradiation leads to a slight increase in wear rate to 1.013 × 10−5 mm3/(N·m), suggesting that chain segment fracture and embrittlement effects are enhanced at this dose. At 150 °C, there is weak interfacial bonding and microcrack development. At 200 °C, excessive thermal motion reduces crystallinity and adds residual stress, increasing wear sensitivity. Overall, while irradiation reduces the friction coefficient, the wear rate is affected by the initial microstructure at molding. At non-optimal temperatures, embrittlement tends to dominate the wear mode. This study uncovers the synergistic and competitive dynamics between the injection molding process and irradiation modification, offering an operational framework and a mechanistic foundation for applying CF/PEEK under heavy-load conditions. The present approach can be extended in future work to other reinforcement systems or variable-dose irradiation schemes to further optimize overall tribological performance. Full article
Show Figures

Figure 1

16 pages, 2381 KB  
Article
Effects of Lactiplantibacillus plantarum and Cellulase Inoculation on Silage Quality of Grape Branches and Leaves
by Changhao Li, Zhiwei Huo, Shuangming Li, Rongzheng Huang, Yingli Ji, Chunhui Ma, Shaoqi Cao and Fanfan Zhang
Microorganisms 2025, 13(12), 2842; https://doi.org/10.3390/microorganisms13122842 - 14 Dec 2025
Viewed by 304
Abstract
To tackle grape branch and leaf waste and alleviate global feed shortages, this study tested silage made from Xinjiang ‘Seedless White’ grape foliage. Three treatments were established: CK (control, only grape branches and leaves), PL (inoculated with 5 × 106 CFU·g−1 [...] Read more.
To tackle grape branch and leaf waste and alleviate global feed shortages, this study tested silage made from Xinjiang ‘Seedless White’ grape foliage. Three treatments were established: CK (control, only grape branches and leaves), PL (inoculated with 5 × 106 CFU·g−1 fresh weight Lactiplantibacillus plantarum), and PLC (inoculated with 5 × 106 CFU·g−1 L. plantarum and 0.3% cellulase). Silages were fermented at 18–23 °C and analyzed on days 7, 15, 30, and 60. PLC reduced dry matter loss in the late fermentation stage, while lowering Neutral detergent fiber (NDF) and Acid detergent fiber (ADF) contents to solve the high-fiber issue of grape foliage silage. It also maintained a lower pH in the mid-to-late stage and higher Lactic acid (LA) content to ensure anti-spoilage. Microbiologically, PLC had the highest Lactiplantibacillus abundance on day 7; on day 60, its Simpson index was higher, meaning stronger microbial community stability. Firmicutes replaced Cyanobacteria as the new dominant phylum, with Lactiplantibacillus remaining the absolute dominant genus, and the growth of molds and yeasts was effectively inhibited. In conclusion, the combined application of L. plantarum and cellulase enhances the quality of grape branch and leaf silage. This study turns low-value grape branches and leaves into high-quality feed, providing support for grape branch and leaf resource utilization and helping alleviate global feed shortages. Full article
(This article belongs to the Special Issue Microorganisms in Silage)
Show Figures

Figure 1

21 pages, 2345 KB  
Article
Effects of Root Exudates on Seed Germination and Seedling Growth of Wolfberry (Lycium barbarum L.) and the Development of Root Rot Diseases
by Xiaoying Li, Lizhen Zhu, Jun He, Xiongxiong Nan, Fang Wang, Yali Wang, Hao Wang, Yu Li, Xinru He, Yuchao Chen and Ken Qin
Agronomy 2025, 15(12), 2821; https://doi.org/10.3390/agronomy15122821 - 8 Dec 2025
Viewed by 360
Abstract
Root exudates play a critical role in enabling plants to respond to environmental stresses and mediate information exchange within the rhizosphere. These compounds regulate plant–rhizosphere interactions and significantly influence the structural and functional properties of the rhizosphere micro-ecosystem. Under continuous cropping systems, allelochemicals [...] Read more.
Root exudates play a critical role in enabling plants to respond to environmental stresses and mediate information exchange within the rhizosphere. These compounds regulate plant–rhizosphere interactions and significantly influence the structural and functional properties of the rhizosphere micro-ecosystem. Under continuous cropping systems, allelochemicals derived from root exudates progressively accumulate in the root zone, thereby contributing to the development of continuous cropping obstacles. In this study, root exudates were collected from wolfberry (Lycium barbarum L.) and four forages under controlled conditions to test their effects on seed germination and seedling growth in mangold (Betu vulgaris L.) and wolfberry, as well as on the root rot pathogen. Our research shows that forage root exudates could promote wolfberry seedling growth. White clover (Trifolium repens L.) and alfalfa (Medicago sativa L.), especially, could have their growth increased by up to 61% and 90% (p < 0.05). Wolfberry root exudates could promote the seed germination and seedling growth of white clover and mangold, the seed germination of Ryegrass (Lolium perenne L.), and the seedling growth of alfalfa. In addition, mangold root rots were identified as Molds, Aspergillus niger, and Fusarium solani and wolfberry root rots were Mucor cirrus, Rhizopus, Fusarium oxysporum, and Fusarium solani. What is more, wolfberry root exudates could promote Fusarium plaque expansion and mycelial growth. Ryegrass inhibited the growth of Mucor, Fusarium putrum, and oxysporum, and alfalfa and white clover promoted the plaque expansion of Rhizopus, Aspergillus niger, and Fusarium fulcrum, but inhibited the mycelial growth of related pathogens; mangold root exudates could inhibit wolfberry root rot, which affects interspecific relationships. This study provides robust technical support for elucidating interspecific relationships and promoting the development and application of the wolfberry-forage intercropping system. Full article
(This article belongs to the Special Issue Interaction Mechanisms Between Crops and Pathogens)
Show Figures

Figure 1

23 pages, 1375 KB  
Review
Integrated Pest Management of Sclerotinia Stem Rot in Soybean: Current Strategies and Future Prospects
by Vivek Hemant Khambhati and Zhi-Yuan Chen
J. Fungi 2025, 11(12), 823; https://doi.org/10.3390/jof11120823 - 21 Nov 2025
Cited by 1 | Viewed by 1196
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of Sclerotinia stem rot (SSR) or white mold, is a soil-borne hemibiotrophic fungus that causes substantial soybean yield losses worldwide. This pathogen infects over 400 plant species and persists in soil for extended periods through [...] Read more.
Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of Sclerotinia stem rot (SSR) or white mold, is a soil-borne hemibiotrophic fungus that causes substantial soybean yield losses worldwide. This pathogen infects over 400 plant species and persists in soil for extended periods through melanized sclerotia, which can survive under extreme environmental conditions. The wide host range, environmental adaptability, and longevity of sclerotia make SSR a persistent challenge in soybean production. No single management tactic provides reliable control, which underscores the importance of integrated pest management (IPM). Cultural practices such as crop rotation with non-hosts, optimized row spacing, adjusted seeding rates, and targeted irrigation are fundamental to reducing inoculum and modifying canopy microclimates to slow infection. Although genetic resistance remains partial, the deployment of cultivars with stable performance across environments contributes to disease suppression, particularly when combined with fungicide applications. However, fungicide efficacy is inconsistent and limited due to environmental concerns and potential resistance. Advances in disease modeling have improved the timing and precision of chemical control, while biological control agents and RNA interference approaches offer promising future options. This review synthesizes current IPM strategies for SSR and explores emerging alternatives to support sustainable soybean production. Full article
(This article belongs to the Special Issue Integrated Management of Plant Fungal Diseases)
Show Figures

Figure 1

21 pages, 10727 KB  
Article
First Detection of Sclerotinia nivalis on Carrot (Daucus carota subsp. sativus) in Russia and Comparative Pathogenicity of Sclerotinia Isolates on Carrot
by Viktoriya V. Medvedeva, Rashit I. Tarakanov, Peter V. Evseev, Evgenii S. Mazurin, Svetlana I. Chebanenko, Olga O. Beloshapkina, Fevzi S.-U. Dzhalilov and Sokrat G. Monakhos
Plants 2025, 14(22), 3487; https://doi.org/10.3390/plants14223487 - 15 Nov 2025
Cited by 1 | Viewed by 673
Abstract
White mold of carrot is mainly caused by Sclerotinia sclerotiorum, while Sclerotinia nivalis is rarely reported. This study provides the first molecular confirmation of S. nivalis on carrot in Russia, expanding knowledge of its global distribution. rDNA-ITS sequencing (100% identity with reference [...] Read more.
White mold of carrot is mainly caused by Sclerotinia sclerotiorum, while Sclerotinia nivalis is rarely reported. This study provides the first molecular confirmation of S. nivalis on carrot in Russia, expanding knowledge of its global distribution. rDNA-ITS sequencing (100% identity with reference strains) and phylogenetic analyses confirmed the isolate as S. nivalis. The growth, sclerotia formation, temperature response, pathogenicity, and fungicide sensitivity of four Sclerotinia strains (S. sclerotiorum from carrot, rapeseed, and soybean, and S. nivalis from carrot) were compared. S. nivalis showed slower growth, smaller but more numerous sclerotia (2–5 mm), and an optimal temperature of 15 °C, lower than S. sclerotiorum (25 °C). The soybean strain S. sclerotiorum SC382 was the most aggressive, causing 62% necrosis of carrot leaves and complete root decay within 9 days, while S. nivalis and the carrot isolates showed moderate aggressiveness. The S. nivalis SM8 strain was four times less sensitive to fluazinam (EC50 = 0.0107 µg/mL) than S. sclerotiorum, whereas sensitivity to boscalid and pyraclostrobin varied. These findings confirm S. nivalis as a new causal agent of carrot white mold in Russia and demonstrate the potential of Sclerotinia strains from soybean and rapeseed to infect carrot, emphasizing the need for species-level monitoring and adapted control strategies. Full article
(This article belongs to the Special Issue New Advancements in Plant–Microbes Interactions)
Show Figures

Graphical abstract

20 pages, 8138 KB  
Article
Reverse Genetic Analyses of Hydrophobins in Sclerotinia sclerotiorum Revealed Their Diverse Roles in Development, Environmental Survival, and Virulence
by Jinyi Tan, Zhengxi Gong, Xinyi Huang, Shawn D. Mansfield and Xin Li
Pathogens 2025, 14(11), 1131; https://doi.org/10.3390/pathogens14111131 - 6 Nov 2025
Viewed by 565
Abstract
Sclerotinia sclerotiorum is a notorious soilborne fungal pathogen that causes white mold in a wide range of host plants, leading to globally significant yield loss in many crops. Hydrophobins (HPs) are small, secreted proteins unique to filamentous fungi, with diverse roles in fungal [...] Read more.
Sclerotinia sclerotiorum is a notorious soilborne fungal pathogen that causes white mold in a wide range of host plants, leading to globally significant yield loss in many crops. Hydrophobins (HPs) are small, secreted proteins unique to filamentous fungi, with diverse roles in fungal biology. However, their functions in S. sclerotiorum remain poorly understood. Here, we systematically investigated the roles of three HP genes, SsHP1, SsHP2, and SsHP3, through reverse genetic analyses. By analyzing their deletion mutant phenotypes, we demonstrate that class I HP (SsHP1) is specifically required for proper sclerotia development, whereas class II HPs (SsHP2 and SsHP3) are essential for compound appressoria functionality. All three HPs contribute to fungal surface hydrophobicity, cell wall integrity, and stress tolerance. Using mycelial fusion, we generated double mutants lacking both class II HPs, which exhibited more severe defects in appressoria development, virulence, cell wall integrity, and stress adaptation, indicating their partially redundant roles. SsHP2 is required for both host penetration and post-penetration virulence, whereas SsHP3 mainly affects host penetration, revealing their overlapping yet distinct contributions to pathogenic development. Although all HP mutants formed normal apothecia and asci, they released significantly fewer ascospores, suggesting that HPs are dispensable for sexual morphogenesis but crucial for the biophysical process of ascospore dispersal. Furthermore, carbohydrate analyses uncovered that these HPs affect cell wall composition, more broadly influencing stress adaptation and virulence. Taken together, our study reveals both conserved and divergent roles of HPs across fungi and highlight their multifaceted contributions to S. sclerotiorum biology, offering new perspectives for disease management. Full article
(This article belongs to the Special Issue Filamentous Fungal Pathogens: 2nd Edition)
Show Figures

Figure 1

30 pages, 9645 KB  
Review
Molecular Breeding for Fungal Resistance in Common Bean
by Luciana Lasry Benchimol-Reis, César Júnior Bueno, Ricardo Harakava, Alisson Fernando Chiorato and Sérgio Augusto Morais Carbonell
Int. J. Mol. Sci. 2025, 26(21), 10387; https://doi.org/10.3390/ijms262110387 - 25 Oct 2025
Viewed by 921
Abstract
Despite the recognized social and economic importance of common beans (Phaseolus vulgaris L.), the average grain yield is far below the productive potential of cultivars. This situation is explained by several factors, such as the large number of diseases and pests that [...] Read more.
Despite the recognized social and economic importance of common beans (Phaseolus vulgaris L.), the average grain yield is far below the productive potential of cultivars. This situation is explained by several factors, such as the large number of diseases and pests that affect the crop, some of which cause significant damage. It is estimated that approximately 200 diseases can significantly affect common beans. These can be bacterial, viral, fungal, and nematode-induced. The main bean fungal diseases include anthracnose, angular leaf spot, powdery mildew, gray mold, Fusarium wilt, dry root rot, Pythium root rot, southern blight, white mold, charcoal rot and rust. This review provides a comprehensive overview of eleven major fungal diseases affecting common bean, describing their associated damage, characteristic symptomatology, and the epidemiological factors that favor disease development. It further synthesizes current knowledge on host resistance mechanisms that can be exploited to develop molecularly informed resistant genotypes. The compilation includes characterized resistance genes and mapped quantitative trait loci (QTLs), with details on their chromosomal locations, genetic effects, and potential for use in breeding. Moreover, the review highlights successful applications of molecular breeding approaches targeting fungal resistance. Finally, it discusses conclusions and future perspectives for integrating advanced genetic improvement strategies—such as marker-assisted selection, genomic selection, gene editing, and pyramiding—to enhance durable resistance to fungal pathogens in common bean. This work serves as both a reference for forthcoming resistance-mapping studies and a guide for the strategic selection of resistance loci in breeding programs aimed at developing cultivars with stable and long-lasting fungal resistance. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

17 pages, 1755 KB  
Article
Combined Biological and Chemical Control of Sclerotinia sclerotiorum on Oilseed Rape in the Era of Climate Change
by Jakub Danielewicz, Ewa Jajor, Joanna Horoszkiewicz, Marek Korbas, Łukasz Sobiech, Monika Grzanka, Zuzanna Sawinska, Jan Bocianowski and Jakub Cholewa
Agriculture 2025, 15(20), 2147; https://doi.org/10.3390/agriculture15202147 - 15 Oct 2025
Cited by 1 | Viewed by 1138
Abstract
This study investigates the biocontrol potential of Trichoderma asperellum and Coniothyrium minitans against the pathogen Sclerotinia sclerotiorum, which causes yield losses in many plants, including oilseed rape (Brassica napus) cultivation. This research emphasizes the promising alternative of hybrid control, specifically [...] Read more.
This study investigates the biocontrol potential of Trichoderma asperellum and Coniothyrium minitans against the pathogen Sclerotinia sclerotiorum, which causes yield losses in many plants, including oilseed rape (Brassica napus) cultivation. This research emphasizes the promising alternative of hybrid control, specifically using T. asperellum and C. minitans in strategy with synthetic fungicides. In vitro experiments demonstrated that T. asperellum effectively inhibited S. sclerotiorum mycelial growth, especially when combined with synthetic fungicides such as azoxystrobin. Field trials conducted over two years revealed that pre-sowing applications of T. asperellum and C. minitans, followed by fungicide treatments during the flowering stage, significantly reduced plant infection rates and improved both yield and seed quality across different oilseed rape cultivars. The results indicated an efficacy range of 81% to 100% in controlling the pathogen and highlighted the synergistic effects of combining biological and chemical controls. Overall, the research findings support the integration of T. asperellum and C. minitans into sustainable agricultural practices for oilseed rape, offering a viable strategy to enhance disease management while reducing reliance on chemical fungicides. This research underscores the importance of adopting innovative biocontrol approaches to improve crop health and productivity. Full article
Show Figures

Figure 1

35 pages, 8491 KB  
Article
Pathogen Survey in Agrocybe chaxingu and Characterization of the Dominant Pathogen Fuligo gyrosa
by Xutao Chen, Guoliang Meng, Mengqian Liu, Jiancheng Dai, Guanghua Huo, Caihong Dong and Yunhui Wei
Horticulturae 2025, 11(10), 1190; https://doi.org/10.3390/horticulturae11101190 - 2 Oct 2025
Viewed by 802
Abstract
Agrocybe chaxingu is a commercially important edible mushroom in China, valued for its rich bioactive compounds and distinctive umami flavor. In recent years, frequent disease outbreaks have severely limited production, as many pathogens spread rapidly and are difficult to control, posing a significant [...] Read more.
Agrocybe chaxingu is a commercially important edible mushroom in China, valued for its rich bioactive compounds and distinctive umami flavor. In recent years, frequent disease outbreaks have severely limited production, as many pathogens spread rapidly and are difficult to control, posing a significant threat to the sustainable development of the industry. In this study, a systematic disease survey across major A. chaxingu cultivation areas in Jiangxi Province led to the isolation and identification of 17 potential fungal pathogens and 2 potential myxomycete pathogens using combined morphological characterization and multilocus phylogenetic analyses including the internal transcribed spacer (ITS) region, 28S large subunit ribosomal RNA (LSU), translation elongation factor (tef1), RNA polymerase largest subunit (rpb1), RNA polymerase second largest subunit (rpb2), Histone (H3), Beta tubulin (tub2), and 18S ribosomal RNA (18S rRNA). Among the identified diseases, white slime disease showed the highest incidence (17.3%) and was attributed to the slime mold Fuligo gyrosa, with pathogenicity confirmed according to Koch’s postulates. F. gyrosa proved highly virulent to both fruiting bodies and mycelia, enveloping host mycelium via plasmodial expansion, inhibiting growth, inducing structural rupture, and causing progressive degradation. Infection was accompanied by the deposition of characteristic stress-related pigments in the mycelium. This study provides the first detailed characterization of F. gyrosa infection dynamics in A. chaxingu mycelium. These findings provide new insights into the myxomycete pathogenesis in edible fungi and provide a foundation for the accurate diagnosis, targeted prevention, and sustainable management of diseases in A. chaxingu cultivation. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

16 pages, 2319 KB  
Article
Evaluation of the Impact of Whey Edible Coatings with Bioprotective Cultures and Thyme Essential Oil Applied to Cheese
by Carlos Dias Pereira, Klaudia Hodowaniec, Karolina Kucz, Katarzyna Szkolnicka, David Gomes and Arona Pires
Dairy 2025, 6(5), 56; https://doi.org/10.3390/dairy6050056 - 26 Sep 2025
Viewed by 1273
Abstract
This research work evaluated the application of whey-based edible coatings to cheeses. Coatings were prepared with a bioprotective culture (BC) containing Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus alone, or in conjunction with thyme essential oil (TEO). The samples containing the BC or the BC [...] Read more.
This research work evaluated the application of whey-based edible coatings to cheeses. Coatings were prepared with a bioprotective culture (BC) containing Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus alone, or in conjunction with thyme essential oil (TEO). The samples containing the BC or the BC plus TEO were compared with cheeses without coating, with cheeses with whey-based coatings without BC or TEO, and with cheeses treated with natamycin. The cheeses were evaluated regarding their physicochemical, microbiological, and sensory properties. All cheeses produced were classified as full-fat (≥45–60% fat in dry matter—FDM) and semihard (>54–<63% moisture in the defatted cheese—MDC), with an exception made for the control cheese, which presented lower levels of MDC, graded as hard (>49–<56% MDC). Most of the parameters evaluated presented significant differences between samples and as a result of ripening time. Regarding color parameters, it was observed that, after ripening, the external color of the samples with the whey coating presented higher lightness values (L*), higher a* values, and lower b* values. These differences clearly resulted from the white color imparted by the coating. Significant differences were also observed with respect to the texture parameters of the cheeses. The samples containing the BC or the BC plus TEO presented higher values for hardness and chewiness. In what concerns the microbiological evaluation, in all cases, lactic acid bacteria counts increased from log 7.5–8 CFU/g on the first day to ca. log 10 CFU/g at the end of the ripening period. Yeast and mold counts were significantly lower in samples containing the BC or the BC plus TEO, with values of ca. log 3 CFU/g and log 2.5 CFU/g, respectively. These values are like those obtained in samples with natamycin, with 1–2 log cycles below those of cheeses without treatment. However, the use of BC and BC plus TEO had a negative impact on the sensory properties of cheeses. Future work should evaluate the synergistic effect of different BCs and EOs. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

20 pages, 2012 KB  
Article
Xenorhabdus and Photorhabdus Metabolites for Fungal Biocontrol and Application in Soybean Seed Protection
by Nathalie Otoya-Martinez, Mustapha Touray, Harun Cimen, Edna Bode, Helge B. Bode, Selcuk Hazir, Julie Giovanna Chacon-Orozco, César Júnior Bueno and Luís Gárrigos Leite
J. Fungi 2025, 11(10), 691; https://doi.org/10.3390/jof11100691 - 23 Sep 2025
Viewed by 1093
Abstract
Photorhabdus and Xenorhabdus bacteria, members of the Morganellaceae family, are sources of novel natural products for the biocontrol of fungal pathogens in soybean production. This study demonstrated the inhibitory effects of metabolites from four Photorhabdus and Xenorhabdus strains (including a local isolate, X. [...] Read more.
Photorhabdus and Xenorhabdus bacteria, members of the Morganellaceae family, are sources of novel natural products for the biocontrol of fungal pathogens in soybean production. This study demonstrated the inhibitory effects of metabolites from four Photorhabdus and Xenorhabdus strains (including a local isolate, X. szentirmaii PAM 25), against four key phytopathogenic fungi. Bacterial metabolite efficacy and fungal susceptibility varied. Xenorhabdus szentirmaii DSM 16338, X. szentirmaii PAM 25, and X. doucetiae demonstrated significant inhibition (>90%) against Sclerotinia sclerotiorum, Botrytis cinerea, and Macrophomina phaseolina, exhibiting superior efficacy compared to X. nematophila and Photorhabdus kayaii. Fusarium oxysporum demonstrated greater resistance to the bacterial supernatants. We identified fabclavine, pyrollizixenamide, and szentirazine from X. szentirmaii, and xenocoumacins from X. doucetiae as the antifungal bioactive compounds in the respective easyPACid mutants. Furthermore, we assessed the efficacy of X. szentirmaii PAM 25 and its metabolites in protecting soybean seeds from S. sclerotiorum and investigated the shelf stability of the bacterial metabolites as the fungus suppressors. Cell-free supernatant maintained >80% inhibition of S. sclerotiorum after one year at 5–35 °C. Importantly, the cell-free supernatant, as well as the bacterial culture, effectively inhibited S. sclerotiorum in seed treatments, ensuring ≥80% seed germination, comparable to thiophanate-methyl + fluazinam fungicide. This study demonstrates that the direct seed application of Xenorhabdus and Photorhabdus bacteria offers a practical and innovative biological control method against soil-borne fungal pathogens. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Graphical abstract

18 pages, 1951 KB  
Article
Spatial Distribution of Minerals and Selected Bioactive Compounds in White Mold-Ripened and Blue-Veined Cheeses
by Varineja Drašler, Irena Kralj Cigić, Tomaž Polak, Gregor Marolt, Jernej Imperl, Andreja Čanžek Majhenič and Blaž Cigić
Molecules 2025, 30(18), 3819; https://doi.org/10.3390/molecules30183819 - 19 Sep 2025
Viewed by 1302
Abstract
In this study, the contents of minerals, free amino acids (FAAs), biogenic amines (BAs), γ-aminobutyric acid (GABA), and spermidine (SPD) were analyzed in selected white mold-ripened and blue-veined cheeses, including their spatial distribution between rind and core. Blue-veined cheeses contained higher levels of [...] Read more.
In this study, the contents of minerals, free amino acids (FAAs), biogenic amines (BAs), γ-aminobutyric acid (GABA), and spermidine (SPD) were analyzed in selected white mold-ripened and blue-veined cheeses, including their spatial distribution between rind and core. Blue-veined cheeses contained higher levels of sodium, calcium, phosphorus, FAAs, and SPD. The BAs content was higher in cheeses produced from raw milk. Compared to the cores, the rinds of the analyzed cheeses contained more calcium (up to 66-fold), phosphate (up to 4.4-fold), zinc (up to 9.9-fold), and GABA (up to 17-fold). In white mold-ripened cheeses, where molds do not grow in the core, the rinds also contained more FAAs (up to 15-fold) and SPD (up to 127-fold). Our results confirm previous observations that the rinds of mold-ripened cheeses contain higher amounts of nutritionally valuable cations that form poorly soluble phosphate salts. To our knowledge, this study provides the first demonstration that the rinds of white mold-ripened cheeses are enriched in GABA and SPD, bioactive compounds associated with beneficial health effects. This highlights the high nutritional value of the outer layers of cheese produced with food-grade molds. Full article
Show Figures

Figure 1

19 pages, 3852 KB  
Article
Novel Egg White Protein–Chitin Nanocrystal Biocomposite Films with Enhanced Functional Properties
by Víctor Baquero-Aznar, Víctor Calvo, José Miguel González-Domínguez, Wolfgang K. Maser, Ana M. Benito, María Luisa Salvador and Jaime González-Buesa
Polymers 2025, 17(18), 2538; https://doi.org/10.3390/polym17182538 - 19 Sep 2025
Cited by 2 | Viewed by 3931
Abstract
This study aims to develop egg white protein (EWP) biocomposite films reinforced with chitin nanocrystals (ChNCs, 1–5 wt.%) by compression molding to overcome the mechanical and barrier limitations of protein-based films for sustainable packaging. ChNC incorporation may modulate film microstructure, crystallinity, and thermal [...] Read more.
This study aims to develop egg white protein (EWP) biocomposite films reinforced with chitin nanocrystals (ChNCs, 1–5 wt.%) by compression molding to overcome the mechanical and barrier limitations of protein-based films for sustainable packaging. ChNC incorporation may modulate film microstructure, crystallinity, and thermal stability, thereby enhancing functional performance. Films were prepared by adding ChNCs either as aqueous suspensions or lyophilized powder, and their structural, thermal, mechanical, optical, and barrier properties were systematically evaluated. Scanning electron microscopy confirmed a more homogeneous dispersion of ChNCs when added as suspensions, while powder addition promoted partial aggregation. X-ray diffraction revealed increased crystallinity with ChNC reinforcement. Mechanical tests showed that films with 2 wt.% ChNCs in suspension exhibited the highest tensile strength, whereas those with 5 wt.% in powder form became stiffer but less extensible. Oxygen permeability was not significantly affected, while water vapor permeability decreased by up to 14.5% at 2 wt.% ChNCs incorporated as powder. Transparency and color remained largely unchanged by ChNC addition, except for a slight increase in yellowness. Overall, these findings demonstrate that the incorporation method and concentration of ChNCs play a crucial role in tailoring the physicochemical performance of EWP films. The results provide new insights into the design of EWP-based nanocomposites and support their potential as bio-derived materials for advanced food packaging applications. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Graphical abstract

Back to TopTop