Encapsulation, Shelf Life, and Virulence of Batkoa sp. Against Dalbulus maidis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolate Selection and Fungus Cultivation
Isolate Identification
2.2. Submerged Cultivation
2.3. Bioassay with Dalbulus maidis
2.4. Formulation of Batkoa sp. Submerged Propagules
2.4.1. Combination of Osmoprotectants with Kaolin
2.4.2. Encapsulation with Different Kaolin Concentrations
2.5. Viable Propagules per Bead (VPB) and Sporulation
2.6. Shelf Life
2.7. Sporulation of Beads over Time in a Humid Environment
2.8. Statistical Analysis
3. Results
3.1. Bioassay with Dalbulus maidis
3.2. Formulation Experiments
3.2.1. Combination of Osmoprotectants with Kaolin
3.2.2. Selection of Kaolin Concentration
3.3. Shelf Life
Sporulation of Fresh Beads over Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gryganskyi, A.P.; Golan, J.; Hajek, A.E. Season-long infection of diverse hosts by the entomopathogenic fungus Batkoa major. PLoS ONE 2022, 17, e0261912. [Google Scholar] [CrossRef]
- Humber, R.A. Synopsis of a revided classification for the Entomophthorales (Zygomycontina). Mycotaxon 1989, 32, 441–461. [Google Scholar]
- Mycobank: Fungal Databases, Nomenclature & Species Banks. Available online: https://www.mycobank.org/ (accessed on 30 April 2024).
- Balazy, S. Entomophthorales: Flora of Poland (Flora Polska), Fungi (Mycota); W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 1993; pp. 1–356. [Google Scholar]
- Gbif: Global Biodiversity Information Facility. Available online: https://www.gbif.org/ (accessed on 30 April 2024).
- Alves, S.B.; Almeida, J.E.M. Controle biológico de pragas das pastagens. In Simpósio Sobre Ecossistema de Pastagens; Anais Jaboticabal UNESP: Jaboticabal, Brazil, 1997; pp. 318–341. [Google Scholar]
- Alves, S.B. Controle Microbiano de Insetos, 2nd ed.; FEALQ: Piracicaba, Brazil, 1998; p. 1163. [Google Scholar]
- Lepage, H.S.; Monte, O. As cigarrinhas do capim “kikuio”. O Biológico 1942, 8, 255–259. [Google Scholar]
- Souza, D.A.; Oliveira, C.M.; Tamai, M.A.; Faria, M.; Lopes, R.B. First report on the natural occurrence of entomopathogenic fungi population of the leafhopper Dalbulus maidis (Hemiptera: Cicadellidae): Pathogen identifications and their incidence in maize crops. Fungal Biol. 2021, 125, 980–988. [Google Scholar] [CrossRef]
- Hajek, A.; Papierok, B.; Eilenberg, J. Methods for study of the Entomophthorales. In Manual of Techniques in Invertebrate Pathology, 2nd ed.; Lacey, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 285–316. [Google Scholar]
- Maluta, N.; Castro, T.; Lopes, J.R.S. Entomopathogenic fungus disrupts the phloem probing behavior of Diaphorina citri and may be an important biological control tool in citrus. Sci. Rep. 2022, 12, 7959. [Google Scholar] [CrossRef]
- Poletto, T.B. Enhancing Dalbulus maidis (Hemiptera: Cicadellidae) Control: An Integrated Approach Combining Cordyceps javanica (Ascomycota). Master’s Thesis, University of São Paulo, Piracicaba, Brazil, 2024. [Google Scholar] [CrossRef]
- Machado, E.P.; Souza, E.V.; Dias, G.S.; Sacilotto, M.G.; Omoto, C. Is insecticide resistance a factor contributing to the increasing problems with Dalbulus maidis (Hemipera: Cicadellidae) in Brazil. Pest Manag. Sci. 2024, 80, 5120–5130. [Google Scholar] [CrossRef]
- Iwanicki, N.S.A.; Mascarin, G.M.; Moreno, S.G.; Eilenberg, J.; Delalibera, I. Growth kinetic and nitrogen source optimization for liquid culture fermentation of Metarhizium robertisii blastospores and bioefficacy against the corn leafhopper Dalbulus maidis. World J. Microbiol. Biotechnol. 2020, 36, 71. [Google Scholar] [CrossRef]
- Iwanicki, N.S.A.; Mascarin, G.M.; Moreno, S.G.; Eilenberg, J.; Delalibera, I. Development of novel spray-dried and air-dried formulations of Metarhizium robertsii blastospores and their virulence against Dalbulus maidis. Appl. Microbiol. Biotechnol. 2021, 20, 7913–7933. [Google Scholar] [CrossRef]
- Jaronski, S.T.; Jackson, M.A. Mass production of entomopathogenic Hypocreales. In Manual of Techniques in Invertebrate Pathology, 2nd ed.; Lacey, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 317–328. [Google Scholar]
- Mascarin, G.M.; Jackson, M.A.; Behele, R.W.; Kobori, N.N.; Delalibera, I., Jr. Improve shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes. Appl. Microbiol. Biotechnol. 2016, 100, 8359–8370. [Google Scholar] [CrossRef] [PubMed]
- Wraight, S.; Jackson, M.; De Kock, S. Production, stabilization and formulation of fungal biocontrol agents. In Fungi as Biocontrol Agents: Progress, Problems and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CABI: New York, NY, USA, 2001; pp. 253–287. [Google Scholar]
- Burges, H.D. Formulation of mycoinsecticides. In Formulation of Microbial Biopesticides; Burges, H.D., Ed.; Springer: Dordrecht, The Netherlands, 1998; pp. 131–185. [Google Scholar] [CrossRef]
- Faria, M.R.; Wraight, S.P. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Agrofit. Sistema de Agrotóxicos Fitossanitários. Available online: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 18 April 2024).
- Muskat, L.C.; Görg, L.M.; Humbert, P.; Gross, J.; Eilenberg, J.; Patel, A.V. Encapsulation of the psyllid-pathogenic fungus Pandora sp. nov. inedit. and experimental infection of target insects. Pest Manag. Sci. 2021, 78, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.S.; Wang, D.; Hatting, J.L.; Yu, X. Alginate embedding and subsequent sporulation of in vitro-produced Conidiobolus thromboides hyphae using a pressurized air-extrusion method. Biol. Control 2014, 69, 52–58. [Google Scholar] [CrossRef]
- Zhou, X.; Xiu, S.; Liu, H. A floatable formulation and laboratory bioassay of Pandora delphacis (Entomophthoromycota: Entomophthorales) for the control of rice pests Nilaparvata lugens Stal (Hemiptera: Delphacidae). Pest Manag. Sci. 2016, 72, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Vemmer, M.; Patel, A.V. Review of encapsulation methods suitable for microbial biological control agents. Biol. Control 2013, 67, 380–389. [Google Scholar] [CrossRef]
- Kowalski, S.J. (Ed.) Drying of Porous Materials, 1st ed.; Springer: Dordrecht, The Netherlands, 2007; p. 231. [Google Scholar]
- Philippsen, C.G.; Vilela, A.C.F.; Zen, L.D. Fluidized bed modeling applied to the analysis of processes: Review and state of the art. J. Mater. Res. Technol. 2015, 4, 208–216. [Google Scholar] [CrossRef]
- Humbert, P.; Vemmer, V.; Mävers, F.; Schumann, M.; Vidal, S.; Patel, A.V. Development of an attract-and-kill co-formulation containing Sacchoromyces cerevisiae and neem extract attractive towards wireworms. Pest Manag. Sci 2017, 74, 1575–1585. [Google Scholar] [CrossRef]
- Corrêa, B.; Duarte, V.S.; Silva, D.M.; Mascarin, G.M.; Delalibera, I., Jr. Comparative analysis of blastospore production and virulence of Beauveria bassiana and Cordyceps fumosorosea against soybean pests. BioControl 2020, 65, 323–337. [Google Scholar] [CrossRef]
- Vemmer, M. Encapsulation Systems for Slow Release of CO2 and Antimicrobial Plant Extracts. Master’s Dissertation, University of Applied Sciences, Bielefeld, Germany, 2014. [Google Scholar]
- Mater, D.D.G.; Barbotin, J.N.; Saucedo, J.E.N.; Truffaut, N.; Thomas, D. Effect of gelation temperature and gel-dissolving solution on cell viability and recovery of 2 Pseudomonas putida strains co-immobilized within calcium alginate or κ-carrageenan gel beads. Biotechnol. Tech. 1995, 9, 747–752. [Google Scholar] [CrossRef]
- Strasser, S.; Geppl, M.; Braun, R.; Danner, H. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J. Appl. Microbiol. 2009, 107, 167–177. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Shah, P.A.; Aebi, M.; Tuor, U. Production factors involved in the formulation of Erynia neoaphidis as alginate granules. Biocontrol Sci. Technol. 1999, 9, 19–28. [Google Scholar] [CrossRef]
- Hua, L.; Feng, M.G. New use of broomcor millets for production of granular cultures of aphid-pathogenic fungus Pandora neoaphidis for high sporulation potential and infectivity to Myzus persicae. FEMS Microbiol. Lett. 2003, 227, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Feng, M.G. Improved sporulation of alginate pellets entrapping Pandora nouryi and millet powder and their potential to induce an aphid epizootic in field cages after release. Biol. Control 2010, 54, 153–158. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, D.W.; Zhang, X.; Wang, J.H. The influence of the aphid-specific pathogen Conidiobolus obscurus (Entomophthoromycota: Entomophthorales) on the mortality and fecundity of bamboo aphids. J. For. Res. 2014, 19, 388–394. [Google Scholar] [CrossRef]
- Busolo, M.A.; Lagaron, J.M. Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innov. Food Sci. Emerg. Technol. 2012, 16, 211–217. [Google Scholar] [CrossRef]
- Morgan, C.A.; Herman, N.; White, P.A.; Vesey, G. Preservation of micro-organisms by drying; a review. J. Microbiol. Methods 2006, 66, 183–193. [Google Scholar] [CrossRef]
- de la Cruz Quiroz, R.; Maldonado, J.J.C.; de Jesús Rostro Alanis, M.; Torres, J.A.; Saldívar, R.P. Fungi-based biopesticides: Shelf-life preservation technologies used in commercial products. J. Pest Sci. 2019, 92, 1003–1015. [Google Scholar] [CrossRef]
- Walters, C.; Hill, L.M.; Wheeler, L.J. Dying while dry: Kinetics and mechanisms of deterioration in desiccated organisms. Integr. Comp. Biol. 2005, 45, 751–758. [Google Scholar] [CrossRef]
- Li, Z.; Butt, T.M.; Beckett, A.; Wilding, N. The structure of dry mycelia of the entomophthoralean fungi Zoophthora radicans and Erynia neoaphidis following different preparatory treatments. Mycol. Res. 1993, 97, 1315–1323. [Google Scholar] [CrossRef]
- McCabe, D.; Soper, R.S. Preparation of an Entomopathogenic Fungal Insect Control Agent. U.S. Patent 4,530,834, 22 July 1985. [Google Scholar]
- Pell, J.K.; Macauley, E.D.M.; Wilding, N.A. A pheromone trap for dispersal of the pathogen Zoophthora radicans Brefeld (Zygomycetes: Entomophthorales) amongst populations of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae). Biocontrol Sci. Technol. 1993, 3, 315–320. [Google Scholar] [CrossRef]
- Leite, L.G. Ocorrência, Produção e Preservação de Micélio Seco de Batkoa sp. e Furia sp., Patógenos das Cigarrinhas das Pastagens. Ph.D Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2002. [Google Scholar]
- Olsen, N.L.; Herren, P.; Markussen, B.; Jensen, A.B.; Eilenbeg, J. Statistical modelling of conidial discharge of entomophthoralean fungi using a newly discovered Pandora species. PLoS ONE 2019, 14, e0215914. [Google Scholar] [CrossRef]
- Pell, J.K.; Eilenberg, J.; Hajek, A.E.; Steinkraus, D.C. Biology, ecology and pest management potential of Entomophthorales. In Fungi as Biocontrol Agents: Progress, Problems and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CABI: New York, NY, USA, 2001; pp. 71–154. [Google Scholar]
- Hajek, A.E.; Clifton, E.G.; Stefanik, S.E.; Harris, D.C. Batkoa major infecting the invasive planthopper Lycorma delicatula. J. Invertebr. Pathol. 2022, 194, 107821. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.E.; Harris, D.C. Diurnal patterns and conidial dynamics of Batkoa major, a generalist entomophthoralean pathogen. Fungal Ecol. 2023, 65, 101278. [Google Scholar] [CrossRef]
- Lopes, R.B.; Faria, M.; Oliveira, C.M. Susceptibility of Dalbulus maidis to insect-pathogenic fungi: Unveiling the protective role of brochosomes and self-cleaning behavior. J. Pest Sci. 2024, 97, 713–724. [Google Scholar] [CrossRef]
- Muskat, L.C.; Kais, B.; Gross, J.; Eilenerg, J.; Patel, A.V. A biobased superabsorbent formulation for above-ground application of a new entomophthoralean fungus for biological psyllid pest control. BioControl 2023, 68, 629–641. [Google Scholar] [CrossRef]
- Görg, L.; Eilenberg, J.; Jensen, A.B.; Jensen, A.H.; Gross, J. Pathogenicity against hemipteran vector insects of a novel insect pathogenic fungus from Entomophthorales (Pandora sp. nov. inedit.) with potential for biological control. J. Invertebr. Pathol. 2021, 183, 107621. [Google Scholar] [CrossRef]
Treatment | Inlet (°C) | Outlet First (°C) | Outlet Final (°C) | RH% of the Air–Start | RH% of the Air–Final | Water Activity | Water Content (%) | Drying Time |
---|---|---|---|---|---|---|---|---|
Control + H2O | 40 | 24.80 | 38.20 | 20.80 | 1.30 | 0.14 | 94.31 | 90 min |
Control + Sucrose 4% | 40 | 32.80 | 37.20 | 10.40 | 1.30 | 0.21 | 93.42 | 180 min |
Kaolin 10% + H2O | 40 | 28.50 | 31.60 | 17.30 | 1.40 | 0.07 | 97.27 | 90 min |
Kaolin 10% + Sucrose 4% | 40 | 31.30 | 36.50 | 16.40 | 1.30 | 0.21 | 95.39 | 180 min |
Kaolin Concentration (%) | Fresh (mm) | Dry (mm) | Rehydrated (mm) |
---|---|---|---|
0 | 1.95 ± 0.03 c | 0.83 ± 0.02 e | 1.23 ± 0.04 c |
2 | 2.09 ± 0.05 bc | 1.14 ± 0.01 d | 1.50 ± 0.03 b |
4 | 2.37 ± 0.03 a | 1.22 ± 0.01 c | 1.56 ± 0.05 b |
8 | 2.14 ± 0.05 b | 1.45 ± 0.01 b | 1.97 ± 0.03 a |
10 | 2.10 ± 0.04 b | 1.58 ± 0.02 a | 1.97 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, D.M.; Iwanicki, N.S.A.; Muskat, L.C.; Patel, A.V.; Delalibera Júnior, I. Encapsulation, Shelf Life, and Virulence of Batkoa sp. Against Dalbulus maidis. J. Fungi 2024, 10, 814. https://doi.org/10.3390/jof10120814
Silva DM, Iwanicki NSA, Muskat LC, Patel AV, Delalibera Júnior I. Encapsulation, Shelf Life, and Virulence of Batkoa sp. Against Dalbulus maidis. Journal of Fungi. 2024; 10(12):814. https://doi.org/10.3390/jof10120814
Chicago/Turabian StyleSilva, Daniela Milanez, Natasha Sant’ Anna Iwanicki, Linda Claire Muskat, Anant V. Patel, and Italo Delalibera Júnior. 2024. "Encapsulation, Shelf Life, and Virulence of Batkoa sp. Against Dalbulus maidis" Journal of Fungi 10, no. 12: 814. https://doi.org/10.3390/jof10120814
APA StyleSilva, D. M., Iwanicki, N. S. A., Muskat, L. C., Patel, A. V., & Delalibera Júnior, I. (2024). Encapsulation, Shelf Life, and Virulence of Batkoa sp. Against Dalbulus maidis. Journal of Fungi, 10(12), 814. https://doi.org/10.3390/jof10120814