Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Entomophthorales

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1892 KiB  
Article
Morphological and Chemical Changes in the Hemolymph of the Wax Moth Galleria mellonella Infected by the Entomopathogenic Fungus Conidiobolus coronatus
by Mieczysława Irena Boguś, Agata Kaczmarek, Anna Katarzyna Wrońska, Mikołaj Drozdowski, Lena Siecińska, Ewelina Mokijewska and Marek Gołębiowski
Pathogens 2025, 14(1), 38; https://doi.org/10.3390/pathogens14010038 - 7 Jan 2025
Viewed by 1048
Abstract
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected [...] Read more.
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected to biological control. Galleria mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) is a global pest to honey bee colonies. The hemolymph of its larvae was examined after infection with the soil fungus Conidiobolus coronatus (Constantin) Batko 1964 (Entomophthorales). It was found that after one hour of contact with the fungus, the volume of the hemolymph increased while its total protein content decreased. In larvae with a high pathogen load, just before death, hemolymph volume decreased to nearly initial levels, while total protein content and synthesis (incorporation of 35S-labeled methionine) increased. The hemolymph polypeptide profile (SDS-PAGE followed by autoradiography) of infected insects was significantly different from that of healthy larvae. Hemocytes of infected larvae did not surround the fungal hyphae, although they encapsulated small foreign bodies (phase contrast microscopy). Infection had a negative effect on hemocytes, causing oenocyte and spherulocyte deformation, granulocyte degranulation, plasmatocyte vacuolization, and hemocyte disintegration. GC-MS analysis revealed the presence of 21 compounds in the hemolymph of control insects. C. coronatus infection caused the appearance of 5 fatty acids absent in healthy larvae (heptanoic, decanoic, adipic, suberic, tridecanoic), the disappearance of 4 compounds (monopalmitoylglycerol, monooleoylglycerol, monostearin, and cholesterol), and changes in the concentrations of 8 compounds. It remains an open question whether substances appearing in the hemolymph of infected insects are a product of the fungus or if they are released from the insect tissues damaged by the growing hyphae. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

17 pages, 3110 KiB  
Article
Encapsulation, Shelf Life, and Virulence of Batkoa sp. Against Dalbulus maidis
by Daniela Milanez Silva, Natasha Sant’ Anna Iwanicki, Linda Claire Muskat, Anant V. Patel and Italo Delalibera Júnior
J. Fungi 2024, 10(12), 814; https://doi.org/10.3390/jof10120814 - 23 Nov 2024
Viewed by 988
Abstract
Batkoa is a genus of entomophthoralean fungi often associated with insect epizootics, particularly in phytophagous hemipterans. Encapsulation has become a promising strategy for improving the shelf life and sporulation of these fungi post-application. This study aims to (i) compare the virulence of the [...] Read more.
Batkoa is a genus of entomophthoralean fungi often associated with insect epizootics, particularly in phytophagous hemipterans. Encapsulation has become a promising strategy for improving the shelf life and sporulation of these fungi post-application. This study aims to (i) compare the virulence of the submerged propagules and primary conidia of Batkoa sp. ESALQ1199 against Dalbulus maidis; (ii) formulate submerged propagules in calcium alginate beads with co-formulants; (iii) assess the colony-forming units and sporulation of encapsulated beads dried with different kaolin concentrations (0%, 2%, 4%, 8% and 10%); (iv) determine the shelf life of dried bead formulations containing 10% kaolin, comparing washed and unwashed beads treated with a 4% sucrose solution; and (v) assess the sporulation capacity of beads with 10% kaolin, washed and unwashed with 4% sucrose solution, over time under humid conditions. Our results demonstrated that primary conidia and submerged propagules effectively killed 82.4% and 57.8% of adult corn leafhoppers, respectively. Co-formulants maintained viability above 80% in dried propagules, while control samples dropped to 45%, indicating the sensitivity of submerged propagules to the drying process. Encapsulated Batkoa sp. retained the same concentration of viable propagules per bead and the number of conidia produced (sporulation) for 30 days at 28 °C. The sporulation of fresh beads increased during the incubation period, plateauing after 27 days. This suggests that Batkoa sp. beads can produce primary conidia under humid field conditions, serving as a potential inoculum source for new infections. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

14 pages, 3138 KiB  
Article
Reassessing the Diversity of the Arthropod-Pathogenic Genus Pandora Batko (Entomophthoromycotina; Erynioideae)
by Ann E. Hajek, Andrii P. Gryganskyi, Svetlana Y. Gouli, Tonya D. Bittner, Cheryl F. Sullivan and Bruce L. Parker
Diversity 2024, 16(10), 603; https://doi.org/10.3390/d16100603 - 1 Oct 2024
Cited by 1 | Viewed by 1041
Abstract
The fungal order Entomophthorales occurs worldwide, with most species infecting arthropods as pathogens. Species in this order can cause epizootics and change the behavior of infected hosts. Molecular data are available only for 20% of the known species, and distributions of species are [...] Read more.
The fungal order Entomophthorales occurs worldwide, with most species infecting arthropods as pathogens. Species in this order can cause epizootics and change the behavior of infected hosts. Molecular data are available only for 20% of the known species, and distributions of species are seldom summarized. Significant diversity of hosts, poor molecular data availability, and poor resolution of the phylogenetic relationships within this fungal order suggest that the diversity of these fungi is not sufficiently described. The subfamily Erynioideae includes 111 arthropod pathogens, divided among six genera, with the genus Pandora being one of the most diverse genera. Sequences of 18S, 28S, and ITS for two species are used to place these Pandora species in a phylogenic tree of the subfamily; this tree also supports our synonymy of the genus Furia with Pandora. Among the two species specifically covered in this paper, Pandora gloeospora was observed during epizootics occurring in mushroom flies (Diptera: Sciaridae) on Agaricus bisporus cultures in Pennsylvania, Delaware, and Maryland (US) mushroom farms and also in Florida on Pleurotus sp. Outside the US, P. gloeospora was found infecting several Nematocera (Diptera) in Europe (France) and Asia (China). Pandora sylvestris n. sp. was collected during epizootics occurring in larvae of hickory tussock moths, Lophocampa caryae (Lepidoptera: Erebidae), in hardwood forests in Michigan and Vermont. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

26 pages, 2101 KiB  
Review
Potential for Use of Species in the Subfamily Erynioideae for Biological Control and Biotechnology
by Andrii P. Gryganskyi, Ann E. Hajek, Nataliya Voloshchuk, Alexander Idnurm, Jørgen Eilenberg, Romina G. Manfrino, Kathryn E. Bushley, Liudmyla Kava, Vira B. Kutovenko, Felicia Anike and Yong Nie
Microorganisms 2024, 12(1), 168; https://doi.org/10.3390/microorganisms12010168 - 14 Jan 2024
Cited by 2 | Viewed by 2406
Abstract
The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is [...] Read more.
The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest subfamily in the Entomophthorales, including 126 described species. The species diversity, global distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically widespread, and few have broad host ranges, which contrasts with many species with single reports from one location and one host species. The insect orders infected by the greatest numbers of species are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated in vitro, and those that have require more specialized media than many other fungi. Given their potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which species might be adopted for biological control purposes or biotechnological innovations. Current challenges in the implementation of these species in biotechnology include the limited ability or difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations regarding the host ranges of different species. Full article
(This article belongs to the Special Issue Advances in Research on Ancient Terrestrial Fungi)
Show Figures

Figure 1

13 pages, 1741 KiB  
Review
Diversity and Breadth of Host Specificity among Arthropod Pathogens in the Entomophthoromycotina
by Natalie E. Sacco and Ann E. Hajek
Microorganisms 2023, 11(7), 1658; https://doi.org/10.3390/microorganisms11071658 - 26 Jun 2023
Cited by 8 | Viewed by 1937
Abstract
A meta-analysis based on the published literature was conducted to evaluate the breadth of host ranges of arthropod pathogens in the fungal subphylum Entomophthoromycotina. The majority of pathogens in this subphylum infect insects, although arachnids (especially mites), collembola, and myriapods are also [...] Read more.
A meta-analysis based on the published literature was conducted to evaluate the breadth of host ranges of arthropod pathogens in the fungal subphylum Entomophthoromycotina. The majority of pathogens in this subphylum infect insects, although arachnids (especially mites), collembola, and myriapods are also used as hosts. Most species (76%) have specialized host ranges and only infect arthropods in one host family. The breadth of host ranges in the Entomophthoromycotina is generally greater for species in more basal groups (Conidiobolaceae and Neoconidiobolaceae), where most species are soil-borne saprobes and few are pathogens. The Batkoaceae is a transitionary family in which all species are pathogens and both generalists and specialists occur. Among pathogen-infecting insects, Hemiptera and Diptera are the most commonly infected insect orders. Within the Hemiptera, hosts in the suborder Sternorrhycha were infected by more fungal species than the Auchenorrhyncha and Heteroptera. Full article
(This article belongs to the Special Issue Advances in Research on Ancient Terrestrial Fungi)
Show Figures

Figure 1

22 pages, 3377 KiB  
Article
The Changes in Mitochondrial Morphology and Physiology Accompanying Apoptosis in Galleria mellonella (Lepidoptera) Immunocompetent Cells during Conidiobolus coronatus (Entomophthorales) Infection
by Agata Kaczmarek, Anna Katarzyna Wrońska and Mieczysława Irena Boguś
Int. J. Mol. Sci. 2023, 24(12), 10169; https://doi.org/10.3390/ijms241210169 - 15 Jun 2023
Cited by 7 | Viewed by 1843
Abstract
Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, their role in insects is not fully understood; thus, more indepth studies of insect cell apoptosis are necessary. The present study investigates mitochondrial involvement during Conidiobolus coronatus [...] Read more.
Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, their role in insects is not fully understood; thus, more indepth studies of insect cell apoptosis are necessary. The present study investigates mitochondrial involvement during Conidiobolus coronatus-induced apoptosis in Galleria mellonella hemocytes. Previous research has shown that fungal infection could induce apoptosis in insect hemocytes. Our findings indicate that mitochondria undergo several morphological and physiological changes during fungal infection, e.g., loss of mitochondrial membrane potential, megachannel formation, disturbances in intracellular respiration, increased nonrespiratory oxygen consumption in mitochondria, decreased ATP-coupled oxygen consumption and increased non-ATP–coupled oxygen consumption, decreased extracellular and intracellular oxygen consumption, and increased extracellular pH. Our findings confirm that G. mellonella immunocompetent cells demonstrate Ca2+ overload in mitochondria, translocation of cytochrome c-like protein from mitochondrial to cytosol fraction, and higher activation of caspase-9-like protein after C. coronatus infection. Most importantly, several of the changes observed in insect mitochondria are similar to those accompanying apoptosis in mammalian cells, suggesting that the process is evolutionarily conserved. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

11 pages, 1117 KiB  
Article
Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina)
by Tian Yang, Xiaojun Wang and Xiang Zhou
Insects 2022, 13(11), 1040; https://doi.org/10.3390/insects13111040 - 10 Nov 2022
Cited by 1 | Viewed by 1788
Abstract
Insect-associated microbes exert diverse effects on host fitness. This study provides insights into the microbiota of the bamboo aphid, Melanaphis bambusae, and their response to Conidiobolus obscurus infection. 16S rRNA and ITS sequencing data were used to analyze the bacterial and fungal samples [...] Read more.
Insect-associated microbes exert diverse effects on host fitness. This study provides insights into the microbiota of the bamboo aphid, Melanaphis bambusae, and their response to Conidiobolus obscurus infection. 16S rRNA and ITS sequencing data were used to analyze the bacterial and fungal samples associated with healthy, infected, and starved aphids. At ≥97% nucleotide similarity, the total reads were clustered into 79 bacteria and 97 fungi operational Taxonomic Units (OTUs). The phyla Proteobacteria and Ascomycota dominated the bacterial and fungal communities, respectively. The significant divergence in OTU distribution presented differential profiles of the microbiota in response to host conditions. Lower α-diversity indices were found in bacterial and fungal diversity when the aphids were experiencing fungal infection and starvation stresses, respectively. The β-diversity analyses of the communities showed significant differences among the three host conditions, demonstrating that aphid-associated microbiota could significantly shift in response to varying host conditions. Moreover, some OTUs increased under fungal infection, which potentially increased aphid susceptibility. Presumably, C. obscurus infection contributed to this increase by causing the disintegration of host tissues other than host starvation. In conclusion, understanding the differentiation of aphid microbiota caused by fungal entomopathogens helped facilitate the development of novel pest management strategies. Full article
Show Figures

Figure 1

12 pages, 2035 KiB  
Article
The Early Terrestrial Fungal Lineage of Conidiobolus—Transition from Saprotroph to Parasitic Lifestyle
by Andrii P. Gryganskyi, Yong Nie, Ann E. Hajek, Kathie T. Hodge, Xiao-Yong Liu, Kelsey Aadland, Kerstin Voigt, Iryna M. Anishchenko, Vira B. Kutovenko, Liudmyla Kava, Antonina Vuek, Rytas Vilgalys, Bo Huang and Jason E. Stajich
J. Fungi 2022, 8(8), 789; https://doi.org/10.3390/jof8080789 - 28 Jul 2022
Cited by 15 | Viewed by 3950
Abstract
Fungi of the Conidiobolus group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus Batkoa are very close morphologically to [...] Read more.
Fungi of the Conidiobolus group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus Batkoa are very close morphologically to the Conidiobolus species. Their thalli share similar morphology, and they produce ballistic conidia like closely related entomopathogenic Entomophthoraceae. Ballistic conidia are traditionally considered as an efficient tool in the pathogenic process and an important adaptation to the parasitic lifestyle. Our study aims to reconstruct the phylogeny of this fungal group using molecular and genomic data, ancestral lifestyle and morphological features of the conidiobolus-like group and the direction of their evolution. Based on phylogenetic analysis, some species previously in the family Conidiobolaceae are placed in the new families Capillidiaceae and Neoconidiobolaceae, which each include one genus, and the Conidiobolaceae now includes three genera. Intermediate between the conidiobolus-like groups and Entomophthoraceae, species in the distinct Batkoa clade now belong in the family Batkoaceae. Parasitism evolved several times in the Conidiobolus group and Ancestral State Reconstruction suggests that the evolution of ballistic conidia preceded the evolution of the parasitic lifestyle. Full article
Show Figures

Figure 1

18 pages, 5104 KiB  
Article
Genome-Wide Study of Conidiation-Related Genes in the Aphid-Obligate Fungal Pathogen Conidiobolus obscurus (Entomophthoromycotina)
by Lvhao Zhang, Tian Yang, Wangyin Yu, Xiaojun Wang, Xiang Zhou and Xudong Zhou
J. Fungi 2022, 8(4), 389; https://doi.org/10.3390/jof8040389 - 12 Apr 2022
Cited by 6 | Viewed by 3653
Abstract
Fungi in the Entomophthorales order can cause insect disease and epizootics in nature, contributing to biological pest control in agriculture and forestry. Most Entomophthorales have narrow host ranges, limited to the arthropod family level; however, rare genomic information about host-specific fungi has been [...] Read more.
Fungi in the Entomophthorales order can cause insect disease and epizootics in nature, contributing to biological pest control in agriculture and forestry. Most Entomophthorales have narrow host ranges, limited to the arthropod family level; however, rare genomic information about host-specific fungi has been reported. Conidiation is crucial for entomopathogenic fungi to explore insect resources owing to the important roles of conidia in the infection cycle, such as dispersal, adhesion, germination, and penetration into the host hemocoel. In this study, we analyzed the whole genome sequence of the aphid-obligate pathogen Conidiobolus obscurus strain ARSEF 7217 (Entomophthoromycotina), using Nanopore technology from Biomarker Technologies (Beijing, China). The genome size was 37.6 Mb, and encoded 10,262 predicted genes, wherein 21.3% genes were putatively associated to the pathogen–host interaction. In particular, the serine protease repertoire in C. obscurus exhibited expansions in the trypsin and subtilisin classes, which play vital roles in the fungus’ pathogenicity. Differentially expressed transcriptomic patterns were analyzed in three conidiation stages (pre-conidiation, emerging conidiation, and post-conidiation), and 2915 differentially expressed genes were found to be associated with the conidiation process. Furthermore, a weighted gene co-expression network analysis showed that 772 hub genes in conidiation are mainly involved in insect cuticular component degradation, cell wall/membrane biosynthesis, MAPK signaling pathway, and transcription regulation. Our findings of the genomic and transcriptomic features of C. obscurus help reveal the molecular mechanism of the Entomophthorales pathogenicity, which will contribute to improving fungal applications in pest control. Full article
Show Figures

Figure 1

12 pages, 2228 KiB  
Article
Prediction of Sporulation and Germination by the Spider Mite Pathogenic Fungus Neozygites floridana (Neozygitomycetes: Neozygitales: Neozygitaceae) Based on Temperature, Humidity and Time
by Thiago Castro, Rafael De Andrade Moral, Clarice Garcia Borges Demétrio, Italo Delalibera and Ingeborg Klingen
Insects 2018, 9(2), 69; https://doi.org/10.3390/insects9020069 - 19 Jun 2018
Cited by 3 | Viewed by 5150
Abstract
Neozygites floridana is a pathogenic fungus and natural enemy of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), which is an important polyphagous plant pest. The aim of this study was to reveal and predict what combination of temperature, relative humidity (RH), and [...] Read more.
Neozygites floridana is a pathogenic fungus and natural enemy of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), which is an important polyphagous plant pest. The aim of this study was to reveal and predict what combination of temperature, relative humidity (RH), and time that enables and promotes primary conidia production and capilliconidia formation in N. floridana (Brazilian isolate ESALQ 1420), in both a detached leaf assay mimicking climatic conditions in the leaf boundary layer and in a semi-field experiment. In the detached leaf assay, a significant number of conidia were produced at 90% RH but the highest total number of primary conidia and proportion of capilliconidia was found at 95 and 100% RH at 25 °C. Positive temperature and RH effects were observed and conidia production was highest in the 8 to 12 h interval. The semi-field experiment showed that for a >90% probability of N. floridana sporulation, a minimum of 6 h with RH >90% and 10 h with temperatures >21 °C, or 6 h with temperatures >21 °C and 15 h with RH >90% was needed. Our study identified suitable conditions for primary- and capilliconidia production in this Brazilian N. floridana isolate. This information provides an important base for building models of a Decision Support System (DSS) where this natural enemy may be used as a tool in Integrated Pest Management (IPM) and a base for developing in vivo production systems of N. floridana. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Figure 1

Back to TopTop