Multimodal Blockade of the Renin-Angiotensin System Is Safe and Is a Potential Cancer Treatment for Cats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animals and Eligibility Criteria
2.3. Monitoring
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinter, M.; Jain, R.K. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci. Transl. Med. 2017, 9, eaan5616. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, G.; Muller, D.N. The biology of the (pro) renin receptor. J. Am. Soc. Nephrol. 2010, 21, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Sparks, M.A.; Crowley, S.D.; Gurley, S.B.; Mirotsou, M.; Coffman, T.M. Classical Renin-Angiotensin system in kidney physiology. Compr. Physiol. 2014, 4, 1201–1228. [Google Scholar]
- Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med. 2008, 264, 224–236. [Google Scholar] [CrossRef]
- Ager, E.I.; Neo, J.; Christophi, C. The renin-angiotensin system and malignancy. Carcinogenesis 2008, 29, 1675–1684. [Google Scholar] [CrossRef] [Green Version]
- George, A.J.; Thomas, W.G.; Hannan, R.D. The renin-angiotensin system and cancer: Old dog, new tricks. Nat. Rev. Cancer 2010, 10, 745–759. [Google Scholar] [CrossRef]
- Deshayes, F.; Nahmias, C. Angiotensin receptors: A new role in cancer? Trends Endocrinol. Metab. 2005, 16, 293–299. [Google Scholar] [CrossRef]
- Ino, K.; Shibata, K.; Kajiyama, H.; Yamamoto, E.; Nagasaka, T.; Nawa, A.; Nomura, S.; Kikkawa, F. Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. Br. J. Cancer 2006, 94, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Tai, Z.; Chen, Z.; Zhu, Q.; Bao, L. Clinical applicability of renin-angiotensin system inhibitors in cancer treatment. Am. J. Cancer Res. 2021, 11, 318–336. [Google Scholar]
- Yang, J.; Yang, X.; Gao, L.; Zhang, J.; Yi, C.; Huang, Y. The role of the renin-angiotensin system inhibitors in malignancy: A review. Am. J. Cancer Res. 2021, 11, 884–897. [Google Scholar]
- O’Rawe, M.; Wickremesekera, A.C.; Pandey, R.; Young, D.; Sim, D.; FitzJohn, T.; Burgess, C.; Kaye, A.H.; Tan, S.T. Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: Results of a phase I clinical trial. J. Clin. Neurosci. 2022, 95, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Holmer, S.R.; Hengstenberg, C.; Mayer, B.; Engel, S.; Löwel, H.; Riegger, G.A.; Schunkert, H. Marked suppression of renin levels by beta-receptor blocker in patients treated with standard heart failure therapy: A potential mechanism of benefit from beta-blockade. J. Intern. Med. 2001, 249, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Lu, X.; Peng, K.; Zhou, L.; Li, C.; Wang, W.; Yu, X.; Kohan, D.E.; Zhu, S.F.; Yang, T. COX-2 mediates angiotensin II-induced (pro) renin receptor expression in the rat renal medulla. Am. J. Physiol.-Ren. Physiol. 2014, 307, F25–F32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, F.A.; Duncan, K.G.; Baxter, J.D. Cathepsin B is a prorenin processing enzyme. Hypertension 1996, 27, 514–517. [Google Scholar] [CrossRef]
- Sarfstein, R.; Friedman, Y.; Attias-Geva, Z.; Fishman, A.; Bruchim, I.; Werner, H. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or independent manners. PLoS ONE 2013, 8, e61537. [Google Scholar] [CrossRef] [Green Version]
- Tabatabai, E.; Khazaei, M.; Asgharzadeh, F.; Nazari, S.E.; Shakour, N.; Fiuji, H.; Ziaeemehr, A.; Mostafapour, A.; Parizadeh, M.R.; Nouri, M.; et al. Inhibition of angiotensin II type 1 receptor by candesartan reduces tumor growth and ameliorates fibrosis in colorectal cancer. EXCLI J. 2021, 20, 863–878. [Google Scholar]
- Wypij, J.M. Pilot study of oral metformin in cancer-bearing cats. Vet. Comp. Oncol. 2017, 15, 345–354. [Google Scholar] [CrossRef]
- Bommer, N.X.; Hayes, A.M.; Scase, T.J.; Gunn-Moore, D.A. Clinical features, survival times and COX-1 and COX-2 expression in cats with transitional cell carcinoma of the urinary bladder treated with meloxicam. J. Feline Med. Surg. 2012, 14, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Petrucci, G.N.; Henriques, J.; Lobo, L.; Vilhena, H.; Figueira, A.C.; Canadas-Sousa, A.; Dias-Pereira, P.; Prada, J.; Pires, I.; Queiroga, F.L. Adjuvant doxorubicin vs metronomic cyclophosphamide and meloxicam vs surgery alone for cats with mammary carcinomas: A retrospective study of 137 cases. Vet. Comp. Oncol. 2021, 19, 714–723. [Google Scholar] [CrossRef]
- LeBlanc, A.K.; Atherton, M.; Bentley, R.T.; Boudreau, C.E.; Burton, J.H.; Curran, K.M.; Dow, S.; Giuffrida, M.A.; Kellihan, H.B.; Mason, N.J.; et al. Veterinary Cooperative Oncology Group—Common Terminology Criteria for Adverse Events (VCOG-CTCAE v2) following investigational therapy in dogs and cats. Vet. Comp. Oncol. 2021, 19, 311–352. [Google Scholar] [CrossRef]
- Van Vertloo, L.R.; Carnevale, J.M.; Parsons, R.L.; Rosburg, M.; Millman, S.T. Effects of Waiting Room and Feline Facial Pheromone Experience on Blood Pressure in Cats. Front. Vet. Sci. 2021, 8, 640751. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.; Spann, D.; Elliott, D.; Brondos, A.; Vulliet, R. Evaluation of the oral antihyperglycemic drug metformin in normal and diabetic cats. J. Vet. Intern. Med. 2004, 18, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, J.N.; Gunn-Moore, D.A.; Tasker, S.; Gleadhill, A.; Strehlau, G. Tolerability and efficacy of benazepril in cats with chronic kidney disease. J. Vet. Intern. Med. 2006, 20, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Schober, K.E.; Zientek, J.; Li, X.; Fuentes, V.L.; Bonagura, J.D. Effect of treatment with atenolol on 5-year survival in cats with preclinical (asymptomatic) hypertrophic cardiomyopathy. J. Vet. Cardiol. 2013, 15, 93–104. [Google Scholar] [CrossRef]
- Featherston, T.; Brasch, H.D.; Siljee, S.D.; van Schaijik, B.; Patel, J.; de Jongh, J.; Marsh, R.W.; Itinteang, T.; Tan, S.T. Cancer Stem Cells in Head and Neck Cutaneous Squamous Cell Carcinoma Express Cathepsins. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3042. [Google Scholar] [CrossRef]
- Stokes, W.A.; Molina, E.; McDermott, J.D.; Morgan, R.L.; Bickett, T.; Fakhoury, K.R.; Amini, A.; Karam, S.D. Survival impact of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists in head and neck cancer. Head Neck 2021, 43, 3255–3275. [Google Scholar] [CrossRef]
- Hayes, A.; Adams, V.; Scase, T.; Murphy, S. Survival of 54 cats with oral squamous cell carcinoma in United Kingdom general practice. J. Small Anim. Pract. 2007, 48, 394–399. [Google Scholar] [CrossRef]
- Munday, J.S.; He, Y.; Aberdein, D.; Klobukowska, H.J. Increased p16(CDKN2A), but not p53, immunostaining is predictive of longer survival time in cats with oral squamous cell carcinomas. Vet. J. 2019, 248, 64–70. [Google Scholar] [CrossRef]
- Munday, J.S.; French, A.F.; Gibson, I.R.; Knight, C.G. The Presence of p16CDKN2A Protein Immunostaining within Feline Nasal Planum Squamous Cell Carcinomas Is Associated with an Increased Survival Time and the Presence of Papillomaviral DNA. Vet. Pathol. 2012, 50, 269–273. [Google Scholar] [CrossRef]
Metformin | Benazepril | Meloxicam | Atenolol | Curcumin * | |
---|---|---|---|---|---|
1–7 days | 25 mg | 1 mg | 0.1 mg | 6.25 mg | 80 mg |
8 days to completion | 50 mg | 2 mg | 0.2 mg | 12.5 mg | 160 mg |
Day 0 | Baseline Clinical Examination, Blood Pressure Measurement, CBC, and Serum Biochemistry |
---|---|
Days 0–6 | Cats receive half doses of all medications |
Day 7 | Clinical examination, blood pressure measurement, CBC, and serum biochemistry |
Day 7–13 | Cats start on full doses of all medications |
Day 14 | Clinical examination, blood pressure measurement, CBC, and serum biochemistry |
Day 14–27 | Continue on full doses of medications |
Day 28 | Clinical examination, blood pressure measurement, CBC, and serum biochemistry |
Day 28–41 | Continue on full doses of medications |
Day 42 | Clinical examination, blood pressure measurement, CBC, and serum biochemistry |
Day 42–55 | Continue on full doses of medications |
Day 56 | Clinical examination, blood pressure measurement, CBC, and serum biochemistry |
Day 56- | Optional continuing on full or partial medications |
Age/Sex | Location of Squamous Cell Carcinoma | Time in Trial (Weeks) | Outcome | |
---|---|---|---|---|
Cat 1 | 10/FS | Oral | 4 | Withdrew due to difficulties in administering the medications |
Cat 2 | 10/FS | External nose | 5 | Cat euthanatized due to cancer progression |
Cat 3 | 9/FS | Bilateral eyelid | 10 | Full multimodal therapy given for 10 weeks then only meloxicam, benazepril, and curcumin. Cat euthanatized due to cancer progression 25 weeks after enrolment in study |
Cat 4 | 14/MC | Oral | 5 | Cat euthanatized due to cancer progression |
Cat 5 | 13/MC | Oral | 6 | Cat euthanatized after developing aortic thromboembolism |
Cat 6 | 11/FS | Eyelid | 32 * | No evidence of cancer progression after receiving multimodal therapy for 32 weeks |
Weight | Systolic Blood Pressure (mm/Hg) | Urea (5.7–12.9) | ALT (0–100) | PCV% (0.24–0.45) | |
---|---|---|---|---|---|
Cat 1 | |||||
Baseline | 3.92 | 194 | 11.1 | 45 | 0.31 |
Week 1 | 3.96 | 177 | 11.5 | 47 | 0.31 |
Week 2 | 3.95 | 157 | 11.4 | 55 | 0.28 |
Week 4 | 3.95 | 135 | 9.3 | 53 | 0.35 |
Cat 2 | |||||
Baseline | 5.4 | 125 | 9.3 | 69 | 0.34 |
Week 1 | 5.43 | 166 | 10.1 | 47 | 0.32 |
Week 2 | 5.36 | 167 | 10.2 | 36 | 0.25 |
Week 4 | 5.27 | 155 | 9.1 | 41 | 0.32 |
Cat 3 | |||||
Baseline | 4.01 | 187 | 9.7 | 45 | 0.44 |
Week 1 | 4.09 | 170 | 9.5 | 51 | 0.43 |
Week 2 | 4.67 | 209 | 9.8 | 56 | 0.46 |
Week 4 | 4.14 | 190 | 9.0 | 49 | 0.46 |
Week 6 | 4.1 | 210 | 7.7 | 48 | 0.49 |
Week 8 | 3.99 | 210 | 10.1 | 44 | 0.46 |
Cat 4 | |||||
Baseline | 3.85 | 160 | NA | NA | NA |
Week 1 | 3.85 | 160 | 7.9 | 32 | 0.50 |
Week 2 | 3.85 | 180 | 7.6 | 35 | 0.47 |
Week 4 | 3.84 | 184 | 8.8 | 30 | 0.40 |
Cat 5 | |||||
Baseline | 5.1 | 201 | 12.2 | 60 | 0.32 |
Week 1 | 5.16 | 164 | 12.0 | 55 | 0.32 |
Week 2 | 5.08 | 185 | 12.9 | 69 | 0.24 |
Week 4 | 5.06 | 153 | 11.0 | 89 | 0.23 |
Cat 6 | |||||
Baseline | 6.44 | 150 | 8.4 | 62 | 0.47 |
Week 1 | 6.47 | 240 | 10.8 | 160 * | 0.46 |
Week 2 | 6.47 | 164 | 10.6 | 86 | 0.50 |
Week 4 | 6.5 | 175 | 11.9 | 66 | 0.43 |
Week 6 | 6.36 | 140 | 11.5 | 45 | 0.46 |
Week 8 | 6.39 | 143 | 9.2 | 56 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munday, J.S.; Odom, T.; Dittmer, K.E.; Wetzel, S.; Hillmer, K.; Tan, S.T. Multimodal Blockade of the Renin-Angiotensin System Is Safe and Is a Potential Cancer Treatment for Cats. Vet. Sci. 2022, 9, 411. https://doi.org/10.3390/vetsci9080411
Munday JS, Odom T, Dittmer KE, Wetzel S, Hillmer K, Tan ST. Multimodal Blockade of the Renin-Angiotensin System Is Safe and Is a Potential Cancer Treatment for Cats. Veterinary Sciences. 2022; 9(8):411. https://doi.org/10.3390/vetsci9080411
Chicago/Turabian StyleMunday, John S., Thomas Odom, Keren E. Dittmer, Sarah Wetzel, Katharina Hillmer, and Swee T. Tan. 2022. "Multimodal Blockade of the Renin-Angiotensin System Is Safe and Is a Potential Cancer Treatment for Cats" Veterinary Sciences 9, no. 8: 411. https://doi.org/10.3390/vetsci9080411