The Impact of Selective Dry Cow Therapy Adopted in a Brazilian Farm on Bacterial Diversity and the Abundance of Quarter Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Herd Selection and Cow Enrollment
2.2. Farm Protocols for Treatment and Milk Sampling
2.3. Conventional Microbiology and Species Confirmation by MALDI-TOF MS
2.4. Mammary Gland Health Indicators Definition
2.5. DNA Extraction, Library Preparation, and Sequencing
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. Frequency of Mastitis-Causing Pathogens on the Day of Drying-off and Day 7 after Calving
3.2. Alpha and Beta Diversity Analysis
3.3. Taxonomic Composition
3.4. Differential Abundance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, A.P.; Godden, S.M.; Royster, E.; Zuidhof, S.; Miller, B.; Sorg, J. Randomized noninferiority study evaluating the efficacy of 2 commercial dry cow mastitis formulations. J. Dairy Sci. 2016, 99, 593–607. [Google Scholar] [CrossRef] [Green Version]
- Freu, G.; Tomazi, T.; Monteiro, C.P.; Barcelos, M.M.; Alves, B.G.; Santos, M.V.d. Internal Teat Sealant Administered at Drying off Reduces Intramammary Infections during the Dry and Early Lactation Periods of Dairy Cows. Animals 2020, 10, 1522. [Google Scholar] [CrossRef]
- Sneeringer, S.; MacDonald, J.M.; Key, N.; McBride, W.D.; Mathews, K. Economics of Antibiotic Use in U.S. Livestock Production; Economic Research Report Number; United States Department of Agriculture (USDA): Washington, DC, USA, 2015.
- Francoz, D.; Wellemans, V.; Roy, J.P.; Lacasse, P.; Ordonez-Iturriaga, A.; Labelle, F.; Dufour, S. Non-antibiotic approaches at drying-off for treating and preventing intramammary infections: A protocol for a systematic review and meta-analysis. Anim. Health Res. Rev. 2016, 17, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Ganda, E.K.; Bisinotto, R.S.; Lima, S.F.; Kronauer, K.; Decter, D.H.; Oikonomou, G.; Schukken, Y.H.; Bicalho, R.C. Longitudinal metagenomic profiling of bovine milk to assess the impact of intramammary treatment using a third-generation cephalosporin. Sci. Rep. 2016, 6, 37565. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Tackling drug-resistant infections globally: Final report and recommendations. Rev. Antimicrob. Resist. 2016, 1, 69–75. [Google Scholar]
- Cameron, M.; Keefe, G.P.; Roy, J.P.; Stryhn, H.; Dohoo, I.R.; McKenna, S.L. Evaluation of selective dry cow treatment following on-farm culture: Milk yield and somatic cell count in the subsequent lactation. J. Dairy Sci. 2015, 98, 2427–2436. [Google Scholar] [CrossRef] [Green Version]
- Cameron, M.; McKenna, S.L.; MacDonald, K.A.; Dohoo, I.R.; Roy, J.P.; Keefe, G.P. Evaluation of selective dry cow treatment following on-farm culture: Risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation. J. Dairy Sci. 2014, 97, 270–284. [Google Scholar] [CrossRef]
- Scherpenzeel, C.G.; den Uijl, I.E.; van Schaik, G.; Olde Riekerink, R.G.; Keurentjes, J.M.; Lam, T.J. Evaluation of the use of dry cow antibiotics in low somatic cell count cows. J. Dairy Sci. 2014, 97, 3606–3614. [Google Scholar] [CrossRef] [Green Version]
- McDougall, S.; Parker, K.I.; Heuer, C.; Compton, C.W. A review of prevention and control of heifer mastitis via non-antibiotic strategies. Vet. Microbiol. 2009, 134, 177–185. [Google Scholar] [CrossRef]
- Bonsaglia, E.C.R.; Gomes, M.S.; Canisso, I.F.; Zhou, Z.; Lima, S.F.; Rall, V.L.M.; Oikonomou, G.; Bicalho, R.C.; Lima, F.S. Milk microbiome and bacterial load following dry cow therapy without antibiotics in dairy cows with healthy mammary gland. Sci. Rep. 2017, 7, 8067. [Google Scholar] [CrossRef] [Green Version]
- Rabiee, A.R.; Lean, I.J. The effect of internal teat sealant products (Teatseal and Orbeseal) on intramammary infection, clinical mastitis, and somatic cell counts in lactating dairy cows: A meta-analysis. J. Dairy Sci. 2013, 96, 6915–6931. [Google Scholar] [CrossRef] [PubMed]
- Woolford, M.W.; Williamson, J.H.; Day, A.M.; Copeman, P.J.A. The prophylactic effect of a teat sealer on bovine mastitis during the dry period and the following lactation. New Zealand Vet. J. 1998, 46, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.I.; Compton, C.; Anniss, F.M.; Weir, A.; Heuer, C.; McDougall, S. Subclinical and clinical mastitis in heifers following the use of a teat sealant precalving. J. Dairy Sci. 2007, 90, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Berry, E.A.; Hillerton, J.E. The effect of an intramammary teat seal on new intramammary infections. J. Dairy Sci. 2002, 85, 2512–2520. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M.J. Randomized controlled non-inferiority trial investigating the effect of 2 selective dry-cow therapy protocols on antibiotic use at dry-off and dry period intramammary infection dynamics. J. Dairy Sci. 2020, 103, 6473–6492. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Machado, V.S.; Santisteban, C.; Schukken, Y.H.; Bicalho, R.C. Microbial diversity of bovine mastitic milk as described by pyrosequencing of metagenomic 16s rDNA. PLoS ONE 2012, 7, e47671. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, G.; Bicalho, M.L.; Meira, E.; Rossi, R.E.; Foditsch, C.; Machado, V.S.; Teixeira, A.G.; Santisteban, C.; Schukken, Y.H.; Bicalho, R.C. Microbiota of cow’s milk; distinguishing healthy, sub-clinically and clinically diseased quarters. PLoS ONE 2014, 9, e85904. [Google Scholar] [CrossRef] [Green Version]
- NMC. Laboratory Handbook on Bovine Mastitis; NMC: Eau Claire, WI, USA, 2017; p. 148. [Google Scholar]
- Barcelos, M.M.; Martins, L.; Grenfell, R.C.; Juliano, L.; Anderson, K.L.; dos Santos, M.V.; Gonçalves, J.L. Comparison of standard and on-plate extraction protocols for identification of mastitis-causing bacteria by MALDI-TOF MS. Braz. J. Microbiol. 2019, 50, 849–857. [Google Scholar] [CrossRef]
- Schloss, P.D.; McBain, A.J. Reintroducing mothur: 10 Years Later. Appl. Environ. Microbiol. 2020, 86, e02343-19. [Google Scholar] [CrossRef] [Green Version]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016, 15, 081257. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P.; et al. Vegan: Community Ecology Package. 2016. Available online: https://CRAN.R-project.org/package=vegan (accessed on 8 July 2021).
- Venables, W.; Ripley, B. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Lin, H.; Peddada, S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 18–22. [Google Scholar]
- OECD. Stemming the Superbug Tide: Just A Few Dollars More; OECD Health Policy Studies, OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Gonçalves, J.L.; Kamphuis, C.; Martins, C.M.M.R.; Barreiro, J.R.; Tomazi, T.; Gameiro, A.H.; Hogeveen, H.; dos Santos, M.V. Bovine subclinical mastitis reduces milk yield and economic return. Livest. Sci. 2018, 210, 25–32. [Google Scholar] [CrossRef]
- Gonçalves, J.L.; Kamphuis, C.; Vernooij, H.; Araújo, J.P.; Grenfell, R.C.; Juliano, L.; Anderson, K.L.; Hogeveen, H.; dos Santos, M.V. Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows. Vet. J. 2020, 262, 105473. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.; Tomazi, T.; Barreiro, J.R.; Beuron, D.C.; Arcari, M.A.; Lee, S.H.; Martins, C.M.; Araujo Junior, J.P.; dos Santos, M.V. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. 2016, 209, 87–92. [Google Scholar] [CrossRef]
- Tomazi, T.; Goncalves, J.L.; Barreiro, J.R.; Arcari, M.A.; Dos Santos, M.V. Bovine subclinical intramammary infection caused by coagulase-negative staphylococci increases somatic cell count but has no effect on milk yield or composition. J. Dairy Sci. 2015, 98, 3071–3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnitt, A.; Lienen, T.; Wichmann-Schauer, H.; Tenhagen, B.A. The occurrence of methicillin-resistant non-aureus staphylococci in samples from cows, young stock, and the environment on German dairy farms. J. Dairy Sci. 2021, 104, 4604–4614. [Google Scholar] [CrossRef] [PubMed]
- Condas, L.A.Z.; De Buck, J.; Nobrega, D.B.; Carson, D.A.; Naushad, S.; De Vliegher, S.; Zadoks, R.N.; Middleton, J.R.; Dufour, S.; Kastelic, J.P.; et al. Prevalence of non-aureus staphylococci species causing intramammary infections in Canadian dairy herds. J. Dairy Sci. 2017, 100, 5592–5612. [Google Scholar] [CrossRef] [Green Version]
- Nobrega, D.B.; Naushad, S.; Naqvi, S.A.; Condas, L.A.Z.; Saini, V.; Kastelic, J.P.; Luby, C.; De Buck, J.; Barkema, H.W. Prevalence and Genetic Basis of Antimicrobial Resistance in Non-aureus Staphylococci Isolated from Canadian Dairy Herds. Front. Microbiol. 2018, 9, 256. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.; Piepers, S.; Supré, K.; De Vliegher, S. Antimicrobial consumption on dairy herds and its association with antimicrobial inhibition zone diameters of non-aureus staphylococci and Staphylococcus aureus isolated from subclinical mastitis. J. Dairy Sci. 2018, 101, 3311–3322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcellato, D.; Meisal, R.; Bombelli, A.; Narvhus, J.A. A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis. Sci. Rep. 2020, 10, 21608. [Google Scholar] [CrossRef] [PubMed]
- Rainard, P. Mammary microbiota of dairy ruminants: Fact or fiction? Vet. Res. 2017, 48, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derakhshani, H.; Fehr, K.B.; Sepehri, S.; Francoz, D.; De Buck, J.; Barkema, H.W.; Plaizier, J.C.; Khafipour, E. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J. Dairy Sci. 2018, 101, 10605–10625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taponen, S.; McGuinness, D.; Hiitiö, H.; Simojoki, H.; Zadoks, R.; Pyörälä, S. Bovine milk microbiome: A more complex issue than expected. Vet. Res. 2019, 50, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, S.A.; Hernandez, L.L.; Skarlupka, J.H.; Walker, T.M.; Suen, G.; Ruegg, P.L. A Cohort Study of the Milk Microbiota of Healthy and Inflamed Bovine Mammary Glands From Dryoff Through 150 Days in Milk. Front. Vet. Sci. 2018, 5, 247. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, J.S.; Gorden, P.J.; Munro, D.; Rong, R.; Dong, Q.; Plummer, P.J.; Wang, C.; Phillips, G.J. Bacterial Community Profiling of Milk Samples as a Means to Understand Culture-Negative Bovine Clinical Mastitis. PLoS ONE 2013, 8, e61959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantoja, J.C.F.; Hulland, C.; Ruegg, P.L. Dynamics of somatic cell counts and intramammary infections across the dry period. Prev. Vet. Med. 2009, 90, 43–54. [Google Scholar] [CrossRef] [PubMed]
Cow Identification | Treatments 1 | Culture Results on the Day of Drying-Off | Culture Results at Post-Calving | Categories | |
---|---|---|---|---|---|
Day 0 | Day 7 | Day 14 | |||
12272 | ITS alone | Staphylococcus haemolyticus | Negative | Negative | Cured 2 |
12326 | ITS alone | Staphylococcus haemolyticus | Negative | Negative | Cured |
12289 | ITS alone | Staphylococcus haemolyticus | Negative | Negative | Cured |
11747 | ITS alone | Staphylococcus simulans | Staphylococcus simulans | Staphylococcus simulans | Persistent 3 |
12525 | ITS alone | Negative | Negative | Negative | Healthy 4 |
12440 | ITS alone | Negative | Negative | Aecococcus viridans | NIMI 5 |
12505 | ITS alone | Negative | Negative | Negative | Healthy |
12441 | ITS alone | Negative | Negative | Aerococcus viridans | NIMI |
12449 | ITS alone | Negative | Negative | Negative | Healthy |
12399 | ITS alone | Negative | Staphylococcus simulans | Staphylococcus simulans | NIMI |
12379 | DCT + ITS | Lactococcus garvieae | Negative | Negative | Cured |
12324 | DCT + ITS | Negative | Aerococcus viridans | Negative | NIMI |
11343 | DCT + ITS | Negative | Negative | Negative | Cured |
12062 | DCT + ITS | Negative | Negative | Negative | Cured |
12105 | DCT + ITS | Negative | Negative | Negative | Cured |
11608 | DCT + ITS | Negative | Negative | Negative | Healthy |
12114 | DCT + ITS | Negative | Acinetobacter townen | Negative | Healthy |
12164 | DCT + ITS | Negative | Negative | Negative | Healthy |
12458 | DCT + ITS | Negative | Negative | Negative | Healthy |
12019 | DCT + ITS | Negative | Negative | Negative | Healthy |
Treatment | Category | Time | n | Sequences after Normalization | ||
---|---|---|---|---|---|---|
Total | Mean | SD | ||||
ITS 1 | Healthy 3 | 0 d | 3 | 22,262.00 | 7420.67 | 201.10 |
7 d | 3 | 22,326.00 | 7442.00 | 199.73 | ||
14 d | 3 | 21,801.00 | 7267.00 | 351.10 | ||
Cured 4 | 0 d | 3 | 22,246.00 | 7415.33 | 205.51 | |
7 d | 3 | 22,058.00 | 7352.67 | 94.04 | ||
14 d | 3 | 21,715.00 | 7238.33 | 253.68 | ||
Persistent 5 | 0 d | 1 | 6808.00 | 6808.00 | 0.00 | |
7 d | 1 | 7306.00 | 7306.00 | 0.00 | ||
14 d | 1 | 9309.00 | 9309.00 | 0.00 | ||
New infection 6 | 0 d | 3 | 21,905.00 | 7301.67 | 68.07 | |
7 d | 3 | 21,639.00 | 7213.00 | 582.29 | ||
14 d | 3 | 21,590.00 | 7196.67 | 294.98 | ||
DCT 2 + ITS | Healthy | 0 d | 5 | 36,906.00 | 7381.20 | 237.57 |
7 d | 5 | 36,623.00 | 7324.60 | 172.23 | ||
14 d | 5 | 36,479.00 | 7295.80 | 467.70 | ||
Cured | 0 d | 4 | 28,734.00 | 7183.50 | 201.02 | |
7 d | 4 | 28,256.00 | 7064.00 | 253.70 | ||
14 d | 4 | 28,430.00 | 7107.50 | 170.77 | ||
Persistent | 0 d | 1 | 6984.00 | 6984.00 | 0.00 | |
7 d | 1 | 7292.00 | 7292.00 | 0.00 | ||
14 d | 1 | 5757.00 | 5757.00 | 0.00 |
Category | Index | Factor | numDF | denDF | F. Value | p-Value | Padj (Method = BH Aka FDR 1) |
---|---|---|---|---|---|---|---|
Healthy 2 | Sobs 4 | Treatment | 1 | 6 | 0.316 | 0.595 | 0.649 |
Time | 2 | 12 | 3.080 | 0.083 | 0.146 | ||
Treatment:Time | 2 | 12 | 2.883 | 0.095 | 0.146 | ||
InvSimpson 5 | Treatment | 1 | 6 | 4.740 | 0.072 | 0.146 | |
Time | 2 | 12 | 0.350 | 0.712 | 0.712 | ||
Treatment:Time | 2 | 12 | 0.555 | 0.588 | 0.649 | ||
Shannon 6 | Treatment | 1 | 6 | 14.556 | 0.009 | 0.026 | |
Time | 2 | 12 | 0.681 | 0.525 | 0.649 | ||
Treatment:Time | 2 | 12 | 2.851 | 0.097 | 0.146 | ||
Cured 3 | Sobs | Treatment | 1 | 5 | 0.519 | 0.503 | 0.503 |
Time | 2 | 10 | 4.729 | 0.036 | 0.072 | ||
Treatment:Time | 2 | 10 | 15.282 | 0.001 | 0.002 | ||
InvSimpson | Treatment | 1 | 5 | 95.276 | 0.000 | 0.001 | |
Time | 2 | 10 | 2.240 | 0.157 | 0.236 | ||
Treatment:Time | 2 | 10 | 1.875 | 0.203 | 0.244 | ||
Shannon | Treatment | 1 | 5 | 1.649 | 0.255 | 0.279 | |
Time | 2 | 10 | 2.802 | 0.108 | 0.185 | ||
Treatment:Time | 2 | 10 | 2.004 | 0.185 | 0.244 |
Category | Index | Factor | Pairwise | Ratio | SE | df | Null | t.Ratio | p-Value |
---|---|---|---|---|---|---|---|---|---|
Healthy 1 | Shannon 3 | Treatment | ITS vs. DCT + ITS | 1.00 | 0.00 | 6.00 | 1.00 | −0.91 | 0.40 |
Cured 2 | Sobs 4 | Treatment * Time 5 | ITS 0 d vs. DCT + ITS 0 d | 1.20 | 0.08 | 5.00 | 1.00 | 2.81 | 0.20 |
ITS 0 d vs. ITS 7 d | 1.15 | 0.06 | 10.00 | 1.00 | 2.57 | 0.19 | |||
ITS 0 d vs. DCT + ITS 7 d | 0.99 | 0.06 | 5.00 | 1.00 | −0.11 | 1.00 | |||
ITS 0 d vs. ITS 14 d | 1.21 | 0.10 | 10.00 | 1.00 | 2.30 | 0.28 | |||
ITS 0 d vs. DCT + ITS 14 d | 1.14 | 0.09 | 5.00 | 1.00 | 1.67 | 0.60 | |||
DCT+ITS 0 d vs. ITS 7 d | 0.95 | 0.06 | 5.00 | 1.00 | −0.80 | 0.95 | |||
DCT+ITS 0 d vs. DCT + ITS 7 d | 0.83 | 0.04 | 10.00 | 1.00 | −4.11 | 0.02 | |||
DCT+ITS 0 d vs. ITS 14 d | 1.01 | 0.08 | 5.00 | 1.00 | 0.08 | 1.00 | |||
DCT+ITS 0 d vs. DCT + ITS 14 d | 0.95 | 0.07 | 10.00 | 1.00 | −0.76 | 0.97 | |||
ITS 07 d vs. DCT + ITS 7 d | 0.86 | 0.04 | 5.00 | 1.00 | 2.80 | 0.20 | |||
InvSimpson 5 | Treatment | ITS vs. DCT + ITS | 0.96 | 0.10 | 5.00 | 1.00 | −0.38 | 0.72 |
Category | Factor | Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr (>F) |
---|---|---|---|---|---|---|---|
Healthy 1 | Treatment | 1 | 0.01 | 0.01 | 0.49 | 0.02 | 0.97 |
Time | 2 | 0.05 | 0.02 | 0.78 | 0.07 | 0.75 | |
Treatment * Time 3 | 2 | 0.06 | 0.03 | 1.06 | 0.10 | 0.34 | |
Residuals | 17 | 0.49 | 0.03 | - | 0.80 | - | |
Total | 22 | 0.61 | - | - | 1.00 | - | |
Cured 2 | Treatment | 1 | 0.04 | 0.04 | 1.39 | 0.07 | 0.15 |
Time | 2 | 0.06 | 0.03 | 1.01 | 0.10 | 0.41 | |
Treatment * Time | 2 | 0.05 | 0.03 | 0.90 | 0.09 | 0.58 | |
Residuals | 15 | 0.46 | 0.03 | - | 0.74 | - | |
Total | 20 | 0.62 | - | - | 1.00 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goncalves, J.L.; Young, J.; Leite, R.d.F.; Fidelis, C.E.; Trevisoli, P.A.; Coutinho, L.L.; Silva, N.C.C.; Cue, R.I.; Rall, V.L.M.; dos Santos, M.V. The Impact of Selective Dry Cow Therapy Adopted in a Brazilian Farm on Bacterial Diversity and the Abundance of Quarter Milk. Vet. Sci. 2022, 9, 550. https://doi.org/10.3390/vetsci9100550
Goncalves JL, Young J, Leite RdF, Fidelis CE, Trevisoli PA, Coutinho LL, Silva NCC, Cue RI, Rall VLM, dos Santos MV. The Impact of Selective Dry Cow Therapy Adopted in a Brazilian Farm on Bacterial Diversity and the Abundance of Quarter Milk. Veterinary Sciences. 2022; 9(10):550. https://doi.org/10.3390/vetsci9100550
Chicago/Turabian StyleGoncalves, Juliano L., Juliana Young, Renata de F. Leite, Carlos E. Fidelis, Priscila A. Trevisoli, Luiz L. Coutinho, Nathália C. C. Silva, Roger I. Cue, Vera Lucia Mores Rall, and Marcos V. dos Santos. 2022. "The Impact of Selective Dry Cow Therapy Adopted in a Brazilian Farm on Bacterial Diversity and the Abundance of Quarter Milk" Veterinary Sciences 9, no. 10: 550. https://doi.org/10.3390/vetsci9100550
APA StyleGoncalves, J. L., Young, J., Leite, R. d. F., Fidelis, C. E., Trevisoli, P. A., Coutinho, L. L., Silva, N. C. C., Cue, R. I., Rall, V. L. M., & dos Santos, M. V. (2022). The Impact of Selective Dry Cow Therapy Adopted in a Brazilian Farm on Bacterial Diversity and the Abundance of Quarter Milk. Veterinary Sciences, 9(10), 550. https://doi.org/10.3390/vetsci9100550