Lactococcosis a Re-Emerging Disease in Aquaculture: Disease Significant and Phytotherapy
Abstract
:1. Introduction
2. Diseases Caused by Lactococcus Members in Aquaculture
2.1. Disease Caused by L. garvieae
2.1.1. Current Problems Associated with L. garvieae Infection
Frequent Re-Infection and Temporary Treatment
L. garvieae as Zoonotic Disease
Economic Significant
2.2. Diseases Caused by Other Species of Lactococcus Genus
3. Phytotherapy of Lactococcosis in Aquaculture
3.1. In Vitro Studies
3.2. In Vivo Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Rodger, H.D. Fish Disease Causing Economic Impact in Global Aquaculture. In Fish Vaccines; Adams, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–34. [Google Scholar]
- Romero, J.; Feijoó, C.G.; Navarrete, P. Antibiotics in Aquaculture—Use, Abuse and Alternatives. In Health and Environment in Aquaculture; Carvalho, E., David, G.S., da Silva, R.J., Eds.; IntechOpen: Rijeka, Croatia, 2012; pp. 159–198. [Google Scholar]
- Tavares-Dias, M.; Martins, M.L. An overall estimation of losses caused by diseases in the Brazilian fish farms. J. Parasit. Dis. 2017, 41, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Eldar, A.; Ghittino, C.; Asanta, L.; Bozzetta, E.; Goria, M.; Prearo, M.; Bercovier, H. Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr. Microbiol. 1996, 32, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Meyburgh, C.; Bragg, R.; Boucher, C. Lactococcus garvieae: An emerging bacterial pathogen of fish. Dis. Aquat. Org. 2017, 123, 67–79. [Google Scholar] [CrossRef]
- Agnew, W.; Barnes, A.C. Streptococcus iniae: An aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet. Microbiol. 2007, 122, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.; Nougayrede, P.; Eldar, A.; Sochon, E.; De Kinkelin, P. Vagococcus salmoninarum, a bacterium of pathological significance in rainbow trout Oncorhynchus mykiss farming. Dis. Aquat. Org. 1997, 30, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Wallbanks, S.; Martinez-Murcia, A.; Fryer, J.; Phillips, B.; Collins, M. 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. Int. J. Syst. Evol. Microbiol. 1990, 40, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Soltani, M.; Mohamadian, S.; Rouholahi, S.; Soltani, E.; Rezvani, S. Shirazi thyme (Zataria multiflora) essential oil suppresses the expression of PavA and Hly genes in Lactococcus garvieae, the causative agent of lactococcosis in farmed fish. Aquaculture 2015, 442, 74–77. [Google Scholar] [CrossRef]
- Soltani, M.; Nikbakht, G.; Ebrahimzadeh Moussavi, H.; Ahmadzadeh, N. Epizootic outbreak of lactococcosis caused by Lactococcus garvieae in farmed rainbow trout (Oncorhynchus mykiss) in Iran. Bull. Eur. Assoc. Fish Pathol. 2008, 28, 95–106. [Google Scholar]
- Karsidani, S.H.; Soltani, M.; Nikbakhat-Brojeni, G.; Ghasemi, M.; Skall, H.F. Molecular epidemiology of zoonotic streptococcosis/lactococcosis in rainbow trout (Oncorhynchus mykiss) aquaculture in Iran. Iran. J. Microbiol. 2010, 2, 198–209. [Google Scholar]
- Saraoui, T.; Leroi, F.; Björkroth, J.; Pilet, M.-F. Lactococcus piscium: A psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food—A review. J. Appl. Microbiol. 2016, 121, 907–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, C.; Sebbane, F.; Poiret, S.; Goudercourt, D.; Dewulf, J.; Mullet, C.; Simonet, M.; Pot, B. Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine 2009, 27, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.J.; Ward, L.J.; Leahy, S.C. Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures. Genome Biol. Evol. 2010, 2, 729–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarika, A.; Lipton, A.; Aishwarya, M.; Dhivya, R. Isolation of a bacteriocin-producing Lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures. Appl. Biochem. Biotechnol. 2012, 167, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the Safety and Efficacy of Lactococcus lactis (NCIMB 30160) as a Silage Additive for All Species. Available online: http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/2366.pdf (accessed on 23 October 2015).
- Boucher, I.; Vadeboncoeur, C.; Moineau, S. Characterization of genes involved in the metabolism of α-galactosides by Lactococcus raffinolactis. Appl. Environ. Microbiol. 2003, 69, 4049–4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alomar, J.; Loubière, P.; Delbes, C.; Nouaille, S.; Montel, M.-C. Effect of Lactococcus garvieae, Lactococcus lactis and Enterococcus faecalis on the behaviour of Staphylococcus aureus in microfiltered milk. Food Microbiol. 2008, 25, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Rahkila, R.; Nieminen, T.; Johansson, P.; Säde, E.; Björkroth, J. Characterization and evaluation of the spoilage potential of Lactococcus piscium isolates from modified atmosphere packaged meat. Int. J. Food Microbiol. 2012, 156, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, S.; Pilet, M.-F.; Gigout, F.; Prévost, H.; Leroi, F. Selection and evaluation of seafood-borne psychrotrophic lactic acid bacteria as inhibitors of pathogenic and spoilage bacteria. Food Microbiol. 2009, 26, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Eldar, A.A.; Ghittino, C. Lactococcus garvieae and Streptococcus iniae infections in rainbow trout Oncorhynchus mykiss: Similar, but different diseases. Dis. Aquat. Org. 1999, 36, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-H.; Hung, S.-W.; Shyu, C.-L.; Lin, C.-C.; Liu, P.-C.; Chang, C.-H.; Shia, W.-Y.; Cheng, C.-F.; Lin, S.-L.; Tu, C.-Y. Lactococcus lactis subsp. lactis infection in Bester sturgeon, a cultured hybrid of Huso huso × Acipenser ruthenus, in Taiwan. Res. Vet. Sci. 2012, 93, 581–588. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A.; Austin, B.; Austin, D.A. Bacterial Fish Pathogens; Springer International Publishing: Cham, Switzerland, 2016; Volume 481. [Google Scholar]
- Ortega, C.; Irgang, R.; Valladares-Carranza, B.; Collarte, C.; Avendaño-Herrera, R. First identification and characterization of Lactococcus garvieae isolated from rainbow trout (Oncorhynchus mykiss) cultured in mexico. Animals 2020, 10, 1609. [Google Scholar] [CrossRef]
- Hirono, I.; Yamashita, H.; Park, C.I.; Yoshida, T.; Aoki, T. Identification of genes in a KG—Phenotype of Lactococcus garvieae, a fish pathogenic bacterium, whose proteins react with antiKG—Rabbit serum. Microb. Pathog. 1999, 27, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Bragg, R.; Broere, J. Streptococcosis in rainbow trout in South Africa. Bull. Eur. Assoc. Fish Pathol. 1986, 6, 89–91. [Google Scholar]
- Bekker, A.; Hugo, C.; Albertyn, J.; Boucher, C.; Bragg, R. Pathogenic Gram-positive cocci in South African rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2011, 34, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Vendrell, D.; Balcázar, J.L.; Ruiz-Zarzuela, I.; De Blas, I.; Gironés, O.; Múzquiz, J.L. Lactococcus garvieae in fish: A review. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Lin, C.; Lee, Y. Lactococcus garvieae infection of cultured rainbow trout, Oncorhynchus mykiss in Taiwan and associated biophysical characteristics and histopathology. Eur. Assoc. Fish Pathol. 2002, 22, 319–327. [Google Scholar]
- Avci, H.; Birincioglu, S.; Tanrikul, T.; Epikmen, E.; Metin, N.; Avsever, M. Experimental Lactococcus garvieae infection in rainbow trout, Oncorhynchus mykiss, Walbaum 1792: A comparative histopathological and immunohistochemical study. J. Fish Dis. 2014, 37, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Lin, Y.-D.; Liaw, L.-L.; Wang, P.-C. Lactococcus garvieae infection in the giant freshwater prawn Macrobranchium rosenbergii confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis. Aquat. Org. 2001, 45, 45–52. [Google Scholar] [CrossRef]
- Algöet, M.; Bayley, A.; Roberts, E.; Feist, S.; Wheeler, R.; Verner-Jeffreys, D. Susceptibility of selected freshwater fish species to a UK Lactococcus garvieae isolate. J. Fish Dis. 2009, 32, 825–834. [Google Scholar] [CrossRef]
- Türe, M.; Haliloğlu, H.İ.; Altuntaş, C.; Boran, H.; Kutlu, İ. Comparison of experimental susceptibility of rainbow trout (Oncorhynchus mykiss), turbot (Psetta maxima), black sea trout (Salmo trutta labrax) and sea bass (Dicentrarchus labrax) to Lactococcus garvieae. Turk. J. Fish. Aquat. Sci. 2014, 14, 507–513. [Google Scholar] [CrossRef]
- Kusuda, R.; Hamaguchi, M. Extracellular and intracellular toxins of Streptococcus sp. isolated from yellowtail. Bull. Eur. Assoc. Fish Pathol. 1988, 8, 9–10. [Google Scholar]
- Aguado-Urda, M.; López-Campos, G.H.; Gibello, A.; Cutuli, M.T.; López-Alonso, V.; Fernández-Garayzábal, J.F.; Blanco, M.M. Genome sequence of Lactococcus garvieae 8831, isolated from rainbow trout lactococcosis outbreaks in Spain. J. Bacteriol. 2011, 193, 4263–4264. [Google Scholar] [CrossRef] [Green Version]
- Holbourn, K.P.; Shone, C.C.; Acharya, K. A family of killer toxins. FEBS J. 2006, 273, 4579–4593. [Google Scholar] [CrossRef]
- Ture, M.; Altinok, I. Detection of putative virulence genes of Lactococcus garvieae. Dis. Aquat. Org. 2016, 119, 59–66. [Google Scholar] [CrossRef]
- Colorni, A.; Ravelo, C.; Romalde, J.; Toranzo, A.; Diamant, A. Lactococcus garvieae in wild Red Sea wrasse Coris aygula (Labridae). Dis. Aquat. Org. 2003, 56, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Kawanishi, M.; Yoshida, T.; Yagashiro, S.; Kijima, M.; Yagyu, K.; Nakai, T.; Murakami, M.; Morita, H.; Suzuki, S. Differences between Lactococcus garvieae isolated from the genus Seriola in Japan and those isolated from other animals (trout, terrestrial animals from Europe) with regard to pathogenicity, phage susceptibility and genetic characterization. J. Appl. Microbiol. 2006, 101, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.J.; Klesius, P.H.; Shoemaker, C.A. First isolation and characterization of Lactococcus garvieae from Brazilian Nile tilapia, Oreochromis niloticus (L.), and pintado, Pseudoplathystoma corruscans (Spix & Agassiz). J. Fish Dis. 2009, 32, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Didinen, B.; Yardimci, B.; Onuk, E.; Metin, S.; Yildirim, P. Naturally Lactococcus garvieae infection in rainbow trout (Oncorhyncus mykiss Walbaum, 1792): New histopathological observations, phenotypic and molecular identification. Rev. Med. Vet.-Toulouse 2014, 165, 12–19. [Google Scholar]
- Evans, J.J.; Pasnik, D.J.; Klesius, P.H.; Al-Ablani, S. First report of Streptococcus agalactiae and Lactococcus garvieae from a wild bottlenose dolphin (Tursiops truncatus). J. Wildl. Dis. 2006, 42, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Fichi, G.; Cardeti, G.; Perrucci, S.; Vanni, A.; Cersini, A.; Lenzi, C.; De Wolf, T.; Fronte, B.; Guarducci, M.; Susini, F. Skin lesion-associated pathogens from Octopus vulgaris: First detection of Photobacterium swingsii, Lactococcus garvieae and betanodavirus. Dis. Aquat. Org. 2015, 115, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, J.; Vela, A.; Gibello, A.; Casamayor, A.; Domínguez, L.; Fernández-Garayzábal, J. A genetic comparison of pig, cow and trout isolates of Lactococcus garvieae by PFGE analysis. Lett. Appl. Microbiol. 2011, 53, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-A.; Wang, P.-C.; Liaw, L.-L.; Yoshida, T.; Chen, S.-C. Comparison of genetic characteristics and pathogenicity of Lactococcus garvieae isolated from aquatic animals in Taiwan. Dis. Aquat. Org. 2012, 102, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Aguado Urda, M.; Cutuli Simón, M.T.; Blanco Gutiérrez, M.; Aspiroz, C.; Tejedor, J.L.; Fernández Garayzábal, J.F.; Gibello Prieto, A. Utilization of lactose and presence of the phospho-β-galactosidase (lacG) gene in Lactococcus garvieae isolates from different sources. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2010, 13, 189–193. [Google Scholar]
- Aoki, T.; Takami, K.; Kitao, T. Drug resistance in a nonhemolytic Streptococcus sp. isolated from cultured yellowtail Seriola quinqueradiata. Dis. Aquat. Org. 1990, 8, 171–177. [Google Scholar] [CrossRef]
- Kawanishi, M.; Kojima, A.; Ishihara, K.; Esaki, H.; Kijima, M.; Takahashi, T.; Suzuki, S.; Tamura, Y. Drug resistance and pulsed-field gel electrophoresis patterns of Lactococcus garvieae isolates from cultured Seriola (yellowtail, amberjack and kingfish) in Japan. Lett. Appl. Microbiol. 2005, 40, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Bercovier, H.; Ghittino, C.; Eldar, A. Immunization with bacterial antigens: Infections with streptococci and related organisms. Dev. Biol. Stand. 1997, 90, 153–160. [Google Scholar] [PubMed]
- Hirono, I.; Aoki, T. Characterization of structure and genes of R Plasmid from fish-pathogenic Lactococcus garvieae. Proc. Jpn. Soc. Antimicrob. 2001, 23, 22–24. [Google Scholar]
- Duman, M.; Buyukekiz, A.G.; Saticioglu, I.B.; Cengiz, M.; Sahinturk, P.; Altun, S. Epidemiology, genotypic diversity, and antimicrobial resistance of Lactococcus garvieae in farmed rainbow trout (Oncorhynchus mykiss). Iran. J. Fish. Sci. 2020, 19, 1–18. [Google Scholar] [CrossRef]
- Fleming, H.; Fowler, S.V.; Nguyen, L.; Hofinger, D.M. Lactococcus garvieae multi-valve infective endocarditis in a traveler returning from South Korea. Travel Med. Infect. Disease 2012, 10, 101–104. [Google Scholar] [CrossRef]
- Vendrell, D.; Balcázar, J.L.; Ruiz-Zarzuela, I.; de Blas, I.; Gironés, O.; Múzquiz, J.L. Safety and efficacy of an inactivated vaccine against Lactococcus garvieae in rainbow trout (Oncorhynchus mykiss). Prev. Vet. Med. 2007, 80, 222–229. [Google Scholar] [CrossRef]
- Heuer, O.E.; Kruse, H.; Grave, K.; Collignon, P.; Karunasagar, I.; Angulo, F.J. Human health consequences of use of antimicrobial agents in aquaculture. Clin. Infect. Dis. 2009, 49, 1248–1253. [Google Scholar] [CrossRef]
- Smith, P.; Hiney, M.P.; Samuelsen, O.B. Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Ann. Rev. Fish Dis. 1994, 4, 273–313. [Google Scholar] [CrossRef]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Amal, M.; Zamri-Saad, M. Streptococcosis in tilapia (Oreochromis niloticus): A review. Pertanika J. Trop. Agric. Sci. 2011, 34, 195–206. [Google Scholar]
- Yanong, R.P.E. Use of Antibiotics in Ornamental Fish Aquaculture; Institute of Food and Agricultural Sciences; University of Florida: Gainesville, FL, USA, 2003; Volume 2003. [Google Scholar]
- Tsai, M.-A.; Wang, P.-C.; Cao, T.-T.; Liao, P.-C.; Liaw, L.-L.; Chen, S.-C. Immunoprotection of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Lactococcus garvieae against Lactococcosis in tilapia. J. Gen. Appl. Microbiol. 2013, 59, 437–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaheri Abdevand, L.; Soltani, M.; Shafiei, S. Adjuvant effect of Licorice (Glycyrrhiza glabra) extract on the efficacy of lactococcosis vaccine in rainbow trout (Oncorhynchus mykiss). Iran. J. Fish. Sci. 2021, 20, 646–662. [Google Scholar]
- Varsha, K.K.; Nampoothiri, K.M. Lactococcus garvieae subsp. bovis subsp. nov., lactic acid bacteria isolated from wild gaur (Bos gaurus) dung, and description of Lactococcus garvieae subsp. garvieae subsp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 3805–3809. [Google Scholar] [CrossRef] [PubMed]
- Gibello, A.; Galán-Sánchez, F.; Blanco, M.M.; Rodríguez-Iglesias, M.; Domínguez, L.; Fernández-Garayzábal, J.F. The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res. Vet. Sci. 2016, 109, 59–70. [Google Scholar] [CrossRef]
- Chan, J.; Woo, P.; Teng, J.; Lau, S.; Leung, S.; Tam, F.; Yuen, K.-Y. Primary infective spondylodiscitis caused by Lactococcus garvieae and a review of human L. garvieae infections. Infection 2011, 39, 259–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, P.R.; Hardman, S.M.; Patterson, D.L. Osteomyelitis and possible endocarditis secondary to Lactococcus garvieae: A first case report. Postgrad. Med. J. 2000, 76, 301–303. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-K.; Chen, Y.-S.; Wann, S.-R.; Liu, Y.-C.; Tsai, H.-C. Lactococcus garvieae endocarditis with initial presentation of acute cerebral infarction in a healthy immunocompetent man. Intern. Med. 2008, 47, 1143–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, F.H.; Jenkins, D.R. Native valve endocarditis caused by Lactococcus garvieae: An emerging human pathogen. Case Rep. 2017, 2017, bcr-2017-220116. [Google Scholar] [CrossRef]
- Igneri, L.; Eltoukhy, N.; Shaffer, A.; Goren, R. A rare case of Lactococcus garvieae endocarditis in a critically ill patient. Crit. Care Med. 2015, 43, 302. [Google Scholar] [CrossRef]
- Tsur, A.; Slutzki, T.; Flusser, D. Lactococcus garvieae endocarditis on a prosthetic biological aortic valve. Zoonoses Public Health 2015, 62, 435–437. [Google Scholar] [CrossRef]
- Clavero, R.; Escobar, J.; Ramos-Avasola, S.; Merello, L.; Álvarez, F. Lactococcus garvieae endocarditis in a patient undergoing chronic hemodialysis. First case report in Chile and review of the literature. Rev. Chil. Infectol. Organo Of. Soc. Chil. Infectol. 2017, 34, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Malek, A.; De la Hoz, A.; Gomez-Villegas, S.I.; Nowbakht, C.; Arias, C.A. Lactococcus garvieae, an unusual pathogen in infective endocarditis: Case report and review of the literature. BMC Infect. Dis. 2019, 19, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.C.; Shie, H.S.; Chen, S.C.; Huang, J.P.; Hsieh, I.C.; Wen, M.S.; Lin, F.C.; Wu, D. Lactococcus garvieae infections in humans: Possible association with aquaculture outbreaks. Int. J. Clin. Pract. 2007, 61, 68–73. [Google Scholar] [CrossRef]
- Miyauchi, E.; Toh, H.; Nakano, A.; Tanabe, S.; Morita, H. Comparative genomic analysis of Lactococcus garvieae strains isolated from different sources reveals candidate virulence genes. Int. J. Microbiol. 2012, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheri Mirghaed, A.; Soltani, M.; Mahmoodi, Z.; Hosseini Shekarabi, P. Study of cultured rainbow trout contamination with Streptococcus iniae and Lactococcus garvieae in some fish markets of Tehran and Karaj. J. Food Hyg. 2016, 6, 65–73. [Google Scholar]
- Assefa, A.; Abunna, F. Maintenance of fish health in aquaculture: Review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int. 2018, 2018. [Google Scholar] [CrossRef]
- Leung, T.L.; Bates, A.E. More rapid and severe disease outbreaks for aquaculture at the tropics: Implications for food security. J. Appl. Ecol. 2013, 50, 215–222. [Google Scholar] [CrossRef]
- Matsuura, Y.; Terashima, S.; Takano, T.; Matsuyama, T. Current status of fish vaccines in Japan. Fish Shellfish Immunol. 2019, 95, 236–247. [Google Scholar] [CrossRef]
- Soltani, M.; Lymbery, A.; Song, S.K.; Hossein-Shrkarabi, P. Adjuvant effects of medicinal herbs and probiotics for fish vaccines. Rev. Aquac. 2018, 11, 1325–1341. [Google Scholar] [CrossRef]
- Rodrigues, M.; Lima, S.; Higgins, C.; Canniatti-Brazaca, S.; Bicalho, R. The Lactococcus genus as a potential emerging mastitis pathogen group: A report on an outbreak investigation. J. Dairy Sci. 2016, 99, 9864–9874. [Google Scholar] [CrossRef] [PubMed]
- Mannion, P.; Rothburn, M. Diagnosis of bacterial endocarditis caused by Streptococcus lactis and assisted by immunoblotting of serum antibodies. J. Infect. 1990, 21, 317–318. [Google Scholar] [CrossRef]
- Clark, I.; Burnie, J. Immunoblotting and culture positive endocarditis. J. Clin. Pathol. 1991, 44, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.; Dealler, S.; Lawton, J. Septic arthritis and unpasteurised milk. J. Clin. Pathol. 1993, 46, 1057–1058. [Google Scholar] [CrossRef] [Green Version]
- Durand, J.M.; Rousseau, M.C.; Gandois, J.M.; Kaplanski, G.; Mallet, M.N.; Soubeyrand, J. Streptococcus lactis septicemia in a patient with chronic lymphocytic leukemia. Am. J. Hematol. 1995, 50, 64–65. [Google Scholar] [CrossRef] [PubMed]
- Zechini, B.; Cipriani, P.; Papadopoulou, S.; Di Nucci, G.; Petrucca, A.; Teggi, A. Endocarditis caused by Lactococcus lactis subsp. lactis in a patient with atrial myxoma: A case report. Diagn. Microbiol. Infect. Dis. 2006, 56, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-C.; Lin, Y.-D.; Liaw, L.-L.; Chern, R.-S.; Chen, S.-C. Lactococcus lactis subspecies lactis also causes white muscle disease in farmed giant freshwater prawns Macrobrachium rosenbergii. Dis. Aquat. Org. 2008, 79, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Khoo, L.H.; Austin, F.W.; Quiniou, S.M.; Gaunt, P.S.; Riecke, D.K.; Jacobs, A.M.; Meals, K.O.; Dunn, A.W.; Griffin, M.J. Lactococcosis in silver carp. J. Aquat. Anim. Health 2014, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wünnemann, H.; Eskens, U.; Prenger-Berninghoff, E.; Ewers, C.; Lierz, M. Lactococcus lactis, causative agent of an endocarditis valvularis and parietalis thromboticans in the allis shad, Alosa alosa (L.). J. Fish Dis. 2018, 41, 1207–1215. [Google Scholar] [CrossRef]
- Williams, A.; Fryer, J.; Collins, M. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol. Lett. 1990, 68, 109–113. [Google Scholar] [CrossRef]
- Michel, C.; Pelletier, C.; Boussaha, M.; Douet, D.-G.; Lautraite, A.; Tailliez, P. Diversity of lactic acid bacteria associated with fish and the fish farm environment, established by amplified rRNA gene restriction analysis. Appl. Environ. Microbiol. 2007, 73, 2947–2955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ríos, J.-L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Türker, H.; Yildirim, A.B.; Karakaş, F.P. Sensitivity of bacteria isolated from fish to some medicinal plants. Turk. J. Fish. Aquat. Sci. 2009, 9, 181–186. [Google Scholar] [CrossRef]
- Türker, H.; Yildirim, A.B.; Karakaş, F.P.; Köylüoğlu, H. Antibacterial activities of extracts from some Turkish endemic plants on common fish pathogens. Turk. J. Biol. 2009, 33, 73–78. [Google Scholar] [CrossRef]
- Türker, H.; Yildirim, A.B. Screening for antibacterial activity of some Turkish plants against fish pathogens: A possible alternative in the treatment of bacterial infections. Biotechnol. Biotechnol. Equip. 2015, 29, 281–288. [Google Scholar] [CrossRef]
- Tas, I.; Yildirim, A.; Ozyigitoglu, G.; Turker, H.; Turker, A. Lichens as a promising natural antibacterial agent against fish pathogens. Bull. Eur. Assoc. Fish Pathol. 2019, 39, 41–48. [Google Scholar]
- Ayad, R.; Cakmak, Y.S.; Ozusaglam, M.A.; Medjroubi, K.; Akkal, S. In vitro antioxidant and antimicrobial activities of aerial parts of Algerian Jurinea humilis DC (Asteraceae). Trop. J. Pharm. Res. 2017, 16, 2903–2909. [Google Scholar] [CrossRef] [Green Version]
- Uluköy, G.; Cennet, Ö.; Mammadov, R.; Sayin, Z. Radical scavenging activity and antibacterial effect of three cyclamen l. tuber extracts on some fish pathogens. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Derg. 2018, 22, 562–568. [Google Scholar] [CrossRef]
- Yildirim, A.; Türker, H. Antibacterial activity of some aromatic plant essential oils against fish pathogenic bacteria. J. Limnol. Freshw. Fish. Res. 2018, 4, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Tural, S.; Durmaz, Y.; Urçar, E.; Turhan, S. Antibacterial activity of thyme, laurel, rosemary and parsley essential oils against some bacterial fish pathogen. Acta Aquat. Turc. 2019, 15, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Gulec, A.K.; Erecevit, P.; Yuce, E.; Arslan, A.; Bagci, E.; Kirbag, S. Antimicrobial activity of the methanol extracts and essential oil with the composition of endemic Origanum acutidens (Lamiaceae). J. Essent. Oil Bear. Plants 2014, 17, 353–358. [Google Scholar] [CrossRef]
- Shehata, S.; Mohamed, M.; Abd El-Shafi, S. Antibacterial activity of essential oils and their effects on Nile tilapia fingerlings performance. J. Med. Sci. 2013, 13, 367. [Google Scholar] [CrossRef] [Green Version]
- Adel, M.; Caipang, C.M.A.; Dawood, M.A. Immunological responses and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles following dietary administration of stinging nettle (Urtica dioica). Fish Shellfish Immunol. 2017, 71, 230–238. [Google Scholar] [CrossRef]
- Soltani, M.; Mohamadian, S.; Ebrahimzahe-Mousavi, H.A.; Mirzargar, S.; Taheri-Mirghaed, A.; Rouholahi, S.; Ghodratnama, M. Shirazi thyme (Zataria multiflora) essential oil suppresses the expression of the epsD capsule gene in Lactococcus garvieae, the cause of lactococcosis in farmed fish. Aquaculture 2014, 433, 143–147. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Soltani, M.; Mirzargar, S.S.; Ghodratnama, M. Effects of Eucalyptus camaldulensis, Mentha pulegium, Aloe vera essences and chloramine T on growth behavior of Streptococcus iniae and Lactococcus garvieae the causes of streptococcosis/ lactococcosis in farmed rainbow trout (Oncorhynchus mykiss). J. Fish. 2013, 66, 105–118. [Google Scholar] [CrossRef]
- Ansari, M.; Soltani, M.; Hosseini, S.E.; Kamali, K. Study of antibacterial effect of Mentha longifolia essential oil on Lactococcus garvieae in rainbow trout fillet at 4 °C. Res. Opin. Anim. Vet. Sci. 2014, 4, 556–559. [Google Scholar]
- Rafiee Pour, A.; Mirzargar, S.S.; Soltani, M.; Mousavi, H.A.E. The antibacterial effects of Cuminum cyminum L. and Rosmarinus officinalis extracts and essential oil against Lactococcus garvieae in laboratory conditions. Eur. J. Exp. Biol. 2014, 4, 456–463. [Google Scholar]
- Roomiani, L.; Soltani, M.; Akhondzadeh-Basti, A.; Azadeh, M. Effect of Rosmarinus officinalis essential oil and nisin on Streptococcus iniae and Lactococcus garvieae in a food model system. J. Aquat. Food Prod. Technol. 2017, 26, 1189–1198. [Google Scholar] [CrossRef]
- Maki, T.; Hirono, I.; Kondo, H.; Aoki, T. Drug resistance mechanism of the fish-pathogenic bacterium Lactococcus garvieae. J. Fish Dis. 2008, 31, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Tan, H.-C.; Cheng, W. Effects of dietary administration of water hyacinth (Eichhornia crassipes) extracts on the immune responses and disease resistance of giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 2013, 35, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Cheng, W. Multiple dietary administrating strategies of water hyacinth (Eichhornia crassipes) on enhancing the immune responses and disease resistance of giant freshwater prawn, Macrobrachium rosenbergii. Aquac. Res. 2016, 47, 140–152. [Google Scholar] [CrossRef]
- Rufchaei, R.; Mirvaghefi, A.; Hoseinifar, S.H.; Valipour, A.; Nedaei, S. Effects of dietary administration of water hyacinth (Eichhornia crassipes) leaves extracts on innate immune parameters, antioxidant defence and disease resistance in rainbow trout (Oncorhynchus mykiss). Aquaculture 2020, 515, 734533. [Google Scholar] [CrossRef]
- Rattanavichai, W.; Chen, Y.-N.; Chang, C.-C.; Cheng, W. The effect of banana (Musa acuminata) peels hot-water extract on the immunity and resistance of giant freshwater prawn, Macrobrachium rosenbergii via dietary administration for a long term: Activity and gene transcription. Fish Shellfish Immunol. 2015, 46, 378–386. [Google Scholar] [CrossRef]
- Halim, A.M.; Lee, P.-P.; Chang, Z.-W.; Chang, C.-C. The hot-water extract of leaves of noni, Morinda citrifolia, promotes the immunocompetence of giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 2017, 64, 457–468. [Google Scholar] [CrossRef]
- Elumalai, P.; Kurian, A.; Lakshmi, S.; Faggio, C.; Esteban, M.A.; Ringø, E. Herbal immunomodulators in aquaculture. Rev. Fish. Sci. Aquac. 2021, 29, 33–57. [Google Scholar] [CrossRef]
- Baba, E.; Acar, Ü.; Yılmaz, S.; Öntaş, C.; Kesbiç, O.S. Pre-challenge and post-challenge haemato-immunological changes in Oreochromis niloticus (Linnaeus, 1758) fed argan oil against Lactococcus garvieae. Aquac. Res. 2017, 48, 4563–4572. [Google Scholar] [CrossRef]
- Baba, E.; Uluköy, G.; Öntaş, C. Effects of feed supplemented with Lentinula edodes mushroom extract on the immune response of rainbow trout, Oncorhynchus mykiss, and disease resistance against Lactococcus garvieae. Aquaculture 2015, 448, 476–482. [Google Scholar] [CrossRef]
- Uluköy, G.; Baba, E.; Öntaş, C. Effect of oyster mushroom, Pleurotus ostreatus, extract on hemato-immunological parameters of Rainbow trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2016, 47, 676–684. [Google Scholar] [CrossRef]
- Selvaraj, V.; Sampath, K.; Sekar, V. Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish Shellfish Immunol. 2005, 19, 293–306. [Google Scholar] [CrossRef]
- Diler, O.; Gormez, O.; Diler, I.; Metin, S. Effect of oregano (Origanum onites L.) essential oil on growth, lysozyme and antioxidant activity and resistance against Lactococcus garvieae in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Nutr. 2017, 23, 844–851. [Google Scholar] [CrossRef]
- Gholamhosseini, A.; Hosseinzadeh, S.; Soltanian, S.; Banaee, M.; Sureda, A.; Rakhshaninejad, M.; Ali Heidari, A.; Anbazpour, H. Effect of dietary supplements of Artemisia dracunculus extract on the haemato-immunological and biochemical response, and growth performance of the rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2020. [Google Scholar] [CrossRef]
- Raissy, M.; Hashemi, S.; Roushan, M.; Jafarian, M.; Momtaz, H.; Soltani, M.; Pirali Kheirabad, E. Effects of essential oils of Satureja bachtiarica and Nigella sativa on the efficacy of lactococcosis vaccine in rainbow trout (Oncorhynchus mykiss). Iran. J. Fish. Sci. 2018, 17, 95–106. [Google Scholar]
- Bilen, S.; Sirtiyah, A.M.A.; Terzi, E. Therapeutic effects of beard lichen, Usnea barbata extract against Lactococcus garvieae infection in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 87, 401–409. [Google Scholar] [CrossRef]
- Paliya, B.; Bajpai, R.; Jadaun, V.; Kumar, J.; Kumar, S.; Upreti, D.; Singh, B.; Nayaka, S.; Joshi, Y.; Singh, B.N. The genus Usnea: A potent phytomedicine with multifarious ethnobotany, phytochemistry and pharmacology. RSC Adv. 2016, 6, 21672–21696. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Esteban, M.Á. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Elnesr, S.S. A review on the beneficial effect of thymol on health and production of fish. Rev. Aquac. 2021, 13, 632–641. [Google Scholar] [CrossRef]
- Victor, K.K.; Séka, Y.; Norbert, K.K.; Sanogo, T.A.; Celestin, A.B. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (d triphenylborane pyridine to marinPistia stratiotes). Int. J. Phytoremediat. 2016, 18, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Mukti, A.T.; Dewi, E.; Satyantini, W.H.; Sulmartiwi, L.; Hassan, M. The effect of noni Morinda citrifolia L. fruit extracts on the gill histopathological changes of Nile tilapia Oreochromis niloticus. IOP Conf. Ser. Earth Environ. Sci. 2019, 236. [Google Scholar] [CrossRef]
- Doleželová, P.; Mácová, S.; Plhalova, L.; Pistekova, V.; Svobodova, Z. The acute toxicity of clove oil to fish Danio rerio and Poecilia reticulata. Acta Vet. Brno. 2011, 80, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.B.; Beiras, R.; Thomas, K.V.; Suter, M.J.-F.; Barroso, C.M. Acute toxicity of tralopyril, capsaicin and triphenylborane pyridine to marine invertebrate’s. Ecotoxicology 2014, 23, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
Origin/ Source of L. garvieae | Plant | Extractive | Major Compounds | MIC | MBC | Reference |
---|---|---|---|---|---|---|
Rainbow trout | Camellia sinensis (green tea-leaves) | Methanolic extract | Unknown | 800 | 1100 | Akbary, 2014 |
Rainbow trout | Thymus vulgaris (thyme), Origanum vulgare (oregano) and Eucalyptus sp. | Mix-oil® (essential oils from leaves) | Citraconic anhydride, 1, 8-cineole, thymol | 6.25 | 12.5 | Amiri et al., 2020 |
Unknown | Glycyrrhiza glabra L. (black sugar-root) | n-hexane extract | Unknown | Unknown | 5630 | Asan-Ozusaglam et al., 2014 |
Unknown | Glycyrrhiza glabra L. (root) | Dichloromethane extract | Unknown | Unknown | 1410 | Asan-Ozusaglam et al., 2014 |
Type culture collection | Lavandula angustifolia (lavender) | Essential oil | Unknown | 500 | Unknown | Baba, 2020 |
Type culture collection | Eugenia caryophyllus | Essential oil | Unknown | 250 | Unknown | Baba, 2020 |
Rainbow trout | Mentha piperitae (pepper mint) | Essential oil | Unknown | 500 | Unknown | Baba, 2020 |
Rainbow trout | Rosmarinus officinalis (rosemary) | Essential oil | Unknown | 500 | Unknown | Baba, 2020 |
Rainbow trout | Cinnamomum zeylanicum (cinnamon) | Essential oil | Unknown | 250 | Unknown | Baba, 2020 |
Rainbow trout | Nigella sativa (black cumin) | Essential oil | Unknown | 250 | Unknown | Baba, 2020 |
Strain O41 | Lavandula officinalis (true lavender-flowers) | Ethanolic extract | Essential oil (linalyl acetate), tannins, coumarins, flavonoids, and phytosterols | 4200 | 8400 | Bulfon et al., 2014 |
Strain O41 | Melissa officinalis (lemon balm-leaves) | Ethanolic extract | Rosmarinic acid, essential oil (citral, citronellal, β-caryophyllen), caffeic acid, and chlorogenic acidderivatives | 8400 | 33,600 | Bulfon et al., 2014 |
Strain O41 | Ocimum basilicum (sweet basil-flowering plant) | Ethanolic extract | Essential oil (linalool, estragol, camphor, eugenol, ocimene, cineol, sesquiterpenes), tannins, favonoids, caffeic acid, and esculoside | 16,800 | Unknown | Bulfon et al., 2014 |
Strain O41 | Origanum vulgare (oregano-inflorescence) | Ethanolic extract | Carvacrol, thymol, γ-terpinene, p-cymene, limonene, linolool, and borneol | 4200 | 33,600 | Bulfon et al., 2014 |
Strain O41 | Orthosiphon stamineus (Java tea-leaves) | Ethanolic extract | Essential oil (sesquiterpenes), flavones, triterpenoid, saponins, vitamins, and organic salts | 33,600 | Unknown | Bulfon et al., 2014 |
Strain O41 | Rosmarinus officinalis (leaves) | Ethanolic extract | Essential oil (eucalyptol, α-pinene, camphor, borneol), flavonoids, rosmarinic acid, and terpenes | 8400 | Unknown | Bulfon et al., 2014 |
Strain O41 | Salvia officinalis (sage-leaves) | Ethanolic extract | Essential oil (thujone, monoterpenes, and sesquiterpenes), tannins, bitter substances, and flavonoids | 4200 | 33,600 | Bulfon et al., 2014 |
Strain O41 | Thymus vulgaris (leaves) | Ethanolic extract | Essential oil (thymol, carvacrol, p-cimol, and terpinene), tannins, flavonoids and triterpenes | Unknown | Unknown | Bulfon et al., 2014 |
Strain O41 | Vaccinium vitis-idaea (lingonberry-leaves) | Ethanolic extract | Phenolic glycosides (arbutin and hydroquinone), tannins, flavonoids (iperoside, avicularin, isoquercitrin), terpenic acids (ursolic and oleanolic acids), organic acids, and mineral salts | 4200 | Unknown | Bulfon et al., 2014 |
Rainbow trout | Glycyrrhiza glabra L. (root) | Ethanolic extract | Unknown | 920 | Unknown | Fereidouni et al., 2013 |
Rainbow trout | Peganum harmala (wild rue-seed) | Methanolic extrac | Unknown | 105 | Unknown | Fereidouni et al., 2013 |
Rainbow trout | Trachyspermum copticum (carum ajowan-seed) | Ethanolic extract | Unknown | 453 | Unknown | Fereidouni et al., 2013 |
Rainbow trout | Myrtus communis (myrtle-leaves) | Essential oil | Unknown | 672 | Unknown | Fereidouni et al., 2013 |
Rainbow trout | Juglans regia (English walnut-leaves) | Ethanolic extract | Unknown | 510 | Unknown | Fereidouni et al., 2013 |
Rainbow trout | Quercus branti Lindley (Brant’s oak-seed) | Ethanolic extract | Unknown | 978 | Unknown | Fereidouni et al., 2013 |
Rainbow trout | Tanacetum parthenium (feverfew-leaves) | Essential oil | Unknown | 824 | Unknown | Fereidouni et al., 2013 |
Rainbow trout | Satureja bachtiarica Bung. (savory-leaves) | Essential oil | Unknown | 126 | Unknown | Fereidouni et al., 2013 |
Rainbow trout | Glycyrrhiza glabra L.(root) | Ethanolic extract | Glycyrrhizinic acid | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Satureja bachtiarica Bung. (aerial parts) | Essential oil | Phenols: Carvacrol, thymol | 8 | 16 | Goudarzi et al., 2011 |
Rainbow trout | Satureja bachtiarica Bung. (aerial parts) | Ethanolic extract | Phenols: Carvacrol, thymol | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Punica granatum (pomegranate-flowers) | Ethanolic extract | Polyphenols: pomegranatate | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Quercus branti Lindley (seed/flour) | Ethanolic extract | Tannins | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Echinophora platyloba DC. (prickly parsnip-aerial parts) | Essential oil | Monoterpenes: trans-β-ocimene | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Echinophora platyloba DC. (aerial parts) | Ethanolic extract | Monoterpenes: trans-β-ocimene | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Heracleum lasiopetalum Boiss. (fruits) | Ethanolic extract | Sesquiterpene hydrocarbons: Germacrene-D | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Kelussia odoratissima Mozaff. (wild celery-leaves) | Ethanolic extract | Z-ligustilide | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Stachys lavandulifolia Vahl (wood betony-flowers) | Ethanolic extract | Sabinene, α-pinene, β-myrcene | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Thymus daenensis Celak. (common thyme-aerial part/inflorescence) | Ethanolic extract | Phenols: thymol, carvacrol | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Thymus daenensis Celak. (Aerial part/inflorescence) | Essential oil | Phenols: thymol, carvacrol | 8 | 16 | Goudarzi et al., 2011 |
Rainbow trout | Myrtus communis (leaves) | Ethanolic extract | α-pinene, 1,8-cineole, myrtenyl acetate | >250 | >500 | Goudarzi et al., 2011 |
Rainbow trout | Myrtus communis (leaves) | Essential oil | α-pinene, 1,8-cineole, myrtenyl acetate | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Thymbra spicata (spiked thyme-aerial part/inflorescence) | Essential oil | Phenols: thymol, carvacrol | 8 | 16 | Goudarzi et al., 2011 |
Rainbow trout | Bunium persicum (Boiss.) K.- Pol. (black caraway-fruits) | Essential oil | γ-terpinen-7-al, cuminaldehyde, γ terpinene | 8 | 16 | Goudarzi et al., 2011 |
Rainbow trout | Teucrium polium (felty germander-aerial parts) | Essential oil | α-pinene, linalool | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Alhagi maurorum (camelthorn-aerial parts) | Essential oil | Alhagidin, alhagitin, quercetin, catechin | >1000 | >1000 | Goudarzi et al., 2011 |
Rainbow trout | Zataria multifora Boiss. (Shirazi thyme) | Essential oil | Phenols: thymol, carvacrol | 4 | 8 | Goudarzi et al., 2011 |
Olive flounder (P. olivaceus) | Zingiber officinale (ginger) | Essential oil | 2000 | 2000 | Hossain et al., 2019 | |
L. garvieae GQ850376 | Eucalyptus globulus (southern blue gum-aerial parts) | Essential oil | 1,8-eucalypol, pinene, terpineol acetae, globulol | 250 | 250 | Mahmoodi et al., 2012 |
L. garvieae GQ850376 | Eucalyptus globulus (aerial parts) | Methanolic extract | 1,8-eucalypol, pinene, terpineol acetae, globulol | 500 | 500 | Mahmoodi et al., 2012 |
L. garvieae GQ850376 | Zataria multiflora (aerial parts) | Essential oil | phenolic monoterpene, Carvacrol, alpha-pinene | 7.8 | 15.6 | Mahmoodi et al., 2012 |
L. garvieae GQ850376 | Zataria multiflora (aerial parts) | Methanolic extract | phenolic monoterpene Carvacrol, alpha-pinene | 15.6 | 15.6 | Mahmoodi et al., 2012 |
L. garvieae GQ850376 | Anethum graveolens (dill-seed) | Essential oil | D-carvacrol, limonene, dill apiole, E-dihydrocarvone, Z-dihydrocarvone | 62.4 | 125 | Mahmoodi et al., 2012 |
L. garvieae GQ850376 | Anethum graveolens (seed) | Methanolic extract | D-carvacrol, limonene, dill apiole, E-dihydrocarvone, Z-dihydrocarvone | 125 | 125 | Mahmoodi et al., 2012 |
L. garvieae GQ850376 | Rosmarinus officinalis | Essential oil | 1,8-cineole, alpha-pinene, toluene | 15.6 | 31.2 | Mahmoodi et al., 2012 |
L. garvieae GQ850376 | Rosmarinus officinalis | Methanolic extract | 1,8-cineole, alpha-pinene, toluene | 31.2 | 31.2 | Mahmoodi et al., 2012 |
Rainbow trout | Citrus paradisi (grapefruit), Citrus reticulata (tangerine), Citrus aurantium ssp. bergamia (bergamot), Citrus sinensis (sweet orange) | Biocitro ® (blend of citrus extracts) | Ascorbic acid, citrus bioflavonoids (hesperidin, naringin, quercetin, rutin) and organic acids | 2.0 | Unknown | Mora-Sánchez et al., 2020 |
Tilapia (O. andersonii) | Capsicum annum (Chili pepper) | Methanolic extract (capsaicin) | Unknown | Unknown | 196.7 | Ndashe et al., 2020 |
Olive flounder | Citrus aurantifolia (key lime-peel) | Essential oil | Limonene, γ-terpinene, β-pinene | 0.125% (v/v) | 1% (v/v) | Pathirana et al., 2018 |
Olive flounder | Limonene | Commercial trans-limonene (>99%) | Limonene | 0.031% (v/v) | 0.025% (v/v) | Pathirana et al., 2018 |
Olive flounder | Syzygium aromaticum (clove-buds) | Essential oil | Eugenol, β-caryophyllene, α-humulen, eugenyl-acetate | 0.5% (v/v) | 1% (v/v) | Pathirana et al., 2019a |
Olive flounder | Commercial eugenol (>99%) | Isolated compound eugenol | Eugenol | 1% (v/v) | 1% (v/v) | Pathirana et al., 2019a |
Olive flounder | Cinnamomum zeylanicum | Essential oil | Cinnamaldehyde, eugenol, β-Caryophyllene | 0.015% (v/v) | 0.031% (v/v) | Pathirana et al., 2019b |
Olive flounder | Commercial trans-cinnamaldehyde (>99%) (Sigma-Aldrich) | cinnamaldehyde | Cinnamaldehyde | 0.003% (v/v) | 0.015% (v/v) | Pathirana et al., 2019b |
Rainbow trout | Argania spinose L. (argan-oil) | Essential oil | Oleic acid, linoleic acid, palmitic acid, stearic acid | 250 | Unknown | Öntas et al., 2016 |
Rainbow trout | Citrus limon L. (lemon-peel) | Essential oil | Limonene, γ-terpinene, β-pinene, α-terpineol, myrecene and terpinolene | 500 | Unknown | Öntas et al., 2016 |
Strain ATCC43921 | Cinnamomum verum (cinnamon-bark) | Essential oil | Unknown | 120 | Unknown | Rattanachaikunsopon et al., 2009 |
Strain ATCC43921 | Ocimum sanctum (holy basil-leaves) | Essential oil | Unknown | 240 | Unknown | Rattanachaikunsopon et al., 2009 |
Strain ATCC43921 | Zingiber officinale (roots) | Essential oil | Unknown | 120 | Unknown | Rattanachaikunsopon et al. 2009 |
Strain ATCC43921 | Syzygium aromaticum (flower buds) | Essential oil | Unknown | 30 | Unknown | Rattanachaikunsopon et al., 2009 |
Rainbow trout | Zataria multiflora (aerial parts) | Essential oil | Carvacrol, benzene and phenol | 0.12 | 0.12 | Soltani et al., 2014 |
Rainbow trout | Allium sativum (garlic-edible parts) | Essential oil | trisulfide, di-2-propenyl, disulfide, di-2-propenyl and trisulfide, methyl 2-propenyl | 0.5 | 1 | Soltani et al., 2014 |
Rainbow trout | Cinnamomum zeylanicum (bark) | Essential oil | cinnamic aldehyde, linalool, ortho methoxy cinnamic aldehyde and 1,8-cineole | 0.5 | 0.5 | Soltani et al., 2014 |
S. quinqueradiata | Chloramphenicol | 0.8 a | 1.6 b | Maki et al., 2008 | ||
S. quinqueradiata | Ciprofloxacin | 1.6 a | 3.13 b | Maki et al., 2008 | ||
S. quinqueradiata | Erythromycin | 0.1 a | 800 b | Maki et al., 2008 | ||
S. quinqueradiata | Enoxacin | 6.25 a | 12.5 b | Maki et al., 2008 | ||
S. quinqueradiata | Florfenicol | 1.6 a | 1.6 b | Maki et al., 2008 | ||
S. quinqueradiata | Floroxacin | 12.5 a | 12.5 b | Maki et al., 2008 | ||
S. quinqueradiata | Kanamycin | 25 a | 50 b | Maki et al., 2008 | ||
S. quinqueradiata | Lincomycin | 25 a | 800 b | Maki et al., 2008 | ||
S. quinqueradiata | Norfloxacin | 6.25 a | 12.5 b | Maki et al., 2008 | ||
S. quinqueradiata | Oxolinic acid | 400 a | 800 b | Maki et al., 2008 | ||
S. quinqueradiata | Orbifloxacin | 1.6 a | 1.6 b | Maki et al., 2008 | ||
S. quinqueradiata | Ofloxacin | 3.13 a | 6.25 b | Maki et al., 2008 | ||
S. quinqueradiata | Penzylpenicillin | 0.8 a | 1.6 b | Maki et al., 2008 | ||
S. quinqueradiata | Streptomycin | 25 a | 50 b | Maki et al., 2008 | ||
S. quinqueradiata | Tetracycline | 12.5 a | 400 b | Maki et al., 2008 |
Host | Plant | Extractive | Dosage/Duration | Survival Increase Compared to Control (%) 2 | Reference |
---|---|---|---|---|---|
Giant freshwater prawn (Macrobrachium rosenbergii) | Eichhornia crassipes (water hyacinth-leaves) | Hot-water extract | 1 g kg diet−1, 12 days 2 g kg diet−1, 12 days 3 g kg diet−1, 12 days | ↑57.3 ↑128.6 ↑171.4 | Chang et al., 2013 |
Giant freshwater prawn (M. rosenbergii) | Eichhornia crassipes (leaves) | Powder | 20 g kg diet−1, 120 days | ↑44.3 | Chang et al., 2016 |
Hot-water extract | 20 g kg diet−1, 120 days | ↑89.0 | |||
Aqueous extract 1 | 2 g kg diet−1, 120 days | ↑89.0 | |||
Dreg of aqueous extract 1 | 18 g kg diet−1, 120 days | ↑77.7 | |||
Giant freshwater prawn (M. rosenbergii) | Musa acuminate (banana-peel) | Aqueous extract | 1 g kg diet−1, 120 days 3 g kg diet−1, 120 days 6 g kg diet−1, 120 days | ↑200 ↑300 ↑467 | Rattanavichai et al., 2015 |
Giant freshwater prawn (M. rosenbergii) | Morinda cutrifolia (noni) | Aqueous extract | 0.6 g kg diet−1, 21 days 3 g kg diet−1, 21 days 6 g kg diet−1, 21 days | ↑250 ↑50.4 NS | Halim et al., 2017 |
Nile tilapia (Oreochromis niloticus) | Argania spinosa (argan-seeds) | Oil | 5 mL kg diet−1, 45 days 10 mL kg diet−1, 45 days 20 mL kg diet−1, 45 days | ↑66.7 ↑91.7 ↑86.1 | Baba et al., 2017 |
Rainbow trout (Oncorhynchus mykiss) | Lentinula edodes (Shiitake mushroom) | Aqueous extract | 10 g kg diet−1, 45 days 20 g kg diet−1, 45 days | ↑79.0 ↑109.7 | Baba et al., 2015 |
Rainbow trout (O. mykiss) | Pleurotus ostreatus (oyster mushroom) | Aqueous extract | 10 g kg diet−1, 42 days 20 g kg diet−1, 42 days | ↑40.0 ↑60.1 | Uluköy et al., 2016 |
Rainbow trout (O. mykiss) | Usnea barbata (beard lichen) | Methanolic extract | 230 mg kg fish−1 (a) 460 mg kg fish−1 (a) 690 mg kg fish−1 (a) | ↑62.4 ↑45.3 NS | Bilen et al., 2019 |
Three spotted tilapia (Oreochromis andersonii) | Capsaicin | Isolated compound | 1.97 mg kg fish−1 (b) | 80% survival vs. 0% survival in control | Ndashe et al., 2020 |
Rainbow trout (O. mykiss) | Origanum onites (oregano) | Essential oil | 0.125 mL kg diet−1, 56 days 1.5 mL kg diet−1, 56 days 2.5 mL kg diet−1, 56 days 3.0 mL kg diet−1, 56 days | ↑54 ↑92 ↑84 No mortality | Diler et al. 2017 |
Nile tilapia (Oreochromis niloticus) | Syzygium aromaticum (clove-buds) | Essential oil | 5 mL kg diet−1, 5 days 10 mL kg diet−1, 5 days 20 mL kg diet−1, 5 days 30 mL kg diet−1, 5 days | ↑40 ↑70 ↑80 No mortality | Rattanachaikunsopon et al., 2009 |
Mullet (Mugil cephalus) | * TCM | Aqueous extract of the powder | 5 g kg fish−1, 28 days 10 g kg fish−1, 28 days 20 g kg fish−1, 28 days | NS ↑230.8 ↑184.6 | Choi et al., 2014 |
Rainbow trout (O. mykiss) | Citrus paradisi (grapefruit), Citrus reticulata (tangerine), Citrus aurantium ssp. bergamia (bergamot), Citrus sinensis (sweet orange) | Biocitro ® (blend of these extracts) | 0.75 g kg diet−1, 28 days | ↑120 | Mora-Sánchez et al., 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soltani, M.; Baldisserotto, B.; Hosseini Shekarabi, S.P.; Shafiei, S.; Bashiri, M. Lactococcosis a Re-Emerging Disease in Aquaculture: Disease Significant and Phytotherapy. Vet. Sci. 2021, 8, 181. https://doi.org/10.3390/vetsci8090181
Soltani M, Baldisserotto B, Hosseini Shekarabi SP, Shafiei S, Bashiri M. Lactococcosis a Re-Emerging Disease in Aquaculture: Disease Significant and Phytotherapy. Veterinary Sciences. 2021; 8(9):181. https://doi.org/10.3390/vetsci8090181
Chicago/Turabian StyleSoltani, Mehdi, Bernardo Baldisserotto, Seyed Pezhman Hosseini Shekarabi, Shafigh Shafiei, and Masoumeh Bashiri. 2021. "Lactococcosis a Re-Emerging Disease in Aquaculture: Disease Significant and Phytotherapy" Veterinary Sciences 8, no. 9: 181. https://doi.org/10.3390/vetsci8090181
APA StyleSoltani, M., Baldisserotto, B., Hosseini Shekarabi, S. P., Shafiei, S., & Bashiri, M. (2021). Lactococcosis a Re-Emerging Disease in Aquaculture: Disease Significant and Phytotherapy. Veterinary Sciences, 8(9), 181. https://doi.org/10.3390/vetsci8090181