Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sample Collection
2.3. RNA Extraction
2.4. Reverse Transcription and PCR Amplification of SLA-1, SLA-2, and DQB1 RNA
2.5. SLA Sanger Sequence Data Analysis and Construction of Phylogenetic Trees
2.6. MHC-SLA Diversity Assessment
2.7. Evaluating Signals of Selection Acting on the SLA-1, SLA-2, and DQB1 loci
2.8. SLA Functional Cluster Analysis
2.9. Statistical Analyses
3. Results
3.1. SLA Sequence Analysis of Domestic Pigs and Warthogs
3.2. Phylogenetic Analysis
3.3. SLA-1, SLA-2, and DQB1 Allele Assignment
3.4. Selection Signals Acting on SLA-1, SLA-2, and DQB1 Loci
3.5. SLA-1, SLA-2, and DQB1 Genetic Polymorphism and Differentiation
3.6. MHC Functional Cluster Analysis
4. Discussion
4.1. Comparative Analysis of SLA Alleles and Sequence Diversity
4.2. MHC Functional Cluster Analysis
4.3. Differences in SLA Genetic Diversity and Selection Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurt, P.; Walter, L.; Sudbrak, R.; Klages, S.; Müller, I.; Shiina, T.; Inoko, H.; Lehrach, H.; Günther, E.; Reinhardt, R.; et al. The Genomic Sequence and Comparative Analysis of the Rat Major Histocompatibility Complex. Genome Res. 2004, 14, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, L.E.; Jungersen, G.; Sørensen, M.R.; Ho, C.-S.; Vadekær, D.F. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers. Veter. Immunol. Immunopathol. 2014, 162, 108–116. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, Q.; Guo, D.; Liu, J.; Han, L.; Qu, L. Characterization of swine leukocyte antigen (SLA) polymorphism by sequence-based and PCR-SSP methods in Chinese Bama miniature pigs. Dev. Comp. Immunol. 2014, 45, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Tennant, L.M.; Renard, C.; Chardon, P.; Powell, P.P. Regulation of porcine classical and nonclassical MHC class I expression. Immunogenetics 2007, 59, 377–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janeway, C.A., Jr.; Travers, P.; Walport, M. The major histocompatibility complex and its functions. In Immunobiology: The Immune System in Health and Disease; Garland Science: New York, NY, USA, 2001. [Google Scholar]
- Lee, C.; Moroldo, M.; Perdomo-Sabogal, A.; Mach, N.; Marthey, S.; Lecardonnel, J.; Wahlberg, P.; Chong, A.Y.; Estellé, J.; Ho, S.Y.W.; et al. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing. Immunogenetics 2017, 70, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Chenais, E.; Ståhl, K.; Guberti, V.; Depner, K. Identification of wild boar-habitat epidemiologic cycle in African swine fever epizootic. Emerg. Infect. Dis. 2018, 24, 810–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, M.T.; Choi, H.; Lee, H.; Le, V.C.Q.; Ahn, B.; Ho, C.-S.; Hong, K.; Song, H.; Kim, J.-H.; Park, C. SLA-1 Genetic Diversity in Pigs: Extensive Analysis of Copy Number Variation, Heterozygosity, Expression, and Breed Specificity. Sci. Rep. 2020, 10, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, C.; Hart, E.; Sehra, H.; Beasley, H.; Coggill, P.; Howe, K.; Harrow, J.; Gilbert, J.; Sims, S.; Rogers, J.; et al. The genomic sequence and analysis of the swine major histocompatibility complex. Genomics 2006, 88, 96–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, C.; Vaiman, M.; Chiannilkulchai, N.; Cattolico, L.; Robert, C.; Chardon, P. Sequence of the pig major histocompatibility region containing the classical class I genes. Immunogenetics 2001, 53, 490–500. [Google Scholar] [CrossRef]
- Chardon, P.; Renard, C.; Vaiman, M. The major histocompatibility complex in swine. Immunol. Rev. 1999, 167, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Halenius, A.; Gerke, C.; Hengel, H. Classical and non-classical MHC i molecule manipulation by human cytomegalovirus: So many targets—But how many arrows in the quiver? Cell. Mol. Immunol. 2015, 12, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Hammer, S.E.; Ho, C.S.; Ando, A.; Rogel-Gaillard, C.; Charles, M.; Tector, M.; Tector, A.J.; Lunney, J.K. Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research. Annu. Rev. Anim. Biosci. 2020, 8, 171–198. [Google Scholar] [CrossRef]
- Ando, A.; Chardon, P. Gene organization and polymorphism of the swine major histocompatibility complex. Anim. Sci. J. 2006, 77, 127–137. [Google Scholar] [CrossRef]
- Gutiérrez, S.E.; Esteban, E.N.; Lützelschwab, C.M.; Juliarena, M.A. Major Histocompatibility Complex-Associated Resistance to Infectious Diseases: The Case of Bovine Leukemia Virus Infection. Trends Adv. Vet. Genet. 2017, 103–105. [Google Scholar]
- Spurgin, L.G.; Richardson, D.S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc. R. Soc. B Biol. Sci. 2010, 277, 979–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.; Wang, Y.; Wang, S.; Wang, X.; Wu, Y.; Li, Z.; Zhang, N.; Xia, C. Polymorphism and peptide-binding specificities of porcine major histocompatibility complex (MHC) class I molecules. Mol. Immunol. 2018, 93, 236–245. [Google Scholar] [CrossRef]
- Manlik, O.; Krützen, M.; Kopps, A.M.; Mann, J.; Bejder, L.; Allen, S.J.; Frère, C.; Connor, R.C.; Sherwin, W.B. Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations. Ecol. Evol. 2019, 9, 6986–6998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, S.; Wilson, K.; Pemberton, J.M. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc. Natl. Acad. Sci. USA 1998, 95, 3714–3719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bérénos, C.; Schmid-Hempel, P.; Wegner, K.M. Antagonistic Coevolution Accelerates the Evolution of Reproductive Isolation in Tribolium castaneum. Am. Nat. 2012, 180, 520–528. [Google Scholar] [CrossRef]
- Borghans, J.A.M.; Beltman, J.B.; De Boer, R.J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 2004, 55, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Phillips, K.P.; Cable, J.; Mohammed, R.S.; Herdegen-Radwan, M.; Raubic, J.; Przesmycka, K.J.; van Oosterhout, C.; Radwan, J. Immunogenetic novelty confers a selective advantage in host–pathogen coevolution. Proc. Natl. Acad. Sci. USA 2018, 115, 1552–1557. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.W.; Stephens, W.Z.; Mohammed, A.D.; Round, J.L.; Kubinak, J.L. Does MHC heterozygosity influence microbiota form and function? PLoS ONE 2019, 14, e0215946. [Google Scholar] [CrossRef] [Green Version]
- Paterson, S.; Vogwill, T.; Buckling, A.; Benmayor, R.; Spiers, A.; Thomson, N.; Quail, M.; Smith, F.; Walker, D.; Libberton, B.; et al. Antagonistic coevolution accelerates molecular evolution. Nature 2010, 464, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Worley, K.; Collet, J.; Spurgin, L.; Cornwallis, C.; Pizzari, T.; Richardson, D.S. MHC heterozygosity and survival in red junglefowl. Mol. Ecol. 2010, 19, 3064–3075. [Google Scholar] [CrossRef] [PubMed]
- Niskanen, A.K.; Kennedy, L.J.; Ruokonen, M.; Kojola, I.; Lohi, H.; Isomursu, M.; Jansson, E.; Pyhäjärvi, T.; Aspi, J. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol. Ecol. 2014, 23, 875–889. [Google Scholar] [CrossRef] [PubMed]
- De Boer, R.J.; Borghans, J.A.M.; Van Boven, M.; Kesmir, C.; Weissing, F.J. Heterozygote advantage fails to explain the high degree of polymorphism of the MHC. Immunogenetics 2004, 55, 725–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Wu, X.; Yan, P.; Zheng, S. Sequence variability analysis on major histocompatibility complex class II DRB alleles in three felines. Front. Biol. China 2008, 3, 55–62. [Google Scholar] [CrossRef]
- Pokorny, I.; Sharma, R.; Goyal, S.P.; Mishra, S.; Tiedemann, R. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris). Immunogenetics 2010, 62, 667–679. [Google Scholar] [CrossRef]
- Hendrickson, S.L.; Mayer, G.C.; Wallen, E.P.; Quigley, K. Genetic variability and geographic structure of three subspecies of tigers (Panthera tigris) based on MHC class I variation. Anim. Conserv. 2000, 3, 135–143. [Google Scholar] [CrossRef]
- Bos, D.H.; DeWoody, J.A. Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum). Immunogenetics 2005, 57, 775–781. [Google Scholar] [CrossRef]
- Piertney, S.B.; Oliver, M.K. The evolutionary ecology of the major histocompatibility complex. Heredity 2006, 96, 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastos, A.D.S.; Penrith, M.-L.; Crucière, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, G.R. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 2003, 148, 693–706. [Google Scholar] [CrossRef]
- Dixon, L.K.; Takamatsu, H. African swine fever virus: Current situation and prospects for control. Pig J. 2011, 67, 11–17. [Google Scholar]
- FAO. World Livestock 2011: Livestock in Food Security World; FAO: Rome, Italy, 2011. [Google Scholar]
- Ouma, E.; Dione, M.; Lule, P.; Rosel, K.; Pezo, D. Characterization of smallholder pig production systems in Uganda: Constraints and opportunities for engaging with market systems. Livest. Res. Rural. Dev. 2014. [Google Scholar] [CrossRef]
- Chauhan, A.; Patel, B.H.M.; Maurya, R.; Kumar, S.; Shukla, S.; Kumar, S. Pig Production System as a Source of Livelihood in Indian Scenario: An Overview. Int. J. Sci. Technol. 2016, 5, 2089–2096. [Google Scholar]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as Models in Biomedical Research and Toxicology Testing. Veter. Pathol. 2011, 49, 344–356. [Google Scholar] [CrossRef]
- Rajao, D.D.S.; Vincent, A.L. Swine as a Model for Influenza A Virus Infection and Immunity. ILAR J. 2015, 56, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.R.; Ilsøe, M.; Strube, M.L.; Bishop, R.; Erbs, G.; Hartmann, S.B.; Jungersen, G. Sequence-Based Genotyping of Expressed Swine Leukocyte Antigen Class I Alleles by Next-Generation Sequencing Reveal Novel Swine Leukocyte Antigen Class I Haplotypes and Alleles in Belgian, Danish, and Kenyan Fattening Pigs and Göttingen Minipigs. Front. Immunol. 2017, 8, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amills, M.; Ramírez, O.; Galman-Omitogun, O.; Clop, A. Domestic Pigs in Africa. Afr. Archaeol. Review. 2013, 30, 73–82. [Google Scholar] [CrossRef]
- Mazur-Panasiuk, N.; Żmudzki, J.; Woźniakowski, G. African swine fever virus—Persistence in different environmental conditions and the possibility of its indirect transmission. J. Veter. Res. 2019, 63, 303–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujibi, F.D.; Okoth, E.; Cheruiyot, E.K.; Onzere, C.; Bishop, R.P.; Fevre, E.; Thomas, L.; Masembe, C.; Plastow, G.; Rothschild, M. Genetic diversity, breed composition and admixture of Kenyan domestic pigs. PLoS ONE 2018, 13, e0190080. [Google Scholar] [CrossRef] [PubMed]
- Mutua, F.K.; Dewey, C.E.; Arimi, S.M.; Ogara, W.O.; Githigia, S.M.; Levy, M.; Schelling, E. Indigenous pig management practices in rural villages of Western Kenya. Livest. Res. Rural. Dev. 2011, 23, 144. [Google Scholar]
- Kagira, J.M.; Kanyari, P.W.N.; Maingi, N.; Githigia, S.M.; Ng’Ang’A, J.C.; Karuga, J.W. Characteristics of the smallholder free-range pig production system in western Kenya. Trop. Anim. Heal. Prod. 2009, 42, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Obonyo, F.O.; Maingi, N.; Githigia, S.M.; Ng’ang’a, C.J. Farming practices and risk factors for transmission of helminths of free range pigs in Homabay District, Kenya. Livest. Res. Rural. Dev. 2013, 25. [Google Scholar]
- Patrick, B.N.; Machuka, E.M.; Githae, D.; Banswe, G.; Amimo, J.O.; Ongus, J.R.; Masembe, C.; Bishop, R.P.; Steinaa, L.; Djikeng, A.; et al. Evidence for the presence of African swine fever virus in apparently healthy pigs in South-Kivu Province of the Democratic Republic of Congo. Veter. Microbiol. 2019, 240, 108521. [Google Scholar] [CrossRef]
- Abworo, E.O.; Onzere, C.; Amimo, J.O.; Riitho, V.; Mwangi, W.; Davies, J.; Blome, S.; Bishop, R.P. Detection of African swine fever virus in the tissues of asymptomatic pigs in smallholder farming systems along the Kenya–Uganda border: Implications for transmission in endemic areas and ASF surveillance in East Africa. J. Gen. Virol. 2017, 98, 1806–1814. [Google Scholar] [CrossRef]
- Atuhaire, D.K.; Afayoa, M.; Ochwo, S.; Mwesigwa, S.; Mwiine, F.N.; Okuni, J.B.; Olaho-Mukani, W.; Ojok, L. Prevalence of African swine fever virus in apparently healthy domestic pigs in Uganda. BMC Veter. Res. 2013, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Chambaro, H.M.; Sasaki, M.; Sinkala, Y.; Gonzalez, G.; Squarre, D.; Fandamu, P.; Lubaba, C.; Mataa, L.; Shawa, M.; Mwape, K.E.; et al. Evidence for exposure of asymptomatic domestic pigs to African swine fever virus during an inter-epidemic period in Zambia. Transbound. Emerg. Dis. 2020, 67, 2741–2752. [Google Scholar] [CrossRef]
- Herold, P.; Roessler, R.; Willam, A.; Momm, H.; Zárate, A.V. Breeding and supply chain systems incorporating local pig breeds for small-scale pig producers in Northwest Vietnam. Livest. Sci. 2010, 129, 63–72. [Google Scholar] [CrossRef]
- Gallardo, C.; Okoth, E.; Pelayo, V.; Anchuelo, R.; Martín, E.; Simón, A.; Llorente, A.; Nieto, R.; Soler, A.; Martín, R.; et al. African swine fever viruses with two different genotypes, both of which occur in domestic pigs, are associated with ticks and adult warthogs, respectively, at a single geographical site. J. Gen. Virol. 2010, 92, 432–444. [Google Scholar] [CrossRef]
- Powell, P.P.; Dixon, L.K.; Parkhouse, R.M. An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J. Virology. 1996, 70, 8527–8533. [Google Scholar] [CrossRef] [Green Version]
- Oura, C.A.; Parkhouse, R.M.; Powell, P.P.; Anderson, E. The pathogenesis of African swine fever in the resistant bushpig. J. Gen. Virol. 1998, 79, 1439–1443. [Google Scholar] [CrossRef] [Green Version]
- Dixon, L.K.; Chapman, D. African Swine Fever Virus. Encycl. Virol. 2008, 43–51. [Google Scholar]
- Arias, M.; De La Torre, A.; Dixon, L.; Gallardo, C.; Jori, F.; Laddomada, A.; Martins, C.; Parkhouse, R.M.; Revilla, Y.; Rodriguez, F.A.J.-M.; et al. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines. Vaccines 2017, 5, 35. [Google Scholar] [CrossRef]
- Stephens, M.; Donnelly, P. A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data. Am. J. Hum. Genet. 2003, 73, 1162–1169. [Google Scholar] [CrossRef] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.S.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.; Halliwell, J.A.; McWilliam, H.; López, R.; Marsh, S.G.E. IPD—The Immuno Polymorphism Database. Nucleic Acids Res. 2012, 41, D1234–D1240. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Xie, W.; Zhou, G.; Long, M.; Zhang, Q. Dynamic programming procedure for searching optimal models to estimate substitution rates based on the maximum-likelihood method. Proc. Natl. Acad. Sci. USA 2011, 108, 7860–7865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomsen, M.; Lundegaard, C.; Buus, S.; Lund, O.; Nielsen, M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics 2013, 65, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wong, W.S.; Nielsen, R. Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection. Mol. Biol. Evol. 2005, 22, 1107–1118. [Google Scholar] [CrossRef] [Green Version]
- Nonić, M.; Šijačić-Nikolić, M. Genetic Diversity: Sources, Threats, and Conservation; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Radwan, J.; Babik, W.; Kaufman, J.; Lenz, T.L.; Winternitz, J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet. 2020, 36, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Holzer, B.; Martini, V.; Edmans, M.; Tchilian, E. T and B Cell Immune Responses to influenza viruses in pigs. Front. Immunol. 2019, 10, 98. [Google Scholar] [CrossRef]
- Le, Q.V.C.; Le, T.M.; Cho, H.-S.; Kim, W.-I.; Hong, K.; Song, H.; Kim, J.-H.; Park, C. Analysis of peptide-SLA binding by establishing immortalized porcine alveolar macrophage cells with different SLA class II haplotypes. Veter. Res. 2018, 49, 96. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, A.; Loving, C.; Moise, L.; Terry, F.E.; Brockmeier, S.L.; Hughes, H.R.; Martin, W.D.; De Groot, A.S. In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model. PLoS ONE 2016, 11, e0159237. [Google Scholar] [CrossRef] [Green Version]
- Amills, M.; Ramirez, O.; Tomàs, A.; Obexer-Ruff, G.; Vidal, O. Positive selection on mammalian MHC-DQ genes revisited from a multispecies perspective. Genes Immun. 2008, 9, 651–658. [Google Scholar] [CrossRef]
- Cortázar-Chinarro, M.; Meyer-Lucht, Y.; Laurila, A.; Höglund, J. Signatures of historical selection on MHC reveal different selection patterns in the moor frog (Rana arvalis). Immunogenetics 2018, 70, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, M.L.; Neff, B.D. Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha). Mol. Ecol. 2009, 18, 4716–4729. [Google Scholar] [CrossRef]
- Ebert, D.; Fields, P.D. Host-parasite co-evolution and its genomic signature. Nat. Rev. Genetics. 2020, 21, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Mwambene, P.L.; Kyallo, M.; Machuka, E.; Githae, D.; Pelle, R. Genetic diversity of 10 indigenous chicken ecotypes from Southern Highlands of Tanzania based on Major Histocompatibility Complex-linked microsatellite LEI0258 marker typing. Poult. Sci. 2019, 98, 2734–2746. [Google Scholar] [CrossRef] [PubMed]
- Arbanasić, H.; Huber, D.; Kusak, J.; Gomerčić, T.; Hrenović, J.; Galov, A. Extensive polymorphism and evidence of selection pressure on major histocompatibility complex DLA-DRB1, DQA1 and DQB1 class II genes in Croatian grey wolves. Tissue Antigens 2012, 81, 19–27. [Google Scholar] [CrossRef]
- Cruz-Tapias, P.; Castiblanco, J.; Correa, N.E.; Montoya-Ortíz, G. Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogota, Colombia, 2013. [Google Scholar]
- Gao, C.; Quan, J.; Jiang, X.; Li, C.; Lu, X.; Chen, H. Swine Leukocyte Antigen Diversity in Canadian Specific Pathogen-Free Yorkshire and Landrace Pigs. Front. Immunol. 2017, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Sydykova, D.; Wilke, C.O. Calculating site-specific evolutionary rates at the amino-acid or codon level yields similar rate estimates. PeerJ 2017, 5, e3391. [Google Scholar] [CrossRef] [Green Version]
- Kubinak, J.L.; Ruff, J.; Hyzer, C.W.; Slev, P.R.; Potts, W. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types. Proc. Natl. Acad. Sci. USA 2012, 109, 3422–3427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Region | Population | Overall dN/dS Value (M0) | Log Likelihood Model 1 (M7, Neutral) | Log Likelihood Model 2 (M8, Selection) | Prop. of Sites under Positive Selection (p1) Estimated by M8 | Estimated dN/dS Value under M8 for the Sites under Selection | LRT Statistic = −2 Delta (lnl) | Critical Value for the Chi-Square Test (df = 2) at 5% Alpha | p-Value (Selection vs. Neutral) | Significant at Alpha Level = 5% |
---|---|---|---|---|---|---|---|---|---|---|
SLA-1 exon 2 (PBR, 80 codons) | All | 0.59 | −3799.06 | −3709.20 | 0.01 | 3.36 | 179.71 | 5.99 | 0 | Yes |
Exotic | 0.43 | −1234.51 | −1227.72 | 0.04 | 2.52 | 13.58 | 5.99 | 0.0011 | Yes | |
Local | 0.54 | −2228.69 | −2190.62 | 0.02 | 3.13 | 76.13 | 5.99 | 0 | Yes | |
Warthog | 0.69 | −1612.83 | −1581.76 | 0.01 | 4.55 | 62.12 | 5.99 | 0.000001 | Yes |
SLA−2 Loci | Population | Overall dN/dS Value (M0) | Log Likelihood Model 1 (M7, Neutral) | Log Likelihood Model 2 (M8, Selection) | Prop. of Sites under Positive Selection Estimated under M8 | dN/dS Value under m8 for Sites under Selection | LRT Statistic = −2 delta (lnl) | p-Value (Selection vs. Neutral) | Significant at Alpha Level = 5% |
---|---|---|---|---|---|---|---|---|---|
All SLA−2 exons | All | 0.54 | −7631.46 | −7381.62 | 0.02 | 5.37 | 499.68 | 0 | Yes |
Exotic | 0.47 | −4594.24 | −4485.75 | 0.02 | 5.52 | 216.97 | 0 | Yes | |
Local | 0.63 | −4727.60 | −4584.63 | 0.02 | 7.72 | 285.93 | 0 | Yes | |
Exon 1 (non−PBR, 10 codons) | All | 0.63 | −83.33 | −83.33 | 0.00 | 1.00 | 0.00 | 1 | No |
Exotic | 0.62 | −50.61 | −50.61 | 0.00 | 1.00 | 0.00 | 1 | No | |
Local | 0.13 | −59.18 | −59.18 | 0.00 | 1.00 | 0.00 | 1 | No | |
Exon 2 (PBR, 91 codons) | All | 0.39 | −2613.44 | −2585.88 | 0.03 | 2.14 | 55.13 | 0.00001 | Yes |
Exotic | 0.34 | −1460.17 | −1450.36 | 0.03 | 2.46 | 19.63 | 0.00001 | Yes | |
Local | 0.43 | −1717.28 | −1697.02 | 0.04 | 2.67 | 40.51 | 0.00001 | Yes | |
Exon 3 (PBR, 92 codons) | All | 0.63 | −1837.16 | −1760.56 | 0.01 | 6.80 | 153.19 | 0 | Yes |
Exotic | 0.54 | −1152.89 | −1111.09 | 0.02 | 8.59 | 83.59 | 0 | Yes | |
Local | 0.94 | −1205.34 | −1163.72 | 0.03 | 9.07 | 83.25 | 0 | Yes | |
Exon 4 (non−PBR, 92 codons) | All | 0.17 | −774.71 | −774.52 | 0.05 | 1.36 | 0.38 | 0.825 | No |
Exotic | 0.12 | −584.31 | −584.31 | 0.00 | 1.00 | 0.00 | 1 | No | |
Local | 0.16 | −598.96 | −598.95 | 0.09 | 1.00 | 0.00 | 0.998 | No | |
Exon 5 (non−PBR, 37 codons) | All | 0.79 | −583.16 | −581.87 | 0.34 | 1.65 | 2.57 | 0.276 | No |
Exotic | 0.87 | −462.28 | −461.19 | 0.28 | 1.96 | 2.18 | 0.336 | No | |
Local | 0.81 | −291.38 | −290.44 | 0.26 | 2.64 | 1.89 | 0.387 | No | |
Exon 6 (non−PBR, 11 codons) | All | 4.02 | −139.79 | −129.77 | 0.20 | 12.09 | 20.04 | 0.0001 | Yes |
Exotic | 1.38 | −122.15 | −117.88 | 0.21 | 5.01 | 8.54 | 0.014 | Yes | |
Local | N/A | −71.28 | −68.99 | 0.46 | N/A | 4.59 | 0.101 | No | |
Exon 7 (non−PBR, 17 codons) | All | 0.72 | −244.99 | −243.59 | 0.14 | 2.61 | 2.79 | 0.248 | No |
Exotic | 0.62 | −180.57 | −180.52 | 0.49 | 1.17 | 0.09 | 0.956 | No | |
Local | 2.09 | −130.49 | −130.10 | 0.76 | 2.99 | 0.78 | 0.675 | No |
Region | Population | Overall dN/dS Value (M0) | Log Likelihood Model 1 (M7, Neutral) | Log Likelihood Model 2 (M8, Selection) | Prop. Of Sites under Positive Selection (p1) as Estimated under M8 | Estimated dN/dS Value under M8 for the Sites under Selection | LRT Statistic = −2 Delta (lnl) | p-Value (Selection vs. Neutral) | Significant at Alpha Level = 5% |
---|---|---|---|---|---|---|---|---|---|
All DQB1 exons | All | 0.79 | −2065.05 | −1999.56 | 0.02 | 11.72 | 130.99 | 0 | Yes |
Exotic | 0.74 | −1611.00 | −1567.22 | 0.03 | 12.28 | 87.55 | 0 | Yes | |
Local | 1.06 | −1395.52 | −1384.42 | 0.06 | 10.39 | 22.20 | 0.0001 | Yes | |
Warthog | 0.43 | −1055.07 | −1055.07 | 0.00 | 1.00 | 0.00 | 1 | No | |
Exon 1 (non−PBR, 26 codons) | All | 0.22 | −115.78 | −115.78 | 0.00 | 1.00 | 0.00 | 1 | No |
Exotic | 0.45 | −110.01 | −110.01 | 0.00 | 1.00 | 0.00 | 1 | No | |
Local | 0.44 | −108.57 | −108.57 | 0.00 | 1.00 | 0.00 | 1 | No | |
Warthog | 0.00 | −102.68 | −102.68 | 0.00 | 1.00 | 0.00 | 1 | No | |
Exon 2 (PBR, 90 codons) | All | 0.62 | −1092.77 | −1069.99 | 0.01 | 7.13 | 45.57 | 0.0001 | Yes |
Exotic | 0.65 | −778.98 | −768.58 | 0.06 | 4.12 | 20.80 | 0.0001 | Yes | |
Local | 0.71 | −608.18 | −606.12 | 0.24 | 2.53 | 4.13 | 0.1269 | No | |
Warthog | 0.78 | −366.08 | −366.08 | 0.00 | 1.00 | 0.00 | 1 | No | |
Exon 3 (non−PBR, 94 codons) | All | 0.14 | −479.76 | −479.76 | 0.00 | 1.00 | 0.00 | 1 | No |
Exotic | 0.04 | −427.40 | −427.40 | 0.00 | 1.00 | 0.00 | 1 | No | |
Local | 0.43 | −414.48 | −414.48 | 0.00 | 1.00 | 0.00 | 1 | No | |
Warthog | 0.13 | −393.72 | −393.72 | 0.00 | 1.00 | 0.00 | 1 | No | |
Exon 4 (non−PBR, 37 codons) | All | 0.56 | −162.40 | −162.40 | 0.00 | 1.00 | 0.00 | 1 | No |
Exotic | N/A | −147.19 | −146.87 | N/A | N/A | 0.63 | 0.7308 | No | |
Local | 0.56 | −162.39 | −162.39 | 0.00 | 1.00 | 0.00 | 1 | No | |
Warthog | 1.00 | −140.47 | −140.47 | 0.00 | 1.04 | 0.00 | 1 | No | |
Exon 5 (non−PBR, 6 codons) | All | N/A | −16.31 | −16.01 | N/A | N/A | 0.62 | 0.7339 | No |
Exotic | 1.00 | −12.01 | −12.01 | 0.10 | 1.05 | 0.00 | 1 | No | |
Local | N/A | −16.31 | −16.00 | N/A | N/A | 0.62 | 0.7340 | No | |
Warthog | 1.00 | −12.00 | −12.00 | 0.00 | 1.04 | 0.00 | 1 | No |
Loci | Population | Model | dN/dS Value | Significance a | Codons Predicted to Be under Positive Selection BEB Inference b |
---|---|---|---|---|---|
SLA-1 (exon 2) | All | M7 vs. M8 | 3.36 | p < 0 | 6 **, 15 **, 53 **, 57 **, 58 **, 61 **, 64 **, 68 ** |
Exotic | M7 vs. M8 | 2.52 | p < 0.001 | 6 *, 15 *, 36 *, 53 **, 57 **, 58 **, 65 **, 68 ** | |
Local | M7 vs. M8 | 3.13 | p < 0 | 15 **, 36 **, 53 **, 56 **, 57 **, 58 **, 59 **, 61 *, 68 ** | |
Warthog | M7 vs. M8 | 4.55 | p < 0 | 15 **, 53 **, 58 *, 64 **, 65 ** | |
SLA-2 | All | M7 vs. M8 | 5.37 | p < 0 | 11 *, 17 **, 20 **, 28 **, 34 **, 35 **, 56 **, 64 **, 69 *, 77 **, 78 **, 79 *, 80 **, 81 *, 84 *, 88 **, 90 **, 91 *, 92 **, 106 **, 125 **, 127 **, 128 **, 154 **, 158 **, 162 **, 163 **, 166 **, 167 **, 174 **, 178 **, 180 **, 181 *, 286 *, 288 **, 312 **, 322 **, 345 *, 350 *, 351 ** |
Exotic | M7 vs. M8 | 5.52 | p < 0 | 17 **, 20 **, 34 *, 35 **, 56* *, 74 **, 78 **, 79 *, 80 **, 81 **, 84 **, 88 **, 90 **, 92 *, 106 **, 108 **, 125 **, 127 *, 158 **, 162 *, 163 **, 166 **, 167 **, 174 **, 178 **, 181 **, 312 *, 330 *, 350 *, 351 ** | |
Local | M7 vs. M8 | 7.72 | p < 0 | 11 *, 17 **, 20 **, 28 **, 34 **, 35 **, 55 *, 56 **, 64 **, 73 **, 77 **, 78 **, 80 **, 88 **, 90 **, 91 **, 92 **, 106 *, 113 **, 125 **, 154 **, 158 **, 162 **, 163 **, 166 **, 167 **, 174 **, 178**, 180**, 288 *, 322 ** | |
DQB1 | All | M7 vs. M8 | 11.72 | p < 0 | 8 *, 31 **, 35 **, 40**, 47 *, 48 **, 50 **, 52 *, 59 **, 60 **, 65 *, 79 **, 85 *, 88 **, 93 **, 99 *, 204 *, 242 ** |
Exotic | M7 vs. M8 | 12.28 | p < 0 | 8 **, 31 **, 35 **, 40 *, 47 **, 48 **, 49 *, 50 **, 52 **, 59 **, 60 *, 65 *, 79 **, 85 *, 88 **, 89 *, 93 *, 204 ** | |
Local | M7 vs. M8 | 10.39 | p < 0.00001 | 31 **, 35 **, 48 *, 52 *, 59 *, 60 *, 79 *, 88 *, 93 *, 113 *, 242 * |
Loci | Population | N | Ho | Hs | Ht | Htp | Dst | Dstp | Fst | Fstp | Fis | Dest |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SLA-1 | Exotic pigs | 16 | 0.0341 | 0.0887 | 0.0887 | NaN | 0 | NaN | 0 | NaN | 0.6154 | NaN |
Locally-adapted pigs | 27 | 0.0778 | 0.1116 | 0.1116 | NaN | 0 | NaN | 0 | NaN | 0.3029 | NaN | |
Warthogs | 16 | 0.0766 | 0.1637 | 0.1637 | NaN | 0 | NaN | 0 | NaN | 0.5323 | NaN | |
All included | 59 | 0.0471 | 0.1133 | 0.1191 | 0.121 | 0.0058 | 0.0077 | 0.0485 | 0.0636 | 0.5843 | 0.0087 | |
SLA-2 | Exotic pigs | 16 | 0.0203 | 0.0585 | 0.0585 | NaN | 0 | NaN | 0 | NaN | 0.653 | NaN |
Locally-adapted pigs | 25 | 0.0167 | 0.0633 | 0.0633 | NaN | 0 | NaN | 0 | NaN | 0.7367 | NaN | |
Warthogs | 2 | 0.0038 | 0.0019 | 0.0019 | NaN | 0 | NaN | 0 | NaN | −1 | NaN | |
All included | 43 | 0.0102 | 0.046 | 0.0556 | 0.0588 | 0.0096 | 0.0128 | 0.173 | 0.2181 | 0.7786 | 0.0135 | |
DQB1 | Exotic pigs | 16 | 0.0021 | 0.0197 | 0.0197 | NaN | 0 | NaN | 0 | NaN | 0.8911 | NaN |
Locally-adapted pigs | 21 | 0.0006 | 0.0099 | 0.0099 | NaN | 0 | NaN | 0 | NaN | 0.9428 | NaN | |
Warthogs | 2 | 0.002 | 0.0152 | 0.0152 | NaN | 0 | NaN | 0 | NaN | 0.8696 | NaN | |
All included | 39 | 0.0012 | 0.0147 | 0.0206 | 0.0225 | 0.0059 | 0.0079 | 0.2867 | 0.3489 | 0.9202 | 0.008 |
Loci | MHC | Pop | N | Π | Hd | θW | θEta | Eta |
---|---|---|---|---|---|---|---|---|
SLA-1 | PBR (Exon 2) | All samples | 60 | 0.12178 ± 0.00472 | 0.9973 ± 0.0015 | 0.13415 ± 0.03321 | 0.20751 | 198 |
Locally-adapted pigs | 27 | 0.10083 ± 0.00539 | 0.997 ± 0.004 | 0.0973 ± 0.02795 | 0.13146 | 127 | ||
Exotic pigs | 18 | 0.085 ± 0.00796 | 0.98 ± 0.010 | 0.08 ± 0.02747 | 0.11017 | 100 | ||
Warthogs | 16 | 0.11654 ± 0.00952 | 0.998 ± 0.08 | 0.12834 ± 0.04066 | 0.166 | 119 | ||
SLA-2 | PBR (Exon 2) | All samples | 44 | 0.1098 ± 0.00396 | 0.968 ± 0.011 | 0.09404 ± 0.02462 | 0.13149 | 158 |
Locally-adapted pigs | 25 | 0.09812 ± 0.00793 | 0.953 ± 0.021 | 0.08442 ± 0.02464 | 0.1135 | 121 | ||
Exotic pigs | 16 | 0.09582 ± 0.00464 | 0.944 ± 0.035 | 0.07725 ± 0.02459 | 0.09564 | 104 | ||
Warthogs * | 2 | 0.00494 ± 0.00151 | 0.667 ± 0.204 | 0.00404 ± 0.00324 | 0.00404 | 2 | ||
PBR (Exon 3) | All samples | 44 | 0.05975 ± 0.00311 | 0.925 ± 0.021 | 0.05956 ± 0.01593 | 0.07822 | 109 | |
Locally-adapted pigs | 25 | 0.05030 ± 0.00434 | 0.878 ± 0.042 | 0.05015 ± 0.000406 | 0.06471 | 80 | ||
Exotic pigs | 16 | 0.06599 ± 0.00461 | 0.935 ± 0.035 | 0.05488 ± 0.01781 | 0.06658 | 74 | ||
Warthogs * | 2 | 0 | 0 | 0 | 0 | 0 | ||
DQB1 | PBR (Exon 2) | All samples | 40 | 0.03332 ± 0.00423 | 0.735 ± 0.055 | 0.04636 ± 0.01291 | 0.05085 | 68 |
Locally-adapted pigs | 21 | 0.02152 ± 0.00663 | 0.455 ± 0.095 | 0.03357 ± 0.01083 | 0.03529 | 41 | ||
Exotic pigs | 16 | 0,04146 ± 0.00442 | 0.905 ± 0.039 | 0.03863 ± 0.01293 | 0.04047 | 44 | ||
Warthogs | 2 | 0.01914 ± 0.00557 | 0.833 ± 0.222 | 0.01616 ± 0.00993 | 0.01616 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machuka, E.M.; Muigai, A.W.T.; Amimo, J.O.; Domelevo Entfellner, J.-B.; Lekolool, I.; Abworo, E.O.; Pelle, R. Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs. Vet. Sci. 2021, 8, 180. https://doi.org/10.3390/vetsci8090180
Machuka EM, Muigai AWT, Amimo JO, Domelevo Entfellner J-B, Lekolool I, Abworo EO, Pelle R. Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs. Veterinary Sciences. 2021; 8(9):180. https://doi.org/10.3390/vetsci8090180
Chicago/Turabian StyleMachuka, Eunice Magoma, Anne W. Thairu Muigai, Joshua Oluoch Amimo, Jean-Baka Domelevo Entfellner, Isaac Lekolool, Edward Okoth Abworo, and Roger Pelle. 2021. "Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs" Veterinary Sciences 8, no. 9: 180. https://doi.org/10.3390/vetsci8090180
APA StyleMachuka, E. M., Muigai, A. W. T., Amimo, J. O., Domelevo Entfellner, J. -B., Lekolool, I., Abworo, E. O., & Pelle, R. (2021). Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs. Veterinary Sciences, 8(9), 180. https://doi.org/10.3390/vetsci8090180