Evaluation of Behavioral Changes and Tissue Damages in Common Carp (Cyprinus carpio) after Exposure to the Herbicide Glyphosate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparing
2.2. Toxicity Test
2.3. Histopathological Test
2.4. Behavioral Test
2.5. Data Analysis
3. Results
3.1. Results of the 96 h LC50 (Lethal Concentration of 50% of the Population in 96 h) Test
Results of the Histopathological Assay
3.2. Results of the Behavioral Assay
3.2.1. Control Group
3.2.2. Glyphosate Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taiz, L. Agriculture, plant physiology, and human population growth: Past, present, and future. Theor. Exp. Plant. Physiol. 2013, 25, 167–181. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Development Report 2008: Agriculture for Development; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Cleland, J. World Population Growth; Past, Present and Future. Environ. Resour. Econ. 2013, 55, 543–554. [Google Scholar] [CrossRef]
- Pinstrup-Andersen, P. Food and Agricultural Policy for a Globalizing World: Preparing for the Future. Am. J. Agric. Econ. 2002, 84, 1201–1214. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agr. Sci. 2005, 144, 31–43. [Google Scholar] [CrossRef]
- Atreya, K.; Sitaula, B.K.; Bajracharya, R.M. Pesticide use in agriculture: The philosophy, complexities and opportunities. Sci. Res. Essay 2012, 7, 2168–2173. [Google Scholar]
- Raven, P.H.; Berg, L.R.; Hassenzahl, D.M. Environment, 6th ed.; John Wiley and Sons Inc.: New York, NY, USA, 2008; 672p. [Google Scholar]
- Vajargah, F.; Yalsuyi, M.A.; Hedayati, A.; Faggio, C. Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Micro. Res. Tech. 2018, 81, 724–729. [Google Scholar] [CrossRef]
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2012, 33, 243–255. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Small amounts of pesticides reaching target insects. Environ. Dev. Sustain. 2011, 14, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Yalsuyi, A.M.; Hedayati, A.; Vajargah, M.F.; Mousavi-Sabet, H. Examining the toxicity of Cadmium chloride in common carp (Cyprinus carpio) and Goldfish (Carassius auratus). J. Environ. Treat. Tech. 2017, 5, 83–86. [Google Scholar]
- Vajargah, M.F.; Yalsuyi, A.M.; Sattari, M.; Prokić, M.D.; Faggio, C. Effects of Copper oxide nanoparticles (CuO-NPs) on parturition time, survival rate and reproductive success of Guppy fish, Poecilia reticulata. J. Cluster Sci. 2020, 31, 499–506. [Google Scholar] [CrossRef]
- Burgos Aceves, M.A.; Migliaccio, V.; Lepretti, M.; Paolella, G.; di Gregorio, I.; Penna, S.; Faggio, C.; Lionetti, L. 1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethane (DDT) and 1,1-Dichloro-2,2-bis (p, p’-chlorophenyl) ethylene (DDE) as endocrine disruptors in human and wildlife: A possible implication of mitochondria. Environ. Toxicol. Pharmacol. 2021, 87, 103684. [Google Scholar] [CrossRef] [PubMed]
- Vajargah, F.M.; Mohsenpour, R.; Yalsuyi, A.M.; Galangash, M.M.; Faggio, C. Evaluation of histopathological effect of Roach (Rutilus rutiluscaspicus) in exposure to sub-lethal concentrations of Abamectin. Water Air Soil Pollut. 2021, 232, 188. [Google Scholar] [CrossRef]
- Faria, M.; Prats, E.; Ramírez, J.R.R.; Bellot, M.; Bedrossiantz, J.; Pagano, M.; Valls, A.; Gomez-Canela, C.; Porta, J.M.; Mestres, J.; et al. Androgenic activation, impairment of the monoaminergic system and altered behavior in zebrafish larvae exposed to environmental concentrations of fenitrothion. Sci. Total. Environ. 2021, 775, 145671. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.C.; Shaw, E.M.; Rypstra, A.L. Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 2010, 19, 1249–1257. [Google Scholar] [CrossRef]
- Yalsuyi, A.M.; Vajargah, M.F. Acute toxicity of silver nanoparticles in Roach (Rutilus rutilus) and Goldfish (Carassius auratus). J. Environ. Treat. Tech. 2017, 5, 1–4. [Google Scholar]
- Hedayati, A.; Yalsuyi, A.M.; Vajargah, M.F. Acute toxicity test as a method to assessment toxicity of pollutants. Ann. Aquacult. Res. 2017, 4, 1036. [Google Scholar]
- Vajargah, M.F.; Yalsuyi, A.M.; Sattari, M.; Hedayati, A. Acute toxicity effect of glyphosate on survival rate of common carp, Cyprinus carpio. Environ. Heal. Eng. Manag. 2018, 5, 61–66. [Google Scholar] [CrossRef]
- Oliveira, J.L.; Campos, E.; Bakshi, M.; Abhilash, P.; Fraceto, L. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol. Adv. 2014, 32, 1550–1561. [Google Scholar] [CrossRef]
- Poiger, T.; Buerge, I.J.; Bächli, A.; Müller, M.D.; Balmer, M. Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environ. Sci. Pollut. Res. 2016, 24, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Heal. 2016, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chorehi, M.M.; Ghaffari, H.; Hossaini, S.A.; Niazie, E.H.N.; Vajargah, M.F.; Hedayati, A. Acute toxicity of Diazinon to the Caspian vimba, Vimba vimba persa (Cypriniformes: Cyprinidae). Inter. J. Aqua. Biol. 2013, 1, 254–257. [Google Scholar]
- Vajargah, M.F.; Yalsuyi, A.M.; Hedayati, A. Acute toxicity of povidone-iodine (Betadine) in common carp (Cyprinus carpio L. 1758). Pollution 2017, 3, 589–593. [Google Scholar]
- Vajargah, M.F.; Imanpoor, M.R.; Shabani, A.; Hedayati, A.; Faggio, C. Effect of long-term exposure of silver nanoparticles on growth indices, hematological and biochemical parameters and gonad histology of male Goldfish (Carassius auratus gibelio). Micro. Res. Tech. 2019, 82, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Larras, F.; Montuelle, B.; Bouchez, A. Assessment of toxicity thresholds in aquatic environments: Does benthic growth of diatoms affect their exposure and sensitivity to herbicides? Sci. Total. Environ. 2013, 463-464, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2017, 16, 401–426. [Google Scholar] [CrossRef]
- Loro, V.L.; Glusczak, L.; Moraes, B.S.; Leal, C.A.M.; Menezes, C.; Murussi, C.R.; Leitemperger, J.W.; Schetinger, M.R.C.; Morsch, V.M. Glyphosate-based herbicide affects biochemical parameters in Rhamdia quelen (Quoy & Gaimard, 1824 and) Leporinus obtusidens (Valenciennes, 1837). Neotropical Ichthyol. 2015, 13, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.-S.; Xu, J.; Xing, X.-J.; Zhao, W.; Fu, X.-Y.; Peng, R.-H.; Yao, Q.-H. Improved glyphosate resistance of 5-enolpyruvylshikimate-3-phosphate synthase from Vitis vinifera in transgenic Arabidopsis and rice by DNA shuffling. Mol. Breed. 2015, 35, 1–11. [Google Scholar] [CrossRef]
- Tohge, T.; Watanabe, M.; Hoefgen, R.; Fernie, A.R. Shikimate and Phenylalanine Biosynthesis in the Green Lineage. Front. Plant. Sci. 2013, 4, 62. [Google Scholar] [CrossRef] [Green Version]
- Souza, E.L.C.; Foloni, L.L.; Filho, J.T.; Velini, E.D.; Siono, L.M.; Silva, J.R.M. Half-Life of Glyphosate on the Control of Water Hyacinths in Water Tanks. J. Water Resour. Prot. 2017, 9, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Vajargah, M.F.; Namin, J.I.; Mohsenpour, R.; Yalsuyi, A.M.; Prokić, M.D.; Faggio, C. Histological effects of sublethal concentrations of insecticide Lindane on intestinal tissue of grass carp (Ctenopharyngodon idella). Veter- Res. Commun. 2021, 1–8. [Google Scholar] [CrossRef]
- Kang, I.J.; Moroishi, J.; Nakamura, A.; Nagafuchi, K.; Kim, S.G.; Oshima, Y. Biological Monitoring for Detection of Toxic Chemicals in Water by the Swimming Behavior of Small Freshwater Fish. J. Fac. Agric. Kyushu Univ. 2009, 54, 209–214. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Han, X.; Huang, T. The use of zebra fish (Danio rerio) behavioral responses in identifying sublethal exposures to Deltamethrin. Inter. J. Environ. Res. Public Health 2014, 11, 3650–3660. [Google Scholar] [CrossRef] [Green Version]
- Kane, A.S.; Salierno, J.D.; Gipson, G.T.; Molteno, T.C.; Hunter, C. A video-based movement analysis system to quantify behavioral stress responses of fish. Water Res. 2004, 38, 3993–4001. [Google Scholar] [CrossRef] [PubMed]
- Saglio, P.; Trijasse, S. Behavioral responses to atrazine and diuron in goldfish. Arch. Environ. Contam. Toxicol. 1998, 35, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.; Grillitsch, B.; Wytek, R.; Spieser, O.H.; Scholz, W. Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part I. Variability of measurement parameters under general test conditions. Environ. Toxicol. Chem. 1999, 18, 2736–2742. [Google Scholar] [CrossRef]
- Zhou, T.; Weis, J.S. Swimming behavior and predator avoidance in three populations of Fudulus heteroclitus larvae after embryonic exposure and/or larval exposure to methylmercury. Aquat Tox 1998, 43, 131–148. [Google Scholar] [CrossRef]
- Yalsuyi, A.M.; Hajimoradloo, A.; Ghorbani, R.; Jafari, V.-A.; Prokić, M.D.; Faggio, C. Behavior evaluation of rainbow trout (Oncorhynchus mykiss) following temperature and ammonia alterations. Environ. Toxicol. Pharmacol. 2021, 86, 103648. [Google Scholar] [CrossRef]
- Chromcova, L.; Blahova, J.; Zivna, D.; Plhalova, L.; Di Tocco, F.C.; Divisova, L.; Prokeš, M.; Faggio, C.; Tichy, F.; Svobodová, Z. NeemAzal T/S – toxicity to early-life stages of common carp (Cyprinus carpio L.). Vet. Med. 2016, 60, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Hodkovicova, N.; Chmelova, L.; Sehonova, P.; Blahova, J.; Doubkova, V.; Plhalova, L.; Fiorino, E.; Vojtek, L.; Vicenova, M.; Siroka, Z.; et al. The effects of a therapeutic formalin bath on selected immunological and oxidative stress parameters in common carp (Cyprinus carpio). Sci. Total. Environ. 2018, 653, 1120–1127. [Google Scholar] [CrossRef]
- Hodkovicova, N.; Enevova, V.; Cahova, J.; Blahova, J.; Siroka, Z.; Plhalova, L.; Doubkova, V.; Marsalek, P.; Franc, A.; Fiorino, E.; et al. Could the musk compound tonalide affect physiological functions and act as an endocrine disruptor in rainbow trout? Physiol. Res. 2020, 69, 595–606. [Google Scholar] [CrossRef]
- Aliko, V.; Mehmeti, E.; Qirjo, M.; Faggio, C. ’Drink and sleep like a fish’: Goldfish as a behavior model to study pharmaceutical effects in freshwater ecosystems. J. Biol. Res. 2019, 92. [Google Scholar] [CrossRef] [Green Version]
- Stara, A.; Bellinvia, R.; Velisek, J.; Strouhova, A.; Kouba, A.; Faggio, C. Acute exposure of neonicotinoid pesticide on common yabby (Cherax destructor). Sci. Total Environ. 2019, 665, 718–723. [Google Scholar] [CrossRef]
- Stara, A.; Kubec, J.; Zuskova, E.; Buric, M.; Faggio, C.; Kouba, A.; Velisek, J. Effects of S-metolachlor and its degradation product metolachlor OA on marbled crayfish (Procambarus virginalis). Chemosphere 2019, 224, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Stara, A.; Pagano, M.; Capillo, G.; Fabrello, J.; Sandova, M.; Vazzana, I.; Zuskova, E.; Velisek, J.; Matozzo, V.; Faggio, C. Assessing the effects of neonicotinoid insecticide on the bivalve mollusc Mytilus galloprovincialis. Sci. Total. Environ. 2019, 700, 134914. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.; Stara, A.; Aliko, V.; Faggio, C. Impact of Neonicotinoids to Aquatic Invertebrates-In Vitro Studies on Mytilus galloprovincialis: A Review. J. Marine Sci. Engine. 2020, 8, 801. [Google Scholar] [CrossRef]
- Sula, E.; Aliko, V.; Barceló, D.; Faggio, C. Combined effects of moderate hypoxia, pesticide and PCBs upon Crucian Carp fish, Carassius carrasius, from a freshwater lake-in situ ecophysiological approach. Aquat. Toxicol. 2020, 228, 105644. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, E.; Sehonova, P.; Plhalova, L.; Blahova, J.; Svobodova, Z.; Faggio, C. Effects of glyphosate on early life stages: Comparison between Cyprinus carpio and Danio rerio. Environ. Sci. Pollut. Res. 2018, 25, 8542–8549. [Google Scholar] [CrossRef] [PubMed]
- Nešković, N.K.; Poleksić, V.; Elezović, I.; Karan, V.; Budimir, M. Biochemical and Histopathological Effects of Glyphosate on Carp, Cyprinus carpio L. Bull. Environ. Contam. Toxicol. 1996, 56, 295–302. [Google Scholar] [CrossRef]
- Webster, T.M.U.; Santos, E.M. Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup. BMC Genom. 2015, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sinhorin, V.D.G.; Sinhorin, A.P.; Teixeira, J.M.S.; Miléski, K.M.L.; Hansen, P.C.; Moeller, P.R.; Moreira, P.S.A.; Baviera, A.M.; Loro, V. Metabolic and Behavior Changes in Surubim Acutely Exposed to a Glyphosate-Based Herbicide. Arch. Environ. Contam. Toxicol. 2014, 67, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, R.; Clasen, B.; Loro, V.L.; Menezes, C.; Pretto, A.; Baldisserotto, B.; Santi, A.; Avila, L. Toxicological Responses of Cyprinus carpio Exposed to a Commercial Formulation Containing Glyphosate. Bull. Environ. Contam. Toxicol. 2011, 87, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Portz, D.E.; Woodley, C.M.; Cech, J.J. Stress-associated impacts of short-term holding on fishes. Rev. Fish. Biol. Fish. 2006, 16, 125–170. [Google Scholar] [CrossRef]
- Hedayati, A.; Vajargah, M.F.; Yalsuyi, A.M.; Abarghoei, S.; Hajiahmadyan, M. Acute toxicity test of pesticide abamectin on common carp (Cyprinus carpio). J. Coast. Life Med. 2014, 2, 841–844. [Google Scholar]
- Paoletti, M.G.; Pimentel, D. Environmental Risks of Pesticides Versus Genetic Engineering for Agricultural Pest Control. J. Agric. Environ. Ethic 2000, 12, 279–303. [Google Scholar] [CrossRef]
- Vajargah, M.F.; Hedayati, A. Acute Toxicity of Butachlor to Rutilus rutilus caspicus and Sander lucioperca in Vivo Condition. Transylv. Rev. Syst. Ecol. Res. 2017, 19, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Vajargah, M.F.; Hossaini, S.A.; Niazie, E.H.N.; Hedayati, A.; Vesaghi, M.J. Acute toxicity of two pesticides Diazinon and Deltamethrin on Tench (Tinca tinca) larvae and fingerling. Inter. J. Aquat. Biol. 2013, 1, 138–142. [Google Scholar]
Swimming Pattern Parameters | Definition |
---|---|
Average speed swimming (A.S.) | The average speed of the fish in t seconds, when the fish move to X cm . |
Total movement (T.M.) | Total movement of the fish in t seconds: . The movement is the displacement of the fish body by about two-thirds of their body length |
Percent movement (P.M.) | Percent of movement is total movement time (t) to total time (T) multiply by 100 |
Fastest movement (F.M.) | The total distance that fish in that time (1 s) has more than double the average swimming speed. |
Average angular change of movement (A.C.) | The angle differences from points t2 to t1 when the point t0 is beginning to move. |
Average distance from the center (D.C.) | Average distance of specific region of fish (i.e., fish head) from the center of the test tank in t time. |
Nominal Concentrations (mL·L−1) | ||||
---|---|---|---|---|
Tissue Damages | 0 | 50 | 100 | 150 |
Hyperemia | — | ++ | +++ | +++ |
Hyperplasia | — | +++ | +++ | +++ |
Hypertrophy | — | ++ | ++++ | ++++ |
Swollen primary gill | — | ++ | +++ | +++ |
Secondary lamellar adhesion | — | +++ | +++ | ++++ |
Hemorrhage | — | ++ | ++ | +++ |
Necrosis | — | + | +++ | ++++ |
The Test Groups | ||||
---|---|---|---|---|
Parameters | Control Group | Glyphosate Treatment | ||
Step 1 | Step 2 | Step 1 | Step 2 | |
A.S. (cm·s−1) | 3.82 ± 0.02 b | 3.79 ± 0.02 b | 4.85 ± 0.18 a | 5.06 ± 0.05 a |
T.M. (cm) | 228.84 ± 1.08 b | 227.31 ± 1.26 b | 290.87 ± 10.85 a | 303.39 ± 3.29 a |
P.M. (%) | 95.25 ± 0.16 b | 95.06 ± 0.12 b | 96.38 ± 0.21 a | 96.10 ± 0.46 a |
F.M. (cm) | 6.14 ± 0.02 b | 6.11 ± 0.02 b | 14.40 ± 0.91 a | 15.40 ± 0.25 a |
A.C. (θ°) | 36.46 ± 0.23 b | 36.57 ± 0.12 b | 65.46 ± 4.10 a | 61.57 ± 4.64 a |
D.C. (cm) | 8.47 ± 0.06 b | 8.44 ± 0.02 b | 11.34 ± 0.40 a | 11.72 ± 0.27 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalsuyi, A.M.; Vajargah, M.F.; Hajimoradloo, A.; Galangash, M.M.; Prokić, M.D.; Faggio, C. Evaluation of Behavioral Changes and Tissue Damages in Common Carp (Cyprinus carpio) after Exposure to the Herbicide Glyphosate. Vet. Sci. 2021, 8, 218. https://doi.org/10.3390/vetsci8100218
Yalsuyi AM, Vajargah MF, Hajimoradloo A, Galangash MM, Prokić MD, Faggio C. Evaluation of Behavioral Changes and Tissue Damages in Common Carp (Cyprinus carpio) after Exposure to the Herbicide Glyphosate. Veterinary Sciences. 2021; 8(10):218. https://doi.org/10.3390/vetsci8100218
Chicago/Turabian StyleYalsuyi, Ahmad Mohamadi, Mohammad Forouhar Vajargah, Abdolmajid Hajimoradloo, Mohsen Mohammadi Galangash, Marko D. Prokić, and Caterina Faggio. 2021. "Evaluation of Behavioral Changes and Tissue Damages in Common Carp (Cyprinus carpio) after Exposure to the Herbicide Glyphosate" Veterinary Sciences 8, no. 10: 218. https://doi.org/10.3390/vetsci8100218
APA StyleYalsuyi, A. M., Vajargah, M. F., Hajimoradloo, A., Galangash, M. M., Prokić, M. D., & Faggio, C. (2021). Evaluation of Behavioral Changes and Tissue Damages in Common Carp (Cyprinus carpio) after Exposure to the Herbicide Glyphosate. Veterinary Sciences, 8(10), 218. https://doi.org/10.3390/vetsci8100218