Three-Dimensional-Printed Thermoplastic Polyurethane (TPU) Graft and H-Button Stabilization System for Intra-Articular Cranial Cruciate Ligament Reconstruction: Cadaveric Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval and Consent to Participate
2.2. Population
2.3. Biomechanical Testing of Natural, Intact CrCL
2.4. Components of the Intraarticular CrCL Reconstruction System
2.5. Preparation of the 3D-Printed TPU Graft
2.6. Biomechanical Testing of the Raw 3D-Printed TPU Graft
2.7. Micromorphology of the 3D-Printed TPU Graft
2.8. Preparation of the H-Button Fixator
2.9. Stifle Specimen Stabilization Procedure
2.10. Biomechanical Testing of the Intraarticular CrCL Reconstructed Stifles
2.11. Statistical Analysis
3. Results
3.1. Population
3.2. Dimensions, Inclination, and Biomechanics of Intact CrCL
3.3. Intra-Articular CrCL Reconstruction System
3.4. Micromorphology and Biomechanics of Raw and Implanted 3D-Printed TPU Graft
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | Anterior cruciate ligament |
CrCL | Cranial cruciate ligament |
IACUC | Institutional Animal Care and Use Committee |
LARS | Ligament augmentation reconstruction system |
PET | Polyethylene terephthalate |
PEUUs | Polyether-urethanes |
PLA | Polylactic acid |
PLGA | lactic-co-glycolic acid |
TPU | Thermoplastic polyurethane |
References
- Markatos, K.; Kaseta, M.K.; Lallos, S.N.; Korres, D.S.; Efstathopoulos, N. The anatomy of the ACL and its importance in ACL reconstruction. Eur. J. Orthop. Surg. Traumatol. 2013, 23, 747–752. [Google Scholar] [CrossRef]
- Fujino, H.; Honmai, M.; Mochizuki, M. Preoperative planning for tibial plateau leveling osteotomy based on proximal tibial width. J. Vet. Med. Sci. 2020, 82, 661–667. [Google Scholar] [CrossRef]
- Little, D.; Thompson, J.W.; Dubois, L.G.; Ruch, D.S.; Moseley, M.A.; Guilak, F. Proteomic differences between male and female anterior cruciate ligament and patellar tendon. PLoS ONE 2014, 9, e96526. [Google Scholar] [CrossRef]
- Gobbi, A.; Whyte, G.P. Long-term outcomes of primary repair of the anterior cruciate ligament combined with biologic healing augmentation to treat incomplete tears. Am. J. Sports Med. 2018, 46, 3368–3377. [Google Scholar] [CrossRef]
- Binversie, E.E.; Walczak, B.E.; Cone, S.G.; Baker, L.A.; Scerpella, T.A.; Muir, P. Canine ACL rupture: A spontaneous large animal model of human ACL rupture. BMC Musculoskelet. Disord. 2022, 23, 116. [Google Scholar] [CrossRef] [PubMed]
- Bi, F.; Shi, Z.; Liu, A.; Guo, P.; Yan, S. Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft. PLoS ONE 2015, 10, e0125900. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, P.; Fletcher, J.; Duval, N. Patient satisfaction needs as related to knee stability and objective findings after ACL reconstruction using the LARS artificial ligament. Knee 2000, 7, 157–163. [Google Scholar] [CrossRef]
- Nau, T.; Lavoie, P.; Duval, N. A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament: Two year follow up of a randomised trial. J. Bone Jt. Surg. Br. 2002, 84, 356–360. [Google Scholar] [CrossRef]
- Zhang, P.; Han, F.; Chen, T.; Wu, Z.; Chen, S. ‘Swiss roll’-like bioactive hybrid scaffolds for promoting bone tissue ingrowth and tendon bone healing after anterior cruciate ligament reconstruction. Biomater. Sci. 2020, 8, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Gunatillake, P.A.; Martin, D.J.; Meijs, G.F.; McCarthy, S.J.; Adhikari, R. Designing biostable polyurethane elastomers for biomedical implants. Aust. J. Chem. 2003, 56, 545–557. [Google Scholar] [CrossRef]
- Liljensten, E.; Gisselfalt, K.; Edberg, B.; Bertilsson, H.; Flodin, P.; Nilsson, A.; Lindahl, A.; Peterson, L. Studies of polyurethane urea bands for ACL reconstruction. J. Mater. Sci. Mater. Med. 2002, 13, 351–359. [Google Scholar] [CrossRef]
- Julinder, K. Intra-Articular Replacement of a Ruptured Cranial Cruciate Ligament in Dogs Using a Synthetic GraftSöderköpings Djurklinik. Artro Clinic, Söderköping, Sweden, 2012. Available online: https://animalartroclinic.se/ (accessed on 28 June 2025).
- Rodrigues, H. Técnicas Anatômicas, 3rd ed.; Arte Visual: Vitória, Brazil, 2005; 229p. [Google Scholar]
- Zhi, Y.; Jiang, J.; Zhang, P.; Chen, S. Silk enhances the ligamentization of the polyethylene terephthalate artificial ligament in a canine anterior cruciate ligament reconstruction model. Artif. Organs 2019, 43, E94–E108. [Google Scholar] [CrossRef]
- Mendaza DeCal, R.M.; Rojo, C. 3D printed model of the ovine stomach by surface scanning: Evaluation for teaching veterinary anatomy. Int. J. Morphol. 2021, 39, 1480–1486. [Google Scholar] [CrossRef]
- Elias, N.S.R.; Pereira, H.C.S.; Lisboa Neto, A.F.S.; Silveira, E.E.; Santos, A.C.; Assis Neto, A.C. Bioprinting of 3D anatomical models of flat and long thoracic limb bones of domestic cats (Felis catus Linnaeus, 1758). Braz. J. Vet. Med. 2021, 43, e106020. [Google Scholar] [CrossRef]
- Kurt, S.; Selviler Sizer, S.; Onuk, B.; Kabak, M. Comparison of sheep scapula models created with polylactic acid and thermoplastic polyurethane filaments by three dimensional modelling. Anat. Histol. Embryol. 2022, 51, e12784. [Google Scholar] [CrossRef]
- Gaspar, R.B.; Assis Neto, A.C. Three dimensional printing educational anatomical model of the patellar luxation in dogs. PLoS ONE 2021, 16, e0255288. [Google Scholar] [CrossRef]
- Paatsama, S. Ligament Injuries in the Canine Stifle Joint: A Clinical and Experimental Study; University of Helsinki: Helsinki, Finland, 1952. [Google Scholar]
- Guidoin, M.F.; Marois, Y.; Bejui, J.; Poddevin, N.; King, M.W.; Guidoin, R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000, 21, 2461–2474. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Chen, S.; Wang, L.; Zhang, W.; Kang, Y.; Dong, Q.; Zhou, H.; Li, L. Anterior cruciate ligament reconstruction with LARS artificial ligament: A multicenter study with 3 to 5 year follow up. Arthroscopy 2010, 26, 515–523. [Google Scholar] [CrossRef]
- Kajave, N.S.; Schmitt, T.; Nguyen, T.U.; Gaharwar, A.K.; Kishore, V. Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue. Biomed. Mater. 2021, 16, 035003. [Google Scholar] [CrossRef]
- Le Guéhennec, L.G.; Van Hede, D.; Plougonven, E.; Nolens, G.; Verlée, B.; Mc, D.P.; Lambert, F. In vitro and in vivo biocompatibility of calcium phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration. J. Biomed. Mater. Res. A 2020, 108, 412–425. [Google Scholar] [CrossRef]
- Loterie, D.; Delrot, P.; Moser, C. High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 2020, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Pan, H.; Jiang, J.; Zhao, C.; Zhang, J.; Chen, P.; Lin, X.; Fan, S. Desktop-stereolithography 3D printing of a polyporous extracellular matrix bioink for bone defect regeneration. Front. Bioeng. Biotechnol. 2020, 8, 589094. [Google Scholar] [CrossRef] [PubMed]
- Pitaru, A.A.; Lacombe, J.G.; Cooke, M.E.; Beckman, L.; Steffen, T.; Weber, M.H.; Martineau, P.A.; Rosenzweig, D.H. Investigating commercial filaments for 3D printing of stiff and elastic constructs with ligament-like mechanics. Micromachines 2020, 11, 846. [Google Scholar] [CrossRef]
- Regehly, M.; Garmshausen, Y.; Reuter, M.; König, N.F.; Israel, E.; Kelly, D.P.; Chou, C.Y.; Koch, K.; Asfari, B.; Hecht, S. Xolography for linear volumetric 3D printing. Nature 2020, 588, 620–624. [Google Scholar] [CrossRef]
- Castilho, M.; Levato, R.; Bernal, P.N.; Mylène, D.R.; Sheng, C.Y.; Joost, V.D.; Piluso, S.; Ito, K.; Malda, J. Hydrogel-based bioinks for cell electrowriting of well-organized living structures with micrometer-scale resolution. Biomacromolecules 2021, 22, 855–866. [Google Scholar] [CrossRef]
- Runer, A.; Keeling, L.; Wagala, N.; Nugraha, H.; Özbek, E.A.; Hughes, J.D.; Musahl, V. Current trends in graft choice for anterior cruciate ligament reconstruction—Part I: Anatomy, biomechanics, graft incorporation and fixation. J. Exp. Orthop. 2023, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Mayr, R.; Heinrichs, C.H.; Eichinger, M.; Coppola, C.; Schmoelz, W.; Attal, R. Biomechanical comparison of two anterior cruciate ligament graft preparation techniques for tibial fixation: Adjustable-length loop cortical button or interference screw. Am. J. Sports Med. 2015, 43, 2252–2259. [Google Scholar] [CrossRef]
- Fu, C.-W.; Chen, W.-C.; Lu, Y.-C. Is all inside with suspensory cortical button fixation a superior technique for anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2020, 21, 445. [Google Scholar] [CrossRef]
- Ranjan, R.; Gaba, S.; Goel, L.; Asif, N.; Kalra, M.; Kumar, R.; Kumar, A. In vivo comparison of a fixed loop (EndoButton CL) with an adjustable loop (TightRope RT) device for femoral fixation of the graft in ACL reconstruction: A prospective randomized study and a literature review. J. Orthop. Surg. 2018, 26, 2309499018799787. [Google Scholar] [CrossRef]
- Readioff, R.; Geraghty, B.; Elsheikh, A.; Comerford, E. Viscoelastic characteristics of the canine cranial cruciate ligament complex at slow strain rates. PeerJ 2020, 8, e10635. [Google Scholar] [CrossRef]
- Iriuchishima, T.; Ryu, K.; Fu, F.H. Evaluation of age-related differences in anterior cruciate ligament size. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Brockmeyer, M.; Norrick, S.; Wagenpfeil, G.; Stroeder, J.; Landgraeber, S. Size and morphology of the anterior and posterior cruciate ligaments at different pediatric age intervals: An MRI analysis. Orthop. J. Sports Med. 2023, 10, 23259671231201642. [Google Scholar] [CrossRef] [PubMed]
Software Parameters | Printer Parameters | ||
---|---|---|---|
Support | NO | Temp | 200 °C |
Infill | 15% | Time | 25 MIN |
The material used | TPU | Cost | 300 EGP |
Nozzle | 0.15 mm to increase accuracy | Nozzle | 0.4 mm |
Type of bed | Texture sheet |
Dog ID | Age (mo) | Weight (kg) | Limb Side | CrCL Length (mm) | Width (mm) | Thickness (mm) | Volume (mm3) |
---|---|---|---|---|---|---|---|
1 | 18 | 25 | Right | 15 | 10 | 3 | 450 |
2 | 14 | 20 | Right | 15 | 9 | 2 | 270 |
Left | 14 | 8 | 2 | 224 | |||
3 | 18 | 23 | Right | 20 | 10 | 3 | 600 |
Left | 19 | 9 | 3 | 513 | |||
4 | 10 | 19 | Right | 13 | 6 | 2 | 156 |
5 | 8 | 13 | Right | 12 | 8 | 2 | 192 |
6 | 10 | 15 | Left | 15 | 6 | 2 | 180 |
7 | 12 | 20 | Right | 12 | 8 | 2 | 192 |
Left | 11 | 7 | 2 | 154 | |||
8 | 15 | 20 | Right | 15 | 8 | 3 | 360 |
Left | 15 | 8 | 2.5 | 300 | |||
9 | 12 | 23 | Right | 12 | 8 | 3 | 288 |
Left | 12 | 7.5 | 3 | 270 | |||
10 | 9 | 15 | Right | 10 | 6 | 2 | 120 |
Left | 10 | 6 | 2 | 120 | |||
11 | 12 | 21 | Right | 13 | 8 | 2 | 208 |
12 | 10 | 18 | Left | 20 | 7 | 2 | 280 |
Left | 19 | 7 | 2 | 266 | |||
13 | 12 | 17 | Right | 15 | 8 | 2 | 240 |
14 | 12 | 14 | Right | 15 | 8 | 3 | 360 |
Parameter | Number of Values | Mean ± SD | Range | 95% CI (Lower—Upper) |
---|---|---|---|---|
CrCL Width (mm) | 14 | 7.5 ± 1.3 | 6–10 | 6.92–8.128 |
CrCL Thickness (mm) | 14 | 2.3 ± 0.5 | 2–3 | 2.075–2.496 |
CrCL Length (mm) | 14 | 13.4 ± 2.9 | 10–20 | 12.04–14.72 |
CrCL Volume (mm3) | 14 | 250.4 ± 107.8 | 120–450 | 188.2–312.6 |
CrCL Femoral Inclination Angle (°) | 21 | 35.7 ± 5.3 | 25–45 | 33.3–38.13 |
CrCL Tibial Inclination Angle (°) | 21 | 33.8 ± 6.1 | 25–45 | 31.03–36.59 |
Femoral Tunnel Length (FTL, mm) | 14 | 20.7 ± 1.8 | 20–25 | 19.67–21.76 |
Tibial Tunnel Length (TTL, mm) | 14 | 24.7 ± 2.1 | 20–30 | 23.53–25.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahla, M.; Abouelela, Y.; Amer, M.; Ali, M.; Prince, A.; Tolba, A.; Mostafa, A. Three-Dimensional-Printed Thermoplastic Polyurethane (TPU) Graft and H-Button Stabilization System for Intra-Articular Cranial Cruciate Ligament Reconstruction: Cadaveric Study. Vet. Sci. 2025, 12, 725. https://doi.org/10.3390/vetsci12080725
Nahla M, Abouelela Y, Amer M, Ali M, Prince A, Tolba A, Mostafa A. Three-Dimensional-Printed Thermoplastic Polyurethane (TPU) Graft and H-Button Stabilization System for Intra-Articular Cranial Cruciate Ligament Reconstruction: Cadaveric Study. Veterinary Sciences. 2025; 12(8):725. https://doi.org/10.3390/vetsci12080725
Chicago/Turabian StyleNahla, Menna, Yara Abouelela, Mohammed Amer, Marwa Ali, Abdelbary Prince, Ayman Tolba, and Ayman Mostafa. 2025. "Three-Dimensional-Printed Thermoplastic Polyurethane (TPU) Graft and H-Button Stabilization System for Intra-Articular Cranial Cruciate Ligament Reconstruction: Cadaveric Study" Veterinary Sciences 12, no. 8: 725. https://doi.org/10.3390/vetsci12080725
APA StyleNahla, M., Abouelela, Y., Amer, M., Ali, M., Prince, A., Tolba, A., & Mostafa, A. (2025). Three-Dimensional-Printed Thermoplastic Polyurethane (TPU) Graft and H-Button Stabilization System for Intra-Articular Cranial Cruciate Ligament Reconstruction: Cadaveric Study. Veterinary Sciences, 12(8), 725. https://doi.org/10.3390/vetsci12080725