Optimizing Poultry Growth and Meat Quality: Effects of Guanidinoacetic Acid Supplementation in Yellow-Feathered Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Housing, Feeding, and Sample Collection
2.3. Chemical Analysis and Digestibility Calculation
2.3.1. Growth Performance Indicators
2.3.2. Serum Biochemical Parameter Measurement
2.3.3. Intestinal Morphology Observation
2.3.4. Measurement of Lactate and Glycogen in Muscle Tissue Samples
2.3.5. Paraffin Embedding and HE Staining
2.3.6. Slaughter Performance
2.3.7. Statistical Analysis
3. Results
3.1. Influence of Guanidinoacetic Acid on the Growth Performance of Yellow-Feathered Broiler Chickens
3.2. Influence of Guanidinoacetic Acid on the Slaughter Performance of Yellow-Feathered Broiler Chickens
3.3. Influence of Guanidinoacetic Acid on the Quality of Breast Meat in Yellow-Feathered Broiler Chickens
3.4. Impact of Guanidinoacetic Acid on Serum Biochemical Parameters of Yellow-Feathered Broiler Chickens
3.5. The Impact of Guanidinoacetic Acid on Lactate and Glycogen Levels in the Pectoral Muscles of Yellow-Feathered Broilers
3.6. The Influence of Guanidinoacetic Acid on Intestinal Morphology in Yellow-Feather Broilers
3.7. The Impact of Guanidinoacetic Acid on Muscle Fiber Characteristics of Yellow-Feathered Broilers
4. Discussion
4.1. The Impact of GAA on the Growth Performance of Yellow-Feathered Broilers
4.2. The Impact of GAA on the Slaughter Performance and Meat Quality of Yellow-Feathered Broilers
4.3. The Impact of GAA on Serum Biochemical Parameters in Yellow-Feathered Broilers
4.4. The Influence of GAA on Pectoral Muscle in Yellow-Feathered Broilers
4.5. The Impact of GAA on the Intestinal Morphology of Yellow-Feathered Broiler Chickens
4.6. Potential Implications of GAA Supplementation for Livestock Health and Disease Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mutryn, M.F.; Brannick, E.M.; Fu, W.; Lee, W.R.; Abasht, B. Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genom. 2015, 16, 399. [Google Scholar] [CrossRef] [PubMed]
- Zambonelli, P.; Zappaterra, M.; Soglia, F.; Petracci, M.; Sirri, F.; Cavani, C.; Davoli, R. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping—Wooden Breast myopathies. Poult. Sci. 2016, 95, 2771–2785. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.A.P.; Ibelli, A.M.G.; Peixoto, J.O.; Cantão, M.E.; Pandolfi, J.R.C.; Marciano, C.M.M.; Zanella, R.; Settles, M.L.; Coutinho, L.L.; Ledur, M.C. Whole transcriptome analysis of the pectoralis major muscle reveals molecular mechanisms involved with white striping in broiler chickens. Poult. Sci. 2019, 98, 590–601. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Bottje, W.; Ramnathan, R.; Hartson, S.D.; Coon, C.N.; Kong, B.-W.; Owens, C.M.; Vazquez-Añon, M.; Hargis, B.M. Proteomic analysis reveals changes in carbohydrate and protein metabolism associated with broiler breast myopathy. Poult. Sci. 2017, 96, 2992–2999. [Google Scholar] [CrossRef]
- Cai, K.; Shao, W.; Chen, X.; Campbell, Y.L.; Nair, M.N.; Suman, S.P.; Beach, C.M.; Guyton, M.C.; Schilling, M.W. Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat. Poult. Sci. 2018, 97, 337–346. [Google Scholar] [CrossRef]
- Abasht, B.; Mutryn, M.F.; Michalek, R.D.; Lee, W.R. Oxidative stress and metabolic perturbations in wooden breast disorder in chickens. PLoS ONE 2016, 11, e0153750. [Google Scholar] [CrossRef] [PubMed]
- Boerboom, G.; van Kempen, T.; Navarro-Villa, A.; Pérez-Bonilla, A. Unraveling the cause of white striping in broilers using metabolomics. Poult. Sci. 2018, 97, 3977–3986. [Google Scholar] [CrossRef]
- Harris, R.C.; Lowe, J.A.; Warnes, K.; Orme, C.E. The concentration of creatine in meat, offal and commercial dog food. Res. Vet. Sci. 1997, 62, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Ringel, J.; Lemme, A.; Knox, A.; McNab, J.; Redshaw, M.S. Effects of graded levels of creatine and guanidino acetic acid in vegetable-based diets on performance and biochemical parameters in muscle tissue. In Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August 2007; pp. 387–390. [Google Scholar]
- Ringel, J.; Lemme, A.; Redshaw, M.S.; Damme, K. The effects of supplemental guanidino acetic acid as a precursor of creatine in vegetable broiler diets on performance and carcass parameters. In Poultry Science; Poultry Science Assoc INC: Savoy, IL, USA, 2008; Volume 87, p. 72. [Google Scholar]
- Lemme, A.; Ringel, J.; Sterk, A.; Young, J.F. Supplemental guanidino acetic acid affects energy metabolism of broilers. In Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August 2007; pp. 339–342. [Google Scholar]
- Lemme, A.; Gobbi, R.; Helmbrecht, A.; Van Der Klis, J.D.; Firman, J.; Jankowski, J.; Kozlowski, K. Use of guanidino acetic acid in all-vegetable diets for turkeys. In Proceedings of the 4th Turkey Science and Production Conference, Macclesfield, UK, 4–5 February 2010; pp. 57–61. [Google Scholar]
- Mousavi, S.N.; Afsar, A.; Lotfollahian, H. Effects of guanidinoacetic acid supplementation to broiler diets with varying energy contents. J. Appl. Poult. Res. 2013, 22, 47–54. [Google Scholar] [CrossRef]
- Fosoul, S.S.A.S.; Azarfar, A.; Gheisari, A.; Khosravinia, H. Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents. Br. J. Nutr. 2018, 120, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, J.; Tian, Y.; Yang, L.; Zhang, L. Evaluation on tolerance of Arbor Acres broilers to guanidinoacetic acid. Chin. J. Anim. Nutr. 2017, 29, 456–464. [Google Scholar]
- Jiang, T.; Dai, C.; Li, X.Y.; Cheng, M. Effects of guanidine acetic acid on growth performance and slaughter performance of AA broilers. Feed. Res. 2012, 4, 8–10. [Google Scholar]
- Cao, X.N.; Chen, J.J.; Cao, X.L. Effects of different feed additives on growth performance and non-specific immunity of Common Carp. Feed. Ind. 2018, 39, 20–25. [Google Scholar]
- Zhou, L. Effect of thioglycolic acid on production performance, antioxidant capacityand serum biochemical indexes of meat goose. China Feed. 2020, 2, 39–42. [Google Scholar]
- Mendonça, I.; Watanabe, P.; Silva, B.; Boiago, M.; Panisson, J.; Andrade, T.; Campos, A.; Mello, M. Dietary supplementation of guanidinoacetic acid for sows and their progenies: Performance, blood parameters and economic viability at nursery phase. Livest. Sci. 2019, 227, 105–110. [Google Scholar] [CrossRef]
- Li, J.L.; Hao, Y.; Gu, X.H. Effects of Guanidine Acetic Acid on Growth Performance, Antioxidant Capacity and Glycometabolism Key Enzymes of Nursery Pigs. Chin. J. Anim. Nutr. 2017, 29, 3773–3780. [Google Scholar]
- He, D.T.; Gai, X.R.; Yang, L.B.; Li, J.T.; Lai, W.Q.; Sun, X.L.; Zhang, L.Y. Effects of guanidinoacetic acid on growth performance, creatine and energy metabolism, and carcass characteristics in growing-finishing pigs. J. Anim. Sci. 2018, 96, 3264–3273. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Q.; Wu, X.; He, L.; Wu, J. Study on effects of dietary supplementation guanidinoacetic acid (GAA) on fattening pork quality. Chin. Feed. 2018, 17, 27–31. [Google Scholar]
- Ostojic, S.M. Guanidinoacetic acid as a performance-enhancing agent. Amino Acids 2015, 48, 1867–1875. [Google Scholar] [CrossRef]
- Córdova-Noboa, H.A.; Oviedo-Rondón, E.O.; Sarsour, A.H.; Barnes, J.; Ferzola, P.; Rademacher-Heilshorn, M.; Braun, U. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum-based diets supplemented with guanidinoacetic acid. Poult. Sci. 2018, 97, 2479–2493. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wei, R.; Qiao, F.; Xu, Z.; Liu, J.; Zhang, C.; Guo, L.; Wang, X.; Xi, L. Effects of Ammonia Exposure on Intestinal Morphology, Oxidative Stress and Immune Response of White-Feathered Broilers. J. Anim. Nutr. 2025, 37, 2309–2320. [Google Scholar]
- Li, L.; Feng, Z.; Jin, Y.; Li, X.; Wang, L.; Qiu, M.; Chen, Y. Effects of Sea Buckthorn Pomace Extract on Slaughter Performance, Meat Quality, Antioxidant Capability and Intestinal Health of Yellow-Feathered Broilers Fed Oxidized Soybean Oil. Chin. J. Anim. Nutr. 2024, 36, 5656–5668. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Lin, H.; Wang, J.; Wang, C.; Wu, Y. Comparative study on pH value, TBA value, glycogen and lactic acid content of Long White and Large Yorkshire pig muscles under different storage conditions. Jiangsu Agric. Sci. 2016, 44, 361–365. [Google Scholar] [CrossRef]
- Lemme, A.; Elwert, C.; Gobbi, R.; Rademacher, M. Application of the guanidino acetic acid as creatine source in broilers fed diets with or without fish meal. In Proceedings of the 18 European Symposium on Poultry Nutrition, Cesme, Turkey, 31 October 2011. [Google Scholar]
- Zhang, D.F.; Tian, Y.Y.; Ma, J.; Zhang, J.L.; Guo, S.G.; Yang, L.B. Effects of guanidine acetic acid on growth performance and economic benefits of AA broilers. J. Feed. Res. 2016, 17, 32–35. Available online: https://d.wanfangdata.com.cn/periodical/slyj201617009 (accessed on 25 December 2024).
- Ahmadipour, B.; Khajali, F.; Sharifi, M.R. Effect of Guanidinoacetic Acid Supplementation on Growth Performance and Gut Morpholog yin Broiler Chickens. Poult. Sci. J. 2018, 6, 19–24. [Google Scholar]
- Smith, T.K. Effect of dietary putrescine on whole body growth and polyamine metabolism. Exp. Biol. Med. 1990, 194, 332–336. [Google Scholar] [CrossRef]
- Nasiroleslami, M.; Torki, M.; Saki, A.A.; Abdolmohammadi, A.R. Effects of dietary guanidinoacetic acid and betaine supplementation on performance, blood biochemical parameters and antioxidant status of broilers subjected to cold stress. J. Appl. Anim. Res. 2018, 46, 1016–1022. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.L.; Wang, X.F.; Zhu, X.D.; Gao, F.; Zhou, G.H. Attenuating effects of guanidinoacetic acid on preslaughter transport-induced muscle energy expenditure and rapid glycolysis of broilers. Poult. Sci. 2019, 98, 3223–3232. [Google Scholar] [CrossRef]
- Lemme, A.; DeGroot, R.; Dilger, R.; Braun, U. Digestibility of Guanidinoacetic Acid Is 100% in Broilers while Availability Depends on Dosage and Dietary Arginine Supply. Poult. Sci. 2018, 97 (Suppl. S1), 102. [Google Scholar]
- Tossenberger, J.; Rademacher, M.; Németh, K.; Halas, V.; Lemme, A. Digestibility and metabolism of dietary guanidino acetic acid fed to broilers. Poult. Sci. 2016, 95, 2058–2067. [Google Scholar] [CrossRef] [PubMed]
- Córdova-Noboa, H.; Oviedo-Rondón, E.; Sarsour, A.; Barnes, J.; Sapcota, D.; López, D.; Gross, L.; Rademacher-Heilshorn, M.; Braun, U. Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products. Poult. Sci. 2018, 97, 2494–2505. [Google Scholar] [CrossRef] [PubMed]
- Metwally, A.E.; Ibrahim, D.; Khater, S.I. Effects of supplementing broiler diets with CreAMINO® on broiler performance, carcass traits and the expression of muscle growth related genes. Res. Opin. Anim. Vet. Sci. 2015, 5, 435–442. [Google Scholar]
- Majdeddin, M.; Golian, A.; Kermanshahi, H.; De Smet, S.; Michiels, J. Guanidinoacetic acid supplementation in broiler chickens fed on corn-soybean diets affects performance in the finisher period and energy metabolites in breast muscle independent of diet nutrient density. Br. Poult. Sci. 2018, 59, 443–451. [Google Scholar] [CrossRef]
- Michiels, J.; Maertens, L.; Buyse, J.; Lemme, A.; Rademacher, M.; Dierick, N.; De Smet, S. Supplementation of guanidinoacetic acid to broiler diets: Effects on performance, carcass characteristics, meat quality, and energy metabolism. Poult. Sci. 2012, 91, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011, 40, 1271–1296. [Google Scholar] [CrossRef]
- McKinnon, N.B.; Graham, M.T.; Tiidus, P.M. Effect of creatine supplementation on muscle damage and repair following eccentrically-induced damage to the elbow flexor muscles. J. Sports Sci. Med. 2012, 11, 653–659. [Google Scholar]
- Balsom, P.D.; Ekblom, B.; Söerlund, K.; Sjödln, B.; Hultman, E. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand. J. Med. Sci. Sports 1993, 3, 143–149. [Google Scholar] [CrossRef]
- Wells, G.D.; Selvadurai, H.; Tein, I. Bioenergetic provision of energy for muscular activity. Paediatr. Respir. Rev. 2009, 10, 83–90. [Google Scholar] [CrossRef]
- DeGroot, A. Efficacy of Dietary Guanidinoacetic Acid in Broiler Chicks. Master’s Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2015. 397184. Available online: https://hdl.handle.net/2142/72902 (accessed on 25 December 2024).
- A DeGroot, A.; Braun, U.; Dilger, R.N. Efficacy of guanidinoacetic acid on growth and muscle energy metabolism in broiler chicks receiving arginine-deficient diets. Poult. Sci. 2018, 97, 890–900. [Google Scholar] [CrossRef]
- Sihvo, H.-K.; Immonen, K.; Puolanne, E. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Veter. Pathol. 2013, 51, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Kuttappan, V.A.; Hargis, B.M.; Owens, C.M. White striping and woody breast myopathies in the modern poultry industry: A review. Poult. Sci. 2016, 95, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.X.; Xiao, C.; She, R.P.; Zhang, F.M.; Guo, Y.J.; Luo, D.M.; Liu, F.H. Effect of Heat Stress on Structure and Function of Pig’s Intestines. Sci. Technol. Eng. 2009, 9, 581–586. [Google Scholar]
- Wang, S.; Li, S.Y. Research Advances in Intestinal Mucosal Morphology and Its Regulation in Poultry. J. Anim. Nutr. 2013, 25, 699–704. [Google Scholar]
- Dunsford, B.R.; Knabe, D.A.; Haensly, W.E. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 1989, 67, 1855–1863. [Google Scholar] [CrossRef]
- Yao, L.Q.; Sa, R.N.; Tong, J.M. Effect of Apramycin on Intestinal Flora and Intestinal Morphology of Piglets. J. Anim. Sci. Vet. Med. 2003, 03, 250–257. [Google Scholar]
- Yen, J.T.; Nienaber, J.A.; Hill, D.A.; Pond, W.G. Oxygen consumption by portal vein-drained organs and by whole animal in conscious growing swine. Proc. Soc. Exp. Biol. Med. 1989, 190, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids 2016, 48, 1785–1791. [Google Scholar] [CrossRef]
- Glover, L.E.; Bowers, B.E.; Saeedi, B.; Ehrentraut, S.F.; Campbell, E.L.; Bayless, A.J.; Dobrinskikh, E.; Kendrick, A.A.; Kelly, C.J.; Burgess, A.; et al. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc. Natl. Acad. Sci. USA 2013, 110, 19820–19825. [Google Scholar] [CrossRef]
Item | Early (1~28 d) | Later Period (29~60 d) |
---|---|---|
Ingredient | ||
Corn | 58.8 | 62.5 |
Soybean meal | 32.6 | 28.6 |
Wheat bran | 0.6 | 0.9 |
Soybean oil | 1.7 | 3.0 |
Corn gluten meal | 2.3 | 1.0 |
Premix (1) | 4.0 | 4.0 |
Total | 100 | 100 |
Nutrient levels (2) | ||
ME/(MJ/kg) | 12.14 | 12.52 |
CP | 20.73 | 18.58 |
Arg | 1.20 | 1.00 |
Lys | 1.15 | 1.03 |
Met | 0.46 | 0.41 |
Ca | 0.98 | 0.89 |
Total phosphorus | 0.65 | 0.61 |
Ingredients | Early (1~28 d) | Later Period (29~60 d) |
---|---|---|
Limestone | 4.0 | 4.7 |
Chicken feather meal | 0.35 | 0.3 |
Trace mineral premix | 1.0 | 1.0 |
Calcium carbonate | 12.0 | 11.1 |
Stone powder | 14.0 | 12.8 |
Antioxidant (1) | 0.1 | 0.1 |
Salt | 3.0 | 3.0 |
L-Arginine (98%) | 1.15 | 1.0 |
DL-Methionine | 1.4 | 1.2 |
Corn starch | 2.0 | 4.0 |
Choline chloride | 1.0 | 0.8 |
Total | 40.0 | 40.0 |
Item | CON | GAA 300 | GAA 600 | GAA 900 | GAA 1200 | SEM | p | ||
---|---|---|---|---|---|---|---|---|---|
p | L | Q | |||||||
Early (28 Day) | |||||||||
ALT, U/L | 2.33 | 2.33 | 2.50 | 2.67 | 2.17 | 0.17 | 0.923 | 0.966 | 0.966 |
GLU, mmol/L | 15.57 | 14.73 | 14.27 | 13.68 | 16.00 | 0.31 | 0.111 | 0.722 | 0.035 |
TG, mmol/L | 0.46 | 0.53 | 0.49 | 0.42 | 0.43 | 0.02 | 0.630 | 0.439 | 0.304 |
HDL, mmol/L | 2.22 | 2.10 | 2.13 | 2.20 | 1.97 | 0.04 | 0.397 | 0.185 | 0.743 |
LDL, mmol/L | 1.06 | 0.96 | 0.94 | 1.04 | 0.95 | 0.05 | 0.925 | 0.647 | 0.715 |
Later period (60 Day) | |||||||||
ALT, U/L | 2.17 ab | 1.83 b | 1.83 b | 3.00 ab | 3.33 a | 0.21 | 0.048 | 0.026 | 0.048 |
GLU, mmol/L | 14.50 | 14.20 | 14.65 | 15.02 | 15.75 | 0.24 | 0.283 | 0.078 | 0.180 |
TG, mmol/L | 0.41 | 0.57 | 0.53 | 0.41 | 0.47 | 0.03 | 0.217 | 0.878 | 0.109 |
HDL, mmol/L | 1.94 | 2.07 | 2.01 | 1.98 | 2.13 | 0.44 | 0.712 | 0.357 | 0.924 |
LDL, mmol/L | 1.12 | 0.99 | 1.28 | 0.94 | 1.12 | 0.05 | 0.155 | 0.820 | 0.960 |
Item | CON | GAA 300 | GAA 600 | GAA 900 | GAA 1200 | SEM | p | ||
---|---|---|---|---|---|---|---|---|---|
p | L | Q | |||||||
Early (28 Day) | |||||||||
LD, mmol/g | 0.60 | 0.77 | 0.56 | 0.59 | 0.83 | 0.05 | 0.232 | 0.288 | 0.307 |
GLU, mg/g | 0.95 | 0.87 | 1.12 | 0.57 | 0.90 | 0.09 | 0.451 | 0.641 | 0.774 |
Later period (60 Day) | |||||||||
LD, mmol/g | 3.05 | 2.51 | 3.03 | 2.82 | 2.41 | 0.19 | 0.786 | 0.488 | 0.848 |
GLU, mg/g | 0.75 | 0.74 | 0.74 | 0.79 | 0.66 | 0.05 | 0.948 | 0.765 | 0.694 |
Item | CON | GAA 300 | GAA 600 | GAA 900 | GAA 1200 | SEM | p | ||
---|---|---|---|---|---|---|---|---|---|
p | L | Q | |||||||
Early (28 Day) | |||||||||
Jejunal villus height | 1274.81 | 1189.84 | 1288.56 | 1317.81 | 1104.77 | 36.39 | 0.355 | 0.425 | 0.421 |
Jejunal crypt depth | 123.92 a | 139.5 a | 114.74 ab | 95.56 bc | 85.04 c | 5.14 | <0.01 | <0.01 | 0.004 |
V/C | 10.35 cd | 8.54 d | 11.25 bc | 13.92 a | 13.09 ab | 0.52 | <0.01 | <0.01 | 0.041 |
Cecal crypt depth | 282.74 | 287.06 | 264.81 | 318.94 | 295.70 | 8.56 | 0.387 | 0.337 | 0.632 |
Later period (60 Day) | |||||||||
Jejunal villus height | 1373.31 | 1626.04 | 1347.26 | 1434.87 | 1327.16 | 47.31 | 0.324 | 0.603 | 0.226 |
Jejunal crypt depth | 89.41 | 98.63 | 90.79 | 78.16 | 77.94 | 2.77 | 0.083 | 0.049 | 0.101 |
V/C | 15.39 | 16.76 | 15.23 | 18.38 | 17.44 | 0.66 | 0.518 | 0.228 | 0.859 |
Cecal crypt depth | 120.11 | 115.20 | 125.64 | 113.10 | 114.54 | 5.14 | 0.962 | 0.726 | 0.919 |
Item | CON | GAA 300 | GAA 600 | GAA 900 | GAA 1200 | SEM | p | ||
---|---|---|---|---|---|---|---|---|---|
P | L | Q | |||||||
Early (28 Day) | |||||||||
Density of muscle fiber/mm2 | 920.07 | 934.93 | 924.76 | 941.13 | 905.85 | 7.08 | 0.587 | 0.787 | 0.237 |
Diameter of muscle fiber/μm | 33.00 | 33.84 | 35.34 | 34.92 | 35.41 | 0.49 | 0.463 | 0.089 | 0.750 |
Later period (60 Day) | |||||||||
Density of muscle fiber/mm2 | 470.31 | 454.50 | 432.42 | 439.96 | 463.79 | 5.77 | 0.193 | 0.346 | 0.056 |
Diameter of muscle fiber/μm | 53.55 | 54.26 | 51.57 | 53.78 | 49.27 | 0.84 | 0.319 | 0.170 | 0.332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Wang, L.; Chen, Y.; Xiao, K. Optimizing Poultry Growth and Meat Quality: Effects of Guanidinoacetic Acid Supplementation in Yellow-Feathered Broilers. Vet. Sci. 2025, 12, 551. https://doi.org/10.3390/vetsci12060551
Xiao J, Wang L, Chen Y, Xiao K. Optimizing Poultry Growth and Meat Quality: Effects of Guanidinoacetic Acid Supplementation in Yellow-Feathered Broilers. Veterinary Sciences. 2025; 12(6):551. https://doi.org/10.3390/vetsci12060551
Chicago/Turabian StyleXiao, Jian, Lifen Wang, Yuguang Chen, and Kai Xiao. 2025. "Optimizing Poultry Growth and Meat Quality: Effects of Guanidinoacetic Acid Supplementation in Yellow-Feathered Broilers" Veterinary Sciences 12, no. 6: 551. https://doi.org/10.3390/vetsci12060551
APA StyleXiao, J., Wang, L., Chen, Y., & Xiao, K. (2025). Optimizing Poultry Growth and Meat Quality: Effects of Guanidinoacetic Acid Supplementation in Yellow-Feathered Broilers. Veterinary Sciences, 12(6), 551. https://doi.org/10.3390/vetsci12060551