The Anticoccidial In Vitro Effects and Antioxidant Properties of Several Plants Traditionally Used for Coccidiosis in Togo
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Collection and Extract Preparation
2.3. Plant Extract Yields
2.4. Phytochemical Screening
2.5. Quantitative Phytochemical Analysis
2.5.1. Determination of Total Polyphenol Content
2.5.2. Determination of Total Flavonoids
2.6. In Vitro Antioxidant Assays
2.6.1. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Free Radical Scavenging Activity
2.6.2. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7. Eimeria Oocyst Isolation and Purification
2.8. Effect of Herbal Extracts on Oocyst Sporulation In Vitro
2.9. Statistical Analysis
3. Results
3.1. Extract Yield and Phytochemical Screening Assessment
3.2. Determination of Total Phenols and Flavonoid Content
3.3. Antioxidant Test Procedure
3.3.1. Free Radical Scavenging Activity of DPPH (2,2-Diphenyl-1-picrylhydrazyl)
3.3.2. Ferric Reducing Antioxidant Power (FRAP) of Extracts
3.4. In Vitro Oocysticidal Activities of Plant Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, R.Z.; Colwell, D.D.; Gilleard, J. Botanicals: An alternative approach for the control of avian coccidiosis. World’s Poult. Sci. J. 2012, 68, 203–215. [Google Scholar] [CrossRef]
- Blake, D.P.; Vrba, V.; Xia, D.; Jatau, I.D.; Spiro, S.; Nolan, M.J.; Underwood, G.; Tomley, F.M. Genetic and biological characterisation of three cryptic Eimeria operational taxonomic units that infect chickens (Gallus gallus domesticus). Int. J. Parasitol. 2021, 51, 621–634. [Google Scholar] [CrossRef]
- Elnabarawy, A.M.; Khalifa, M.M.; Shaban, K.S.; Kotb, W.S. Evaluation of the effect of mycotoxins in naturally contaminated feed on the efficacy of preventive vaccine against coccidiosis in broiler chickens. J. World Poult. Res. 2020, 10, 235–246. [Google Scholar] [CrossRef]
- Sabiqaa Masood, S.M.; Abbas, R.Z.; Zafar Iqbal, Z.I.; Mansoor, M.K.; Zia-ud-Din Sindhu, Z.U.D.S.; Zia, M.A.; Khan, J.A. Role of natural antioxidants for the control of coccidiosis in poultry. Pak. Vet. J. 2013, 33, 401–407. [Google Scholar]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.P.; Tomley, F.M. Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol. 2014, 30, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Augustine, P.C. Cell: Sporozoite interactions and invasion by apicomplexan parasites of the genus Eimeria. Int. J. Parasitol. 2001, 31, 1–8. [Google Scholar] [CrossRef]
- Divya, P.D.; Shameem, H.; Preethy, J.; Surya, S. In Vitro Assessment of Anticoccidial Potential of Methanolic Extract of Annona reticulate Leaves Against Eimeria tenella Oocysts. Vet. Res. Int. 2019, 7, 60–65. [Google Scholar]
- Adjei-Mensah, B.; Atuahene, C.C. Avian coccidiosis and anticoccidial potential of garlic (Allium sativum L.) in broiler production: A review. J. Appl. Poult. Res. 2023, 32, 100314. [Google Scholar] [CrossRef]
- Wunderlich, F.; Al-Quraishy, S.; Steinbrenner, H.; Sies, H.; Dkhil, M.A. Towards identifying novel anti-Eimeria agents: Trace elements, vitamins, and plant-based natural products. Parasitol. Res. 2014, 113, 3547–3556. [Google Scholar] [CrossRef]
- Dossou, B.S.; Kodjovi, M.L.A.; Sêmihinva, A.; Houndonougbo, M.F. Inventory of Ethno-Botanical Knowledge and Indigenous Perception of Plants used in Poultry Farms in the Maritime Region of Togo. Int. J. Med. Plants Nat. Prod. IJMPNP 2022, 8, 9–16. [Google Scholar] [CrossRef]
- Bakoma, B.; Berké, B.; Eklu-Gadegbeku, K.; Agbonon, A.; Aklikokou, K.; Gbeassor, M. Acute and sub-chronic (28 days) oral toxicity evaluation of hydroethanolic extract of Bridelia ferruginea Benth root bark in male rodent animals. Food Chem. Toxicol. 2013, 52, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Toah, E.T.; Payne, V.K.; Yamssi, C.; Noumedem, A.C.N.; Atiokeng, T.R.J. In vitro oocysticidal sporulation inhibition of Eimeria tenella and antioxidant efficacy of ethanolic and aqueous extracts of Conyza aegyptiaca. J. Anim. Sci. Vet. Med. 2021, 6, 30–40. [Google Scholar] [CrossRef]
- Karumi, Y.; Onyeyili, P.A.; Ogugbuaja, V.O. Identification of active principles of M. balsamina (Balsam Apple) leaf extract. J. Med. Sci. 2004, 4, 179–182. [Google Scholar]
- Ranilla, L.G.; Young-In, K.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef] [PubMed]
- Bakoma, B.; Sanvee, S.; Metowogo, K.; Potchoo, Y.; Eklu-Gadegbeku, K.; Aklikokou, K. Phytochemical study and biological activities of hydro-alcoholic extract of the leaves of Bridelia ferruginea Benth and its fractions. Pharmacogn. J. 2019, 11, 141–145. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.A.; Binh, T.N.; Paula, L.T.C.; Tuấn, C.V.; Haung, N.; Suk, K.; Woo, H.K.; Byoung-Kuk, N.; Wongi, M. Epidemiological investigation and drug resistance of Eimeria species in Korean chicken farms. BMC Vet. Res. 2022, 18, 277. [Google Scholar] [CrossRef] [PubMed]
- Molan, A.L.; Liu, Z.; De, S. Effect of pine bark (Pinus radiata) extracts on sporulation of coccidian oocysts. Folia Parasitol. 2009, 56, 1–5. [Google Scholar] [CrossRef]
- Mcdougald, L.R.; Fitz-Coy, S.H. Coccidiosis In Diseases of Poultry, 12th ed.; Section IV Parasitic Diseases; Saif, Y.M., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2008; pp. 1068–1085. [Google Scholar]
- Baies, M.-H.; Györke, A.; Cotutiu, V.-D.; Boros, Z.; Cozma-Petrut, A.; Filip, L.; Vlase, L.; Vlase, A.-M.; Crisan, G.; Spînu, M. The In Vitro Anticoccidial Activity of Some Herbal Extracts against Eimeria spp. Oocysts Isolated from Piglets. Pathogens 2023, 12, 258. [Google Scholar] [CrossRef]
- Hindustan, K.J.B.; Abdullah, H.; Pakistan, W. In Idar-e-Matbout-C-Sulemani Urdu Bazar Lahore; Adara Matabat e Sulaman: Lahore, Pakistan, 1975; pp. 29–67. [Google Scholar]
- You, M.J. Suppression of Eimeria tenella sporulation by disinfectants. Korean J. Parasitol. 2014, 52, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Debbou-Iouknane, N.; Nerín, C.; Amrane-Abider, M.; Ayad, A. In vitro anticoccidial effects of Olive Leaf (Olea europaea L. var. Chemlal) extract against broiler chickens Eimeria oocysts. Vet. Zootech. 2021, 79, 1–8. [Google Scholar]
- Gadelhaq, S.M.; Waleed, M.A.; Shawky, M.A. In vitro activity of natural and chemical products on sporulation of Eimeria species oocysts of chickens. Vet. Parasitol. 2018, 251, 12–16. [Google Scholar] [CrossRef]
- Murshed, M.; Aljawdah, H.M.A.; Mares, M.; Al-Quraishy, S. In Vitro: The Effects of the Anticoccidial Activities of Calotropis procera Leaf Extracts on Eimeria stiedae Oocysts Isolated from Rabbits. Molecules 2023, 28, 3352. [Google Scholar] [CrossRef]
- Gunwantrao, B.B.; Bhausaheb, S.K.; Ramrao, B.S.; Subhash, K.S. Antimicrobial activity and phytochemical analysis of orange (Citrus aurantium L.) and pineapple (Ananas comosus (L.) Merr.) peel extract. Ann. Phytomed. 2016, 5, 156–160. [Google Scholar] [CrossRef]
- Yinusa, H.; Kabiru, D.; Ahmad, K.B. FTIR spectroscopic analysis and evaluation of antimalarial potential of ethanol stem-bark extract of Sarcocephalus latifolius (Smith Bruce) plant. J. Chem. Soc. Niger. 2023, 48, 1147–1158. [Google Scholar]
- Savadi, S.; Vazifedoost, M.; Didar, Z.; Nematshahi, M.M.; Jahed, E. Phytochemical analysis and antimicrobial/ antioxidant activity of Cynodon dactylon (L.) Pers. rhizome methanolic extract. J. Food Qual. 2020, 2020, 5946541. [Google Scholar] [CrossRef]
- Murshed, M.; Al-Quraishy, S.; Qasem, M.A. Evaluation of the Anticoccidial Activity of Sheep Bile against Eimeria stiedae Oocysts and Sporozoites of Rabbits: An In Vitro Study. Vet. Sci. 2022, 9, 658. [Google Scholar] [CrossRef]
- Dakpogan, H.B.; Mensah, S.; Attindehou, S.; Chysostome, C.; Aboh, A.; Naciri, M.; Salifou, S.; Mensah, G.A. Anticoccidial activity of Carica papaya and Vernonia amygdalina extract. Int. J. Biol. Chem. Sci. 2018, 12, 2101–2108. [Google Scholar] [CrossRef]
- Arlette, N.T.; Nadia, N.A.C.; Jeanette, Y.; Gatrude, M.T.; Stephanie, M.T.; Josue, W.P.; Mbida, M. The In vitro anticoccidial activity of aqueous and ethanolic extracts of Ageratum conyzoide sand Vernonia amygdalina (Asteraceae). World J. Pharm. Pharm. Sci. 2019, 8, 38–49. [Google Scholar]
- Kouassi-n’gaman, C.C.; Cherif-soumahoro, A.; Mamyrbekova-bekro, A.J.; Pirat, J.-L.; Virieux, D.; Bekro, Y.-A. Evaluation of the phenolic content and in vitro antioxidant potential of Bauhinia monandra Kurz (Fabaceae). J. Pharmacogn. Phytother. 2022, 14, 37–43. [Google Scholar] [CrossRef]
- Liu, Y.; Young, K.; Rakotondraibe, L.H.; Brodie, P.J.; Wilev, J.D.; Cassera, M.B.; Callmander, M.W.; Rakotondrajaona, R.; Rakotobe, E.; Rasamisson, V.E.; et al. Antiproliferative compounds from Cleistanthus boivinianus from the Madagascar dry forest. J. Nat. Prod. 2015, 78, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Bougandoura, N.; Bendimered, N. Evaluation de l’activité antioxydante des extraits aqueux et méthaloniques de Satureja calamintha spp. Nepeta (L.) Briq. Nat. Technol. 2012, 9, 14–19. [Google Scholar]
- Hamad, K.K.; Iqbal, Z.; Abbas, R.Z.; Khan, A.; Muhammad, G.; Epperson, B. Combination of Nicotiana tabacum and Azadirachta indica: A Novel Substitute to Control Levamisole and Ivermectin-Resistant Haemonchus contortus in Ovine. Pak. Vet. J. 2014, 34, 24–29. [Google Scholar]
- El-Khtam, A.O.; El Latif, A.A.; El-Hewaity, M.H. Efficacy of turmeric (Curcuma longa) and garlic (Allium sativum) on Eimeria species in broilers. Int. J. Basic Appl. Sci. 2014, 3, 349–356. [Google Scholar] [CrossRef]
- Alcicek, A.; Bozkurt, M.; Çabuk, M. The effect of a mixture of herbal essential oils, an organic acid or a probiotic on broiler performance. S. Afr. J. Anim. Sci. 2004, 34, 217–222. [Google Scholar]
- Adjei-Mensah, B.; Koranteng, A.A.A.; Hamidu, J.A.; Tona, K. Antibacterial activities of garlic (Allium sativum) in broiler and laying hens production. World’s Poult. Sci. J. 2023, 79, 155–176. [Google Scholar] [CrossRef]
Phytoconstituents | Test/Reagents | Precipitation |
---|---|---|
Total phenols | Ferric chloride test | Blue precipitate |
Tannins | Stiasny test | Blue for galli and green for catecholic |
Saponin | Frothing test | Persistent foam |
Flavonoids | Shinoda test | Red color |
Alkaloids | Dragendorff’s test | Orange precipitate |
Reducing sugar | Fehling’s solution | Brick red precipitate |
Coumarins | Ammonium hydroxide | Fluorescent color at 360 nm |
Quinones | ||
Triterpenes | Acetic anhydride, chloroform, and sulphuric acid | Red violet color |
Steroids | Brick red ring |
Groups | Concentrations (mg/mL) | Abbreviations |
---|---|---|
Hydro-ethanolic plant extracts | 6.25 | AIL6.25, CML6.25, CPS6.25, SLR6.25, CV6.25 |
12.5 | AIL12.5, CML12.5, CPS12.5, SLR12.5, CV12.5 | |
25 | AIL25, CML25, CPS25, SLR25, CV25 | |
50 | AIL50, CML50, CPS50, SLR50, CV50 | |
75 | AIL75, CML75, CPS75, SLR75, CV75 | |
Amprolium 20% | 0.06 | Amp25% |
Potassium dichromate | 2.5 | K2Cr2O7 |
Screening Phytochemical | Sarcocephalus latifolius | Carica papaya | Combretum micranthum | Vernonia amygdalina | Azadirachta indica |
---|---|---|---|---|---|
Rubiaceae | Caricaceae | Combretaceae | Asteraceae | Meliaceae | |
Total phenols | + | + | + | + | + |
Tannins | + | + | - | + | |
Saponin | + | + | + | + | + |
Flavonoids | + | + | + | + | + |
Alkaloids | + | - | - | + | + |
Reducing sugar | + | + | + | + | + |
Coumarins | + | - | - | + | + |
Quinones | - | - | - | - | - |
Triterpenes | + | + | + | + | + |
Steroids | + | + | + | + | + |
Plant Extracts | Total Phenolic and Flavonoid | |
---|---|---|
Flavonoid (mg EQ/g) | Phenols (mg EAG/g) | |
Azadirachta indica leaves | 21.97 ± 0.97 b | 28.56 ± 0.27 b |
Combretum micranthum leaves | 19.33 ± 0.05 b | 26.19 ± 0.19 b |
Carica papaya seeds | 1.00 ± 0.08 c | 32.99 ± 0.36 b |
Sarcocephalus latifolius roots | 36.65 ± 1.85 a | 56.11 ± 0.33 a |
Vernonia amygdalina leaves | 16.23 ± 1.17 b | 19.47 ± 0.28 b |
p-value | 0.0001 | 0.001 |
Plant Extracts | Antioxidant Activity | |
---|---|---|
DPPH (mg EQ/g) | FRAP (μM Fe(II)/g) | |
Azadirachta indica leaves | 35.92 ± 0.39 b | 26.04 ± 0.25 c |
Combretum micranthum leaves | 27.88 ± 0.41 c | 23.71 ± 0.38 c |
Carica papaya seeds | 69.77 ± 0.48 a | 57.53 ± 0.54 b |
Sarcocephalus latifolius roots | 76.25 ± 0.53 a | 86.21 ± 4.28 a |
Vernonia amygdalina leaves | 23.68 ± 0.61 c | 29.14 ± 1.79 c |
p-value | <0.0001 | <0.0001 |
Selected Plants | Lethal Concentration (LC50) (mg/mL) |
---|---|
Azadirachta indica leaves | 26.35 |
Combretum micranthum leaves | 31.24 |
Carica papaya seeds | 24.56 |
Sarcocephalus latifolius roots | 21.42 |
Vernonia amygdalina leaves | 28.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchodo, F.G.; Dakpogan, H.B.; Sanvee, S.; Adjei-Mensah, B.; Kpomasse, C.C.; Karou, S.; Pitala, W.; Tona, K.; Bakoma, B. The Anticoccidial In Vitro Effects and Antioxidant Properties of Several Plants Traditionally Used for Coccidiosis in Togo. Vet. Sci. 2024, 11, 345. https://doi.org/10.3390/vetsci11080345
Tchodo FG, Dakpogan HB, Sanvee S, Adjei-Mensah B, Kpomasse CC, Karou S, Pitala W, Tona K, Bakoma B. The Anticoccidial In Vitro Effects and Antioxidant Properties of Several Plants Traditionally Used for Coccidiosis in Togo. Veterinary Sciences. 2024; 11(8):345. https://doi.org/10.3390/vetsci11080345
Chicago/Turabian StyleTchodo, Ferdinand Grégoire, Hervé Brice Dakpogan, Sabrina Sanvee, Benjamin Adjei-Mensah, Claude Cocou Kpomasse, Simplice Karou, Wéré Pitala, Kokou Tona, and Batomayena Bakoma. 2024. "The Anticoccidial In Vitro Effects and Antioxidant Properties of Several Plants Traditionally Used for Coccidiosis in Togo" Veterinary Sciences 11, no. 8: 345. https://doi.org/10.3390/vetsci11080345
APA StyleTchodo, F. G., Dakpogan, H. B., Sanvee, S., Adjei-Mensah, B., Kpomasse, C. C., Karou, S., Pitala, W., Tona, K., & Bakoma, B. (2024). The Anticoccidial In Vitro Effects and Antioxidant Properties of Several Plants Traditionally Used for Coccidiosis in Togo. Veterinary Sciences, 11(8), 345. https://doi.org/10.3390/vetsci11080345