Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics
Abstract
:1. Introduction
2. Beneficial Health Effects and Properties of Dairy and Non-Dairy Beverages Containing Probiotics, Prebiotics and Synbiotics: An Updated Shot
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sanguansri, L.; Augustin, M.A. Microencapsulation in functional food product development. In Functional Food Product Development; Smith, J., Charter, E., Eds.; John Wiley and Sons: New York, NY, USA, 2010; pp. 3–23. [Google Scholar]
- Ghoshal, G. Chapter 4–Beverages: A potential delivery system for nutraceuticals. Nutr. Beverages 2019, 12, 1111–1142. [Google Scholar]
- Santini, A.; Novellino, E. Nutraceuticals: Beyond the diet before the drugs. Curr. Bioact. Compd. 2014, 10, 1–12. [Google Scholar] [CrossRef]
- Andrew, R.; Izzo, A.A. Principles of pharmacological research of nutraceuticals. Br. J. Pharmacol. 2017, 174, 1177–1194. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Novellino, E. To nutraceuticals and back: Rethinking a concept. Foods 2017, 6, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018, 32, 2202–2213. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Expert Opin. Ther. Pat. 2018, 28, 875–882. [Google Scholar] [CrossRef]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From plant compounds to botanicals and back: A current snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A. Extractable and non-extractable polyphenols: An overview. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; Royal Society of Chemistry: London, UK, 2018; pp. 1–37. [Google Scholar]
- Durazzo, A.; Lucarini, M. A current shot and re-thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2018, 5, 9–11. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. Nutraceuticals-shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev. Clin. Pharmacol. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Daliu, P.; Annunziata, G.; Tenore, G.C.; Santini, A. Abscisic acid identification in Okra, Abelmoschus esculentus L. (Moench): Perspective nutraceutical use for the treatment of diabetes. Nat. Prod. Res. 2019, 8, 1–7. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. Extractable and non-extractable antioxidants. Molecules 2019, 24, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods commercial trends, research, and health implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Tolun, A.; Altintas, Z. Medicinal properties and functional components of beverages. Funct. Med. Beverages 2019, 11, 2352–2384. [Google Scholar] [CrossRef]
- Orrù, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of functional beverages on sport performance and recovery. Nutrients 2018, 10, 1470. [Google Scholar] [CrossRef] [Green Version]
- Barbano, D.M. A 100-year review: The production of fluid (market) milk. J. Dairy Sci. 2017, 100, 9894–9902. [Google Scholar] [CrossRef] [Green Version]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Butu, M.; Rodino, S. 11–Fruit and vegetable-based beverages—Nutritional properties and health benefits. Nat. Beverages 2019, 13, 3033–3038. [Google Scholar]
- Chandrasekara, A.; Shahidi, F. Herbal beverages: Bioactive compounds and their role in disease risk reduction–A review. J. Tradit. Complement. Med. 2018, 8, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Irkin, R. 14–Natural fermented beverages. In Natural Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 399–425. [Google Scholar] [CrossRef]
- Misihairabgwi, J.; Cheikhyoussef, A. Traditional fermented foods and beverages of Namibia. J. Ethn. Foods 2017, 4, 145–153. [Google Scholar] [CrossRef]
- Kaur, P.; Ghoshal, G.; Banerjee, U.C. 3–Traditional bio-preservation in beverages: Fermented beverages. In Preservatives and Preservation Approaches in Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 69–113. [Google Scholar] [CrossRef]
- Taylor, J.R.N. Fermentation: Foods and nonalcoholic beverages. In Encyclopedia of Food Grains 2016; Istrati, D., Pricop, E., Georgiana, P., Vizireanu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 3, pp. 183–192. [Google Scholar]
- Li, S.; Shahidi, F.; Ho, C.-T. Chemistry of functional beverages. In Handbook of Functional Beverages and Human Health; Shahidi, F., Alasalvar, C., Eds.; CRC Press: Oxfordshire, UK, 2016. [Google Scholar]
- Vijaya Kumar, B.; Vijayendra, S.V.; Reddy, O.V. Trends in dairy and non-dairy probiotic products–A review. J. Food Sci. Technol. 2015, 52, 6112–6124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llamas-Arriba, M.G.; Hernández-Alcántara, A.M.; Yépez, A.; Aznar, R.; Dueñas, M.T.; López, P. 12–Functional and nutritious beverages produced by lactic acid bacteria. In Nutrients in Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 419–465. [Google Scholar] [CrossRef]
- Shori, A.B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Dairy and non-dairy probiotic beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Makinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Ranadheera, S.C.; Vidanarachchi, K.J.; Rocha, S.R.; Cruz, G.A.; Ajlouni, S. Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Ranadheera, C.S.; Prasanna, P.H.P.; Pimentel, T.C.; Azeredo, D.R.P.; Rocha, R.S.; Cruz, A.G.; Vidanarachchi, J.K.; Naumovski, N.; McConchie, R.; Ajlouni, S.; et al. 6–Microbial safety of nonalcoholic beverages. In Safety Issues in Beverage Production; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 187–221. [Google Scholar] [CrossRef]
- Mielby, L.A.; Wang, Q.J.; Jensen, S.; Sjoerup Bertelsen, A.; Kidmose, U.; Spence, C.; Byrne, D.V. See, feel, taste: The influence of receptacle colour and weight on the evaluation of flavoured carbonated beverages. Foods 2018, 7, 119. [Google Scholar] [CrossRef] [Green Version]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Schoina, V.; Terpou, A.; Papadaki, A.; Bosnea, L.; Kopsahelis, N.; Kanellaki, M. Enhanced aromatic profile and functionality of cheese whey beverages by incorporation of probiotic cells immobilized on pistacia terebinthus resin. Foods 2020, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, S.M.; Chua, L.S. 13–Green technological fermentation for probioticated beverages for health enhancement. In Biotechnological Progress and Beverage Consumption; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 407–434. [Google Scholar] [CrossRef]
- Mota de Carvalho, N.; Costa, M.E.; Silva, S.; Pimentel, L.; Fernandes, H.T.; Pintado, E.M. Fermented foods and beverages in human diet and their influence on gut microbiota and health. Fermentation 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Chilton, N.S.; Burton, P.J.; Reid, G. Inclusion of fermented foods in food guides around the world. Nutrition 2015, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokoena, M.P.; Mutanda, T.; Olaniran, A.O. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages. Food Nutr. Res. 2016, 60, 29630. [Google Scholar] [CrossRef] [Green Version]
- Baschali, A.; Tsakalidou, E.; Kyriacou, A.; Karavasiloglou, N.; Matalas, A.L. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: A neglected food group. Nutr. Res. Rev. 2017, 30, 1–24. [Google Scholar] [CrossRef]
- Raghuwanshi, S.; Misra, S.; Sharma, R.; Bisen, P. Probiotics: Nutritional therapeutic tool. J. Probiotics Health 2018, 6, 194. [Google Scholar] [CrossRef]
- Valls, J.; Pasamontes, N.; Pantaleón, A.; Vinaixa, S.; Vaqué, M.; Soler, A.; Millán, S.; Gómez, X. Prospects of functional foods/nutraceuticals and markets. In Natural Products; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2491–2525. [Google Scholar] [CrossRef]
- The Europe Probiotic Market is Expected to Reach $616.13 Million by 2018, at a CAGR of 7.7% from 2013 to 2018. 2018. Available online: https://www.prnewswire.com/news-releases/the-europe-probiotic-market-is-expected-to-reach-61613-million-by-2018-at-a-cagr-of-77-from-2013-to-2018-286204451.html (accessed on 11 December 2019).
- Tesfaye, W.; Suarez-Lepe, J.A.; Loira, I.; Palomero, F.; Morata, A. 14–Dairy and nondairy-based beverages as a vehicle for probiotics, prebiotics, and synbiotics: Alternatives to health versus disease binomial approach through food. In Milk-Based Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 473–520. [Google Scholar] [CrossRef]
- Yadav, R.; Puniya, A.K.; Shukla, P. Probiotic properties of lactobacillus plantarum RYPR1 from an indigenous fermented beverage raabadi. Front. Microbiol. 2016, 7, 1683. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.S.; Ramos, C.L.; González-Avila, M.; Gschaedler, A.; Arrizon, J.; Schwan, R.F.; Dias, D.R. Probiotic properties of weissella cibaria and leuconostoc citreum isolated from tejuino–A typical Mexican beverage. LWT 2017, 86, 227–232. [Google Scholar] [CrossRef]
- Tamang, J.P.; Shin, D.-H.; Jung, S.-J.; Chae, S.W. Functional properties of microorganisms in fermented foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [Green Version]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Blatchford, P.; Ansell, J.; Godoy, M.; Fahey, G.; Garcia-Mazcorro, J.; Gibson, G.R.; Goh, Y.; Hotchkiss, A.; Hutkins, R.; Lacroix, C.; et al. Prebiotic mechanisms, functions and applications–A review. Int. J. Probiotics Prebiotics 2013, 8, 109–132. [Google Scholar]
- Rioux, K.P.; Madsen, K.L.; Fedorak, R.N. The role of enteric microflora in inflammatory bowel disease: Human and animal studies with probiotics and prebiotics. Gastroenterol. Clin. N. Am. 2005, 34, 465–482. [Google Scholar] [CrossRef] [PubMed]
- Nigam, D. Probiotics as functional foods in enhancing gut immunity. In Functional Food and Human Health; Rani, V., Yadav, U.C.S., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Yadav, R.; Shukla, P. Probiotics for human health: Current progress and applications. In Recent Advances in Applied Microbiology; Shukla, P., Ed.; Springer: Singapore, 2017. [Google Scholar]
- Bhardwaj, R.; Singh, B.P.; Sandhu, N.; Singh, N.; Kaur, R.; Rokana, N.; Singh, K.S.; Chaudhary, V.; Panwar, H. Probiotic mediated NF-κB regulation for prospective management of type 2 diabetes. Mol. Bio. Rep. 2020, 47, 2301–2313. [Google Scholar] [CrossRef] [PubMed]
- Hati, S.; Das, S.; Mandal, S. 4–Technological advancement of functional fermented dairy beverages. In Engineering Tools in the Beverage Industry; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 101–136. [Google Scholar] [CrossRef]
- Sabokbar, N.; Khodaiyan, F. Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2016, 53, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, M.; Kim, K.T.; Park, E.; Paik, H.D. Antioxidant and antigenotoxic effect of dairy products supplemented with red ginseng extract. J. Dairy Sci. 2018, 101, 8702–8710. [Google Scholar] [CrossRef] [Green Version]
- Likotrafiti, E.; Valavani, P.; Argiriou, A.; Rhoades, J. In vitro evaluation of potential antimicrobial synbiotics using Lactobacillus kefiri isolated from kefir grains. Int. Dairy J. 2015, 45, 23–30. [Google Scholar] [CrossRef]
- Haghshenas, B.; Nami, Y.; Haghshenas, M.; Abdullah, N.; Rosli, R.; Radiah, D.; Yari, A. Bioactivity characterization of Lactobacillus strains isolated from dairy products. Microbiologyopen 2015, 4. [Google Scholar] [CrossRef]
- Baba, A.S.; Najarian, A.; Shori, A.B.; Lit, K.W.; Keng, G.A. Viability of lactic acid bacteria, antioxidant activity and in vitro inhibition of angiotensin-I-converting enzyme of lycium barbarum yogurt. Arab. J. Sci. Eng. 2014, 39, 5355–5362. [Google Scholar] [CrossRef]
- Iraporda, C.; Romanin, D.E.; Rumbo, M.; Garrote, G.L.; Abraham, A.G. The role of lactate on the immunomodulatory properties of the nonbacterial fraction of kefir. Food Res. Int. 2014, 62, 247–253. [Google Scholar] [CrossRef]
- Chen, R.; Chen, W.; Chen, H.; Zhang, G.; Chen, W. Comparative Evaluation of the Antioxidant Capacities, Organic Acids, and Volatiles of Papaya Juices Fermented by Lactobacillus acidophilus and Lactobacillus plantarum. J. Food Qual. 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Larena, M.; Garcia-Llatas, G.; Clemente, G.; Barbera, R.; Lagarda, M.J. Plant sterol oxides in functional beverages: Influence of matrix and storage. Food Chem. 2015, 173, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.C.; Piccoli, R.H.; Duarte, W.F. Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Res. Int. 2018, 107, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Freire, A.L.; Ramos, C.L.; Schwan, R.F. Effect of symbiotic interaction between a fructooligosaccharide and probiotic on the kinetic fermentation and chemical profile of maize blended rice beverages. Food Res. Int. 2017, 100, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, X.; Zhang, D.; Zhou, F.; Wang, D.; Wei, Y.; Gao, F.; Xie, L.; Jia, G.; Wu, W.; et al. Blueberry anthocyanins: Protection against ageing and light-induced damage in retinal pigment epithelial cells. Br. J. Nutr. 2012, 108, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Li, T.; Qi, J.; Jiang, T.; Xu, H.; Lei, H. Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT 2020, 122, 109064. [Google Scholar] [CrossRef]
- Ethiraj, S.; Vaithilingam, M.; Chandrasekaran, S.; Mehra, A.; Prakash, S.; Agarwal, A. Fermentation of beet juice using lactic acid bacteria and its cytotoxic activity against human liver cancer cell lines HepG2. Curr. Bioact. Compd. 2016, 12. [Google Scholar] [CrossRef]
- Cholakov, R.; Tumbarski, Y.; Yanakieva, V.; Dobrev, I.; Salim, Y.; Denkova, Z. Antimicrobial activity of Leuconostoc lactis strain BT17, isolated from a spontaneously fermented cereal beverage (Boza). J. Microbiol. Biotech. Food Sci. 2017, 7, 47–49. [Google Scholar] [CrossRef] [Green Version]
- Hamet, M.F.; Medrano, M.; Perez, P.F.; Abraham, A.G. Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota. Benef. Microbes 2016, 7, 237–246. [Google Scholar] [CrossRef]
- Carasi, P.; Racedo, S.M.; Jacquot, C.; Romanin, D.E.; Serradell, M.A.; Urdaci, M.C. Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J. Immunol. Res. 2015, 2015, 361604. [Google Scholar] [CrossRef] [Green Version]
- Moura, C.S.; Lollo, P.C.B.; Morato, P.N.; Esmerino, E.A.; Margalho, L.P.; Santos-Junior, V.A.; Coimbra, P.T.; Cappato, L.P.; Silva, M.C.; Garcia-Gomes, A.S.; et al. Assessment of antioxidant activity, lipid profile, general biochemical and immune system responses of Wistar rats fed with dairy dessert containing Lactobacillus acidophilus La-5. Food Res. Int. 2016, 90, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Klippel, B.F.; Duemke, L.B.; Leal, M.A.; Friques, A.G.; Dantas, E.M.; Dalvi, R.F.; Gava, A.L.; Pereira, T.M.; Andrade, T.U.; Meyrelles, S.S.; et al. Effects of kefir on the cardiac autonomic tones and baroreflex sensitivity in spontaneously hypertensive rats. Front. Physiol. 2016, 7, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.-W.; Kang, H.W.; Lim, W.-C.; Kim, M.-K.; Lee, I.-Y.; Cho, H.-Y. Kefir prevented excess fat accumulation in diet-induced obese mice. Biosci. Biotechnol. Biochem. 2017, 81, 958–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friques, A.G.F.; Arpini, C.M.; Kalil, I.C.; Gava, A.L.; Leal, M.A.; Porto, M.L.; Nogueira, B.V.; Dias, A.T.; Andrade, T.U.; Pereira, T.M.C.; et al. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats. J. Transl. Med. 2015, 13, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasmin, A.; Butt, M.S.; van Baak, M.; Shahid, M.Z. Supplementation of prebiotics to a whey-based beverage reduces the risk of hypercholesterolaemia in rats. Int. Dairy J. 2015, 48, 80–84. [Google Scholar] [CrossRef]
- Nagata, S.; Asahara, T.; Wang, C.; Suyama, Y.; Chonan, O.; Takano, K.; Daibou, M.; Takahashi, T.; Nomoto, K.; Yamashiro, Y.; et al. The effectiveness of lactobacillus beverages in controlling infections among the residents of an aged care facility: A randomized placebo-controlled double-blind trial. Ann. Nutr. Metab. 2016, 68, 51–59. [Google Scholar] [CrossRef]
- Tonucci, L.B.; Olbrich Dos Santos, K.M.; Licursi de Oliveira, L.; Rocha Ribeiro, S.M.; Duarte Martino, H.S. Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clin. Nutr. 2017, 36, 85–92. [Google Scholar] [CrossRef]
- Hulston, C.J.; Churnside, A.A.; Venables, M.C. Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects. Br. J. Nutr. 2015, 113, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Chu, S.H.; Jeon, J.Y.; Lee, M.K.; Park, J.H.; Lee, D.C.; Lee, J.W.; Kim, N.K. Effects of 12 weeks of probiotic supplementation on quality of life in colorectal cancer survivors: A double-blind, randomized, placebo-controlled trial. Dig. Liver Dis. 2014, 46, 1126–1132. [Google Scholar] [CrossRef]
- Zarrati, M.; Salehi, E.; Nourijelyani, K.; Mofid, V.; Zadeh, M.J.; Najafi, F.; Ghaflati, Z.; Bidad, K.; Chamari, M.; Karimi, M.; et al. Effects of probiotic yogurt on fat distribution and gene expression of proinflammatory factors in peripheral blood mononuclear cells in overweight and obese people with or without weight-loss diet. J. Am. Coll. Nutr. 2014, 33, 417–425. [Google Scholar] [CrossRef]
- Pala, V.; Sieri, S.; Berrino, F.; Vineis, P.; Sacerdote, C.; Palli, D.; Masala, G.; Panico, S.; Mattiello, A.; Tumino, R.; et al. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int. J. Cancer 2011, 129, 2712–2719. [Google Scholar] [CrossRef] [PubMed]
- Guillemard, E.; Tondu, F.; Lacoin, F.; Schrezenmeir, J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J. Nutr. 2010, 103, 58–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebbeling, C.B.; Feldman, H.A.; Chomitz, V.R.; Antonelli, T.A.; Gortmaker, S.L.; Osganian, S.K.; Ludwig, D.S. A randomized trial of sugar-sweetened beverages and adolescent body weight. N. Engl. J. Med. 2012, 367, 1407–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Pérez, C.; Pimentel-Moral, S.; Ochando-Pulido, J. 4–New trends and perspectives in functional dairy-based beverages. In Milk-Based Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 95–138. [Google Scholar] [CrossRef]
- Üstün-Aytekin, Ö.; Şeker, A.; Arısoy, S. The effect of in vitro gastrointestinal simulation on bioactivities of kefir. Int. J. Food Sci. Technol. 2020, 55, 283–292. [Google Scholar] [CrossRef]
- Akal, C.; Turkmen, N.; Özer, B. 10–Technology of dairy-based beverages. In Milk-Based Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 331–372. [Google Scholar] [CrossRef]
- Turkmen, N.; Akal, C.; Özer, B. Probiotic dairy-based beverages: A review. J. Funct. Foods 2019, 53, 62–75. [Google Scholar] [CrossRef]
- Van Wyk, J. 12–Kefir: The champagne of fermented beverages. In Fermented Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 437–527. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.S.; Muniandy, P. 5–Potential health-promoting effects of probiotics in dairy beverages. In Value-Added Ingredients and Enrichments of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 173–204. [Google Scholar] [CrossRef]
- Magno, M.B.; Nadelman, P.; de Abreu Brandi, T.C.; Pithon, M.M.; Fonseca-Gonçalves, A.; da Cruz, A.G.; Maia, L.C. 15–The effect of dairy probiotic beverages on oral health. In Milk-Based Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 521–556. [Google Scholar] [CrossRef]
- Grom, L.C.; Rocha, R.S.; Balthazar, C.F.; Guimarães, J.T.; Coutinho, N.M.; Barros, C.P.; Pimentel, T.C.; Venâncio, E.L.; Collopy Junior, I.; Maciel, P.M.C.; et al. Postprandial glycemia in healthy subjects: Which probiotic dairy food is more adequate? J. Dairy Sci. 2020, 103, 1110–1119. [Google Scholar] [CrossRef]
- Zoumpopoulou, G.; Pot, B.; Tsakalidou, E.; Papadimitriou, K. Dairy probiotics: Beyond the role of promoting gut and immune health. Int. Dairy J. 2017, 67, 46–60. [Google Scholar] [CrossRef]
- Bourrie, B.C.T.; Willing, B.P.; Cotter, P.D. The microbiota and health promoting characteristics of the fermented beverage kefir. Front. Microbiol. 2016, 7, 647. [Google Scholar] [CrossRef] [Green Version]
- Shida, K.; Sato, T.; Iizuka, R.; Hoshi, R.; Watanabe, O.; Igarashi, T.; Miyazaki, K.; Nanno, M.; Ishikawa, F. Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers. Eur. J. Nutr. 2017, 56, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, R.; Biver, E. Effects of fermented milk products on bone. Calcif. Tissue Int. 2018, 102, 489–500. [Google Scholar] [CrossRef]
- Sharifi, M.; Moridnia, A.; Mortazavi, D.; Salehi, M.; Bagheri, M.; Sheikhi, A. Kefir: A powerful probiotics with anticancer properties. Med. Oncol. 2017, 34, 183. [Google Scholar] [CrossRef] [PubMed]
- Ma’mon, M.H.; Nuirat, A.; Zihlif, M.A.; Taha, M.O. Exploring the influence of culture conditions on kefir’s anticancer properties. J. Dairy Sci. 2018, 101, 3771–3777. [Google Scholar]
- Ayyash, M.; Al-Dhaheri, A.S.; Al Mahadin, S.; Kizhakkayil, J.; Abushelaibi, A. In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. J. Dairy Sci. 2018, 101, 900–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raikos, V.; Ni, H.; Hayes, H.; Ranawana, V. Antioxidant properties of a yogurt beverage enriched with salal (gaultheria shallon) berries and blackcurrant (ribes nigrum) pomace during cold storage. Beverages 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, M.A.; Souza, E.L.S.; Arantes, R.M.E.; Balthazar, C.F.; Guimaraes, J.T.; Scudino, H.; Silva, H.L.A.; Rocha, R.S.; Freitas, M.Q.; Esmerino, E.A.; et al. Fermented whey dairy beverage offers protection against Salmonella enterica ssp. enterica serovar Typhimurium infection in mice. J. Dairy Sci. 2019, 102, 6756–6765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, X.; Jiang, Y.; Zhao, W.; Guo, T.; Cao, Y.; Teng, J.; Hao, X.; Zhao, J.; Yang, Z.; et al. Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir. J. Dairy Sci. 2017, 100, 6025–6041. [Google Scholar] [CrossRef]
- Javid, A.Z.; Amerian, E.; Basir, L.; Ekrami, A.; Haghighizadeh, M.H.; Maghsoumi-Norouzabad, L. Effects of the consumption of probiotic yogurt containing bifidobacterium lactis Bb12 on the levels of streptococcus mutans and lactobacilli in saliva of students with initial stages of dental caries: A double-blind randomized controlled trial. Caries Res. 2020, 54, 68–74. [Google Scholar]
- Tyas, A.S.A.; Kristian, S.D. The influence of goat milk and soybean milk kefir on IL-6 and crp levels in diabetic rats. Rom. J. Diabetes Nutr. Metab. Dis. 2015, 22, 261–267. [Google Scholar]
- Ostadrahimi, A.; Taghizadeh, A.; Mobasseri, M.; Farrin, N.; Payahoo, L.; Beyramalipoor Gheshlaghi, Z.; Vahedjabbari, M. Effect of probiotic fermented milk (kefir) on glycemic control and lipid profile in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Iran J. Public Health 2015, 44, 228–237. [Google Scholar] [PubMed]
- Ton, A.; Campagnaro, B.; Alves, G.; Aires, R.; Côco, L.; Arpini, C.; Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.; Pereira, T.; et al. Oxidative stress and dementia in alzheimer’s patients: Effects of synbiotic supplementation. Oxid. Med. Cell Longev. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Jalali, F.; Sharifi, M.; Salehi, R. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia. Med. Oncol. 2016, 33, 7. [Google Scholar] [CrossRef] [PubMed]
- Zamberi, N.R.; Abu, N.; Mohamed, N.E.; Nordin, N.; Keong, Y.S.; Beh, B.K.; Zakaria, Z.A.; Nik Abdul Rahman, N.M.; Alitheen, N.B. The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells. Integr. Cancer Ther. 2016, 15, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Song, J.; Liang, M.; Ma, F.; Mao, X.; Ma, C.; Zhang, W.; Huang, Z. Overview of beverages with anti-aging functions in Chinese market. Rejuvenation Res. 2014, 17, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawkowski, D.; Chikindas, M.L. Non-dairy probiotic beverages: The next step into human health. Benef. Microbes 2013, 4, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Soto, E.; Garcia, C.; Fessard, A.; Barba, J.F.; Munekata, E.S.P.; Lorenzo, M.J.; Remize, F. Nutritional and microbiological quality of tiger nut tubers (cyperus esculentus), derived plant-based and lactic fermented beverages. Fermentation 2018, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Khezri, S.; Dehghan, P.; Mahmoudi, R.; Jafarlou, M. Fig juice fermented with lactic acid bacteria as a nutraceutical product. Pharm. Sci. 2016, 22, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Mangal, M.; Sharma, S.K.; Gupta, R.K. Non-dairy Based Probiotics: A healthy treat for intestine. Crit. Rev. Food Sci. Nutr. 2016, 56, 1856–1867. [Google Scholar] [CrossRef]
- Singh, D.; Vij, S.; Singh, B.P. Antioxidative and antimicrobial activity of whey based fermented soy beverage with curcumin supplementation. Indian J. Dairy Sci. 2016, 69, 171–177. [Google Scholar]
- Fernandes Pereira, A.L.; Rodrigues, S. Chapter 15–Turning fruit juice into probiotic beverages. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 279–287. [Google Scholar] [CrossRef]
- Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.I.; Galanis, A.; Plessas, S. Production of a novel functional fruit beverage consisting of cornelian cherry juice and probiotic bacteria. Antioxidants 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Dey, G. Non-dairy Probiotic Foods: Innovations and Market Trends. In Innovations in Technologies for Fermented Food and Beverage Industries; Panda, S., Shetty, P., Eds.; Springer, Cham: Basel, Switzerland, 2018; pp. 159–173. [Google Scholar]
- Patel, A. Probiotic fruit and vegetable juices- recent advances and future perspective. Int. Food Res. J. 2017, 24, 1850–1857. [Google Scholar]
- De Oliveira Ribeiro, A.P.; Gomes, F.D.S.; Maria Olbrich dos Santos, K.; da Matta, V.M.; Freitas de Sá, D.D.G.C.; Santiago, M.C.P.D.A.; Conte, C.; de Oliveira Costa, S.D.; Oliveira Ribeiro, L.D.; de Oliveira Godoy, R.L.; et al. Development of a probiotic non-fermented blend beverage with juçara fruit: Effect of the matrix on probiotic viability and survival to the gastrointestinal tract. LWT Food Sci. Technol. 2020, 118, 108756. [Google Scholar] [CrossRef]
- Giri, S.S.; Sukumaran, V.; Sen, S.S.; Park, S.C. Use of a potential probiotic, lactobacillus casei L4, in the preparation of fermented coconut water beverage. Front. Microbiol. 2018, 9, 1976. [Google Scholar] [CrossRef] [PubMed]
- Deswal, A. Non-dairy based beverages: An insight. J. Nutr. Food Res. Technol. 2018, 1, 1–4. [Google Scholar]
- Pimentel, T.C.; Klososki, S.J.; Rosset, M.; Barão, C.E.; Marcolino, V.A. 14–Fruit juices as probiotic foods. In Sports and Energy Drinks; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK; Elsevier: Amsterdam, The Netherlands, 2019; pp. 483–513. [Google Scholar] [CrossRef]
- Camargo Prado, F.; De Dea Lindner, J.; Inaba, J.; Thomaz-Soccol, V.; Kaur Brar, S.; Soccol, C.R. Development and evaluation of a fermented coconut water beverage with potential health benefits. J. Funct. Foods 2015, 12, 489–497. [Google Scholar] [CrossRef]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential non-dairy probiotic products–A healthy approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Fessard, A.; Kapoor, A.; Patche, J.; Assemat, S.; Hoarau, M.; Bourdon, E.; Bahorun, T.; Remize, F. Lactic fermentation as an efficient tool to enhance the antioxidant activity of tropical fruit juices and teas. Microorganisms 2017. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the probiotic lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice. Foods 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, F.Y.; Baser, G.M.; Özcan, E.; Üstündağ, Ö.G.; Korachi, M.; Sofu, A.; Blumberg, J.B.; Chen, C.Y.O. Characterization of chemical, biological, and antiproliferative properties of fermented black carrot juice, shalgam. Eur. Food Res. Technol. 2016, 242, 1355–1368. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, F.; Chai, Z.; Liu, M.; Battino, M.; Meng, X. Mixed fermentation of blueberry pomace with L. rhamnosus GG and L. plantarum-1: Enhance the active ingredient, antioxidant activity and health-promoting benefits. Food Chem. Toxicol. 2019, 131, 110541. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A.; Sienkiewicz, M.; Zielińska-Bliźniewska, H.; Kwiatkowski, P. Development, characterization, and bioactivity of non-dairy kefir-like fermented beverage based on flaxseed oil cake. Foods 2019, 8, 544. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Jonsson, T.; Plaza, M.; Hakansson, A.; Antonsson, M.; Ahren, I.L.; Turner, C.; Spegel, P.; Granfeldt, Y. Probiotic fruit beverages with different polyphenol profiles attenuated early insulin response. Nutr. J. 2018, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Salinas, J.R.; Bulnes, P.; Zuniga, M.C.; Perez-Jimenez, J.; Torres, J.L.; Mateos-Martin, M.L.; Agosin, E.; Perez-Correa, J.R. Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. J. Agric. Food Chem. 2013, 61, 6929–6936. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, A.; Raybaudi-Massilia, R.; Francisco, A.; Sojo, F.; Martirosyan, D. Cytotoxic and antioxidant properties in vitro of functional beverages based on blackberry (Rubus glaucus B.) and soursop (Annona muricata L.) pulps. Funct. Foods Health Dis. 2018, 8, 520–536. [Google Scholar] [CrossRef]
- Rovinaru, C.; Pasarin, D. Application of microencapsulated synbiotics in fruit-based beverages. Probiotics Antimicrob. Proteins 2019. [Google Scholar] [CrossRef]
- Tomar, S.; Anand, S.; Sharma, P.; Mandal, S. Role of probiotics, prebiotics, synbiotics and postbiotics in inhibition of pathogens. In The Battle against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2015; pp. 717–732. [Google Scholar]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Moradi, M.; Mardani, K.; Tajik, H. Characterization and application of postbiotics of lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT Food Sci. Technol. 2019, 111, 457–464. [Google Scholar] [CrossRef]
- Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci. 2019, 20, 4673. [Google Scholar] [CrossRef] [Green Version]
- Barros, C.P.; Guimarães, J.T.; Esmerino, E.A.; Duarte, M.C.K.H.; Silva, M.C.; Silva, R.; Ferreira, B.M.; Sant’Ana, A.S.; Freitas, M.Q.; Cruz, A.G.; et al. Paraprobiotics and postbiotics: Concepts and potential applications in dairy products. Curr. Opin. Food Sci. 2020, 32, 1–8. [Google Scholar] [CrossRef]
- Helkar, P.B.; Sahoo, A.K.; Patil, N.J. Review: Food industry by-products used as a functional food ingredients. Int. J. Waste Resour. 2016, 6. [Google Scholar] [CrossRef]
- Singh, H. Nanotechnology applications in functional foods; opportunities and challenges. Prev. Nutr. Food Sci. 2016, 21, 1–8. [Google Scholar] [CrossRef]
- Andreani, T.; Fangueiro, J.F.; José, S.; Santini, A.; Silva, A.M.; Souto, E.B. Hydrophilic polymers for modified-release nanoparticles: A review of mathematical modelling for pharmacokinetic analysis. Curr. Pharm. Des. 2015, 21, 3090–3096. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Ferreira, N.R.; Nowak, I.; Durazzo, A.; Lucarini, M.; Cicero, N.; El Mamouni, S.; Silva, A.M.; Santini, A.; Souto, E.B.; et al. Development and optimization of alpha-pinene-loaded solid lipid nanoparticles (SLN) using experimental factorial design and dispersion analysis. Molecules 2019, 24, 2683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Nazhand, A.; Lucarini, M.; Atanasov, A.G.; Souto, E.B.; Novellino, E.; Capasso, R.; Santini, A. An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. Int. J. Mol. Sci. 2020, 21, 2285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grumezescu, A.M.; Holban, A.M. Volume 20: The Science of Beverages. In Nanoengineering in the Beverage Industry, 1st ed.; Alexandru, G., Alina, M.H., Eds.; Academic Press: Cambridge, UK, 2020; ISBN 9780128166772. [Google Scholar]
- Ozdal, T.; Yolci-Omeroglu, P.; Tamer, E.C. Role of encapsulation in functional beverages. In Biotechnological Progressand Beverage Consumption; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing, Elsevier: Cambridige, MA, USA, 2020; Volume 19, pp. 195–232. [Google Scholar]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems. J. Sci. Food Agric. 2018, 98, 511–518. [Google Scholar] [CrossRef]
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; Sugrue, I.; Arendt, E.; Hill, C.; Stanton, C.; Ross, R. Recent advances in microbial fermentation for dairy and health. F1000 Res. 2017, 6, 751. [Google Scholar] [CrossRef]
- Tewari, S.; David, J.; Gautam, A. A review on probiotic dairy products and digestive health. J. Pharmacogn. Phytochem. 2019, 8, 368–372. [Google Scholar]
- Santini, A.; Novellino, E.; Armini, V.; Ritieni, A. State of the art of ready-to use therapeutic food: A tool for nutraceuticals addition to foodstuff. Food Chem. 2013, 140, 843–849. [Google Scholar] [CrossRef]
(a) | |||||||
Beverage | Condition | Product | Activity | Effect | Reference | ||
Kefir | Anti-oxidant activity | Having fermentation observed DPPH radical scavenging, inhibition effect upon linoleic acid autoxidation increased, accordingly, TPC, and inhibition effect upon ascorbate autoxidation boosted | [60] | ||||
Milk and yogurt along with red ginseng | Anti-oxidant and Antigenotoxic effect | The 2,2-diphenyl-1-picrylhy- drazyl radical scavenging activity and oxygen radical absorbance capacity values raised meaningfully in subsequence of adding 2% red ginseng in both. | [61] | ||||
Dairy | In vitro | Kefir | Antimicrobial activity | Lactobacillus kefiri B6 has been reported having anti-pathogenic activity and being resistant to bile | [62] | ||
Yogurt and ewe colostrum | Anticancer effects | Antiproliferative effects detected against HT-29 human cancer cells by Lactobacillus plantarum 17C | [63] | ||||
Yogurt | Antioxidant activity | Although Lactobacillus barbarum naturally sweetened the yogurt and increased yogurt aroma, it did not enhance ACE-I prevention activity | [64] | ||||
Kefir | The immunomodulatory effect | The activation of intestinal epithelial cells triggered prevented via flagellin, interleukin-1β, and tumor necrosis factor-α as well as abrogates NF-κB signaling in the cells | [65] | ||||
Papaya juices | Anti-oxidant activity | L. plantarum showed better antioxidant activity than L. acidophilus due to its better oxidation resistance | [66] | ||||
Plant sterol (PS)-enriched beverages | Elevation of phytosterol oxidation products (POPs) | There was more than 75% of total POPs during storage period for three beverages enriched by plant sterol (PS). | [67] | ||||
The fermented pineapple beverage | Sensory and nutritional aspects | Further capacity was observed for Meyerozyma caribbica for general acceptance, aroma and taste on the basis of sensorial findings | [68] | ||||
Cereal beverages | Synbiotic effect | The count of viable probiotics (≥107 CFU/mL) was found during refrigeration and fermentation for 28 days while maintaining the prebiotic effect. | [69] | ||||
Non-Dairy | In vitro | Blueberry beverages | Controlled retinal pigment epithelium (RPE) cells damage | The extracts of blueberry anthocyanin protected the pigmented layer of the retina against damages caused by light through the suppression of apoptosis and aging as well as the down-regulation of vascular endothelial growth factor expression to the normal limit. | [70] | ||
Apple juice | Antioxidant effect | The analysis of antioxidant properties by DPPH assay in relation to radical scavenging and FRAP functions | [71] | ||||
Fermented beet-root juice | Anticancer and Antibacterial effect | HepG2 as human liver cancer cell line and Listeria monocytogenes controlled | [72] | ||||
Fermented cereal beverages | Antimicrobial effect | Antimicrobial properties were reported for Leuconostoc lactis BT17 to control Enterobacteriaceae. | [73] | ||||
(b) | |||||||
Beverage | Condition | Product | Activity | Subjects | Administration Time | Effect | Reference |
Dairy | In animal model | Kefir fermented milk | Bifidogenic effect | Animal units were randomized into two groups of 6 | Daily administration of 0.75–1 mg of kefiran/animal/day in the intervention group (n = 6) | The kefiran prebiotic effects on intestinal bacterial populations by increasing through bifidogenic | [74] |
Kefir | Anti-inflammatory in gut | Male Swiss albino mice aged 4 weeks (n = 12) | Daily administration of Kefir (with 108 CFU/mL of L. kefiri CIDCA 8348) by the Lk group for 21 days | Down-regulation of proinflammatory mediator expression and anti-inflammatory molecules, which is improved causing an inductive immune system and effector sites in the mouse gut | [75] | ||
Dairy | Antioxidant effect | The allocation of male rats (n = 24) into three groups, including Group I (control) receiving mere diet, Group II receiving diet plus 5 g/day of common dessert, and Group III receiving diet plus 5 g/day of probiotic dessert | The use of dairy dessert at a dose of 5 g/day containing Lactobacillus acidophilus La-5 at a dose of 8 log CFU/g for 15 days | The treatment caused a reduction in serum lipid profiles by declining LDL, total cholesterol and triacylglycerol | [76] | ||
Kefir | Cardioprotective effect | The treatment of rats with hypertension maintaining at a temperature of 22 to 23 °C and 12/12-h light/dark cycle | The daily use of kefir at a concentration of 0.3 mL/100 g BW for 60 days | The treatment with kefir caused a reduction in the baroreflex sensitivity and the cardiac autonomic control of heart rate | [77] | ||
Kefir | Anti-obesity effect | The allocation of mice aged a month into four groups of eight for eight weeks | The use of kefir powder containing 50 mg/kg of polysaccharides, a yeast cell at a density of 102 cfu/g, lactic acid bacteria at a density of 108 cfu/g | The treatment caused a reduction in serum lipid profiles by declining LDL, total cholesterol, and triacylglycerol | [78] | ||
Kefir | Controlled endothelial dysfunction | The treatment of rats with hypertension aged four months maintaining at a temperature of 22 to 23 °C and 12/12-h light/dark cycle | The use of kefir at a concentration of 0.3 mL/100 g BW for two months | The treatment caused a restoration of intravascular NO availability as well as an elevation of intravascular ROS formation | [79] | ||
Non-dairy | In animal model | whey drinks | Controlled hypercholesterolaemia damage | Male Sprague–Dawley rats (n = 100) kept at a temperature of 23 ± 2 °C, humidity of 55 ± 5% and 12:12 h light-dark cycle | Administration of prebiotic beverages for eight weeks | Fructo oligosaccharides (FOS)-enriched whey drink showed beneficial health effects in the mice with dyslipidemia via the reduction of triacylglycerols (TAG) and low density cholesterol (LDL) levels, and the enhancement of the high density cholesterol (HDL) level | [80] |
(c) | |||||||
Beverage | Condition | Product | Activity | Subjects | Administration Time | Effect | Reference |
Dairy | In human model | Fermented milk | Controlled infection | Elderly patients (n = 88) | Daily administration of fermented milk beverage once a day for six months | The elderly consumer of L. casei strain Shirota (LcS) -fermented milk- showed improved bowel movements and lower incidence of fever | [81] |
Fermented milk | In type 2 diabetes subjects who are boosted the glycemic control, decrease oxidative stress, and also level of SCFA is regulated | Subjects with type 2 diabetes mellitus (n = 50) | Daily administration of 120 g/d fermented milk for six weeks | Reduce levels of HbA1c and fructosamine, prevented improvement of LDL-C and CT, and reduction of anti-inflammatory cytokines | [82] | ||
Fermented milk | Controlled type II diabetes | Healthy subjects (n = 17) were randomly allocated to two groups of probiotics (n = 8) and control (n = 9) | Daily administration of LcS-fermented milk drink two times a day for four weeks by the probiotic group | Using up L. casei Shirota [LcS] fermented milk drink impedes high-fat diet-induced insulin resistance | [83] | ||
Yogurt | CRC survivors having bowel symptoms have been treated and this led to improvement of their life quality | Research units in probiotic Group (n = 28) | Daily administration of probiotics (2 × 109 CFU/ml of L. rhamnosus R0011 plus L. acidophilus R0052) two times a day for 12 weeks | Administration of probiotics meaningfully reduced the percentage of patients suffering from distressing bowel symptom | [84] | ||
Yogurt | The anti-inflammatory activity | Healthy obese and overweight subjects (n = 75) | Daily administration of 200 g/day of probiotic yoghurt (108 CFU/g of L. acidophilus La5 plus Bifidobacterium BB12, and L. casei DN001) for 8 weeks | A reduction in production of proinflammatory cytokines from PBMCs and in serum hs-CRP levels has been observed in overweight and obese adults | [85] | ||
Yogurt | Anticancer effect | 116 males and 173 females (n = 289) | Different doses of 0 g/day (males and females) in minimal tertile to 85 g/day (males) and 98 g/day (females) in maximal tertile for 12 years | Administration of high-dose supplemented yogurt reduced the colorectal cancer, and stronger protective effect was seen in the male participants than in the females in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort in Italy | [86] | ||
Fermented dairy product | Shortened duration of respiratory infections | Randomly selected participants with a median age of 76 (n = 1072) | Administration of 200 g/d fermented dairy product (intervention, n = 537) or non-fermented dairy product (control, n = 535) for three months, and then one-month follow-up | The duration of CID, especially URTI and rhinopharyngitis, in elderly subjects was shortened followed by the administration of L. casei DN-114001-containing fermented dairy product | [87] | ||
Non-dairy | In human model | Sugar-sweetened beverages | Anti-obesity effect | Obese and overweight adolescents (n = 224) | Daily administration (12 oz) for a year | Reduced body mass index (−0.57, p = 0.045) and weight loss (−1.9 kg, p = 0.04) in the intervention groups were significant when comparing with the controls. | [88] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazhand, A.; Souto, E.B.; Lucarini, M.; Souto, S.B.; Durazzo, A.; Santini, A. Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. Beverages 2020, 6, 26. https://doi.org/10.3390/beverages6020026
Nazhand A, Souto EB, Lucarini M, Souto SB, Durazzo A, Santini A. Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. Beverages. 2020; 6(2):26. https://doi.org/10.3390/beverages6020026
Chicago/Turabian StyleNazhand, Amirhossein, Eliana B. Souto, Massimo Lucarini, Selma B. Souto, Alessandra Durazzo, and Antonello Santini. 2020. "Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics" Beverages 6, no. 2: 26. https://doi.org/10.3390/beverages6020026