SWAT-Based Assessment of the Water Regulation Index Under RCP 4.5 and RCP 8.5 Scenarios in the San Pedro River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. SWAT Hydrology
- = soil water content at time t (mm);
- = initial soil water content (mm);
- = daily precipitation (mm);
- = surface runoff (mm);
- = evapotranspiration (mm);
- = percolation or flow into the vadose zone (mm);
- = baseflow or discharge from the aquifer into the channel (mm).
2.2. Data Acquisition
2.3. SWAT Model Configuration
2.4. Model Calibration
2.5. Acquisition of Future Climate Data
2.6. Water Regulation Index (WRI)
3. Results
3.1. Modeling 1990–2020
3.2. Future Climate Series 2040–2070
3.3. Water Regulation Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Liu, Y.; Wang, Y.; Liu, Z. Evaluating Potential Impacts of Land Use Changes on Water Supply-Demand under Multiple Development Scenarios in Dryland Region. J. Hydrol. 2022, 610, 127811. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Rufino, P.R.; Gücker, B.; Faramarzi, M.; Boëchat, I.G.; Cardozo, F.d.S.; Santos, P.R.; Zanin, G.D.; Mataveli, G.; Pereira, G. Evaluation of the SWAT Model for the Simulation of Flow and Water Balance Based on Orbital Data in a Poorly Monitored Basin in the Brazilian Amazon. Geographies 2023, 3, 1–18. [Google Scholar] [CrossRef]
- Fernández, T.M.; Gónima, L.G.; Ortega, Á.J.Z. Análisis Del Calentamiento Global y La Oferta Hídrica a Escala Local: Estudios de Caso En El Departamento de Córdoba, Colombia; Universidad de Córdoba: Montería, Colombia, 2021. [Google Scholar]
- Bastidas-Salamanca, M.; Bayona, J.G. Pre-Feasibility Assessment for Identifying Locations of New Offshore Wind Projects in the Colombian Caribbean. Int. J. Sustain. Energy Plan. Manag. 2021, 32, 139–154. [Google Scholar]
- Municipio de Puerto Libertador. Esquema de Ordenamiento Territorial del Municipio de Puerto Libertador: Fase de Diagnóstico; Technical report; Alcaldía Municipal de Puerto Libertador: Córdoba, Colombia, 2005.
- Ivanova, Y.; Arévalo, L.C.M. Estudio de Afectación Del Servicio Ecosistémico de Regulación Hídrica Por Actividades de Agricultura En La Cuenca Del Río Gachaneca I, Páramo Rabanal. Gest. Ambiente 2020, 23, 193–202. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, H.; Kao, S.-C.; Voisin, N.; Naz, B.S. A Modeling Framework for Evaluating the Drought Resilience of a Surface Water Supply System under Non-Stationarity. J. Hydrol. 2018, 563, 22–32. [Google Scholar] [CrossRef]
- Arteaga Madera, M.A. Análisis de La Oferta Hídrica Bajo Escenarios de Cambio Climático en La Cuenca del Rio San Pedro, Municipio de Puerto Libertador. Bachelor’s Thesis, Universidad de Cordoba, Córdoba, Colombia, 2024. [Google Scholar]
- Ivanova, Y.; Lugo, V.D.H.; Herrera, M.F.P. Incidencia Del Cambio de Coberturas Vegetales Sobre La Capacidad de Regulación Hídrica En La Cuenca Del Río Cuja, Colombia. Rev. EIA 2025, 22, 1–21. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Zhao, Y.; Long, Y. Using SWAT Model to Assess the Impacts of Land Use and Climate Changes on Flood in the Upper Weihe River, China. Water 2022, 14, 2098. [Google Scholar] [CrossRef]
- Rodrigues, J.; Andrade, A.; Viola, M.; Ferreira, D.; de Mello, C.; Thebaldi, M. Hydrological Modeling in a Basin of the Brazilian Cerrado Biome. Ambiente Água–Interdiscip. J. Appl. Sci. 2021, 16, 18. [Google Scholar] [CrossRef]
- Malik, M.; Qayoom, D.; Jain, M. Modelling Streamflow Using the SWAT Model and Multi-Site Calibration Utilizing SUFI-2 of SWAT-CUP Model for High Altitude Catchments, NW Himalaya’s. Model. Earth Syst. Environ. 2022, 8, 1203–1213. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K. Investigation of Meteorological Variables on Runoff Archetypal Using SWAT: Basic Concepts and Fundamentals. Appl. Water Sci. 2022, 12, 177. [Google Scholar] [CrossRef]
- Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A Review of Soil and Water Assessment Tool (SWAT) Studies of Mediterranean Catchments: Applications, Feasibility, and Future Directions. J. Environ. Manag. 2023, 326, 116799. [Google Scholar] [CrossRef]
- Rahman, M.M. Hydrologic Modelling of Great Lakes Basin in Southern Ontario and Climate Change Impact Assessment. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada, 2020. [Google Scholar]
- Munar, A.M.; Mendez, N.; Narvaez, G.; Campo Zambrano, F.; Motta-Marques, D.; Lyra Fialho Brêda, J.P.; Santos Fleischmann, A.; Angarita, H. Modelling the Climate Change Impacts on River Discharge and Inundation Extent in the Magdalena River Basin–Colombia. Hydrol. Sci. J. 2023, 68, 1286–1300. [Google Scholar] [CrossRef]
- Álvarez Pulido, A.J.; Yustres Quintero, L.F.; Ivanova, Y. Estimación Del Cambio de La Capacidad de Regulación Hídrica Como Respuesta a Los Cambios de Coberturas de La Tierra. Rev. EIA 2020, 18, 1–12. [Google Scholar] [CrossRef]
- Amorim, J.d.S.; Viola, M.R.; Junqueira, R.; de Oliveira, V.A.; de Mello, C.R. Evaluation of Satellite Precipitation Products for Hydrological Modeling in the Brazilian Cerrado Biome. Water 2020, 12, 2571. [Google Scholar] [CrossRef]
- Gónima, L.; Pérez Viloria, M. Analisis de La Variabilidad Climática de La Temperatura Del Aire y de La ETP Para Una Zona del Caribe Colombiano; Asociación Española de Climatología: Madrid, Spain, 2014. [Google Scholar]
- Jarrin-Perez, F.; Jeong, J.; Célleri, R.; Crespo, P.; Munster, C. Hydrologic Simulation of a Neotropical Alpine Catchment Influenced by Conductive Topsoils in the Ecuadorian Andes. Front. Environ. Sci. 2024, 12, 1303388. [Google Scholar] [CrossRef]
- Joshi, S. A Soil Water Assessment Tool (Swat) Modeling Approach to Assess Discharge and Sediment Transport in Cold Water Refuges: A Case Study of the Klickitat River Basin. SSRN 2025. [Google Scholar] [CrossRef]
- Dalla Torre, D.; Di Marco, N.; Menapace, A.; Avesani, D.; Righetti, M.; Majone, B. Suitability of ERA5-Land Reanalysis Dataset for Hydrological Modelling in the Alpine Region. J. Hydrol. Reg. Stud. 2024, 52, 101718. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Blanco-Gómez, P.; López-Ballesteros, A.; Jimeno-Sáez, P.; Pérez-Sánchez, J. Evaluating the Potential of GloFAS-ERA5 River Discharge Reanalysis Data for Calibrating the SWAT Model in the Grande San Miguel River Basin (El Salvador). Remote Sens. 2021, 13, 3299. [Google Scholar] [CrossRef]
- López-Lambraño, A.A.; Martínez-Acosta, L.; Gámez-Balmaceda, E.; Medrano-Barboza, J.P.; Remolina López, J.F.; López-Ramos, A. Supply and Demand Analysis of Water Resources. Case Study: Irrigation Water Demand in a Semi-Arid Zone in Mexico. Agriculture 2020, 10, 333. [Google Scholar] [CrossRef]
- Carlos Mendoza, J.A.; Chavez Alcazar, T.A.; Zuñiga Medina, S.A. Calibration and Uncertainty Analysis for Modelling Runoff in the Tambo River Basin, Peru, Using Sequential Uncertainty Fitting Ver-2 (SUFI-2) Algorithm. Air Soil Water Res. 2021, 14, 1178622120988707. [Google Scholar] [CrossRef]
- Teshager, A.D.; Gassman, P.W.; Secchi, S.; Schoof, J.T.; Misgna, G. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Environ. Manag. 2016, 57, 894–911. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Ye, B.; Liu, F.; Wang, J. Contributions of Climate and Human Activities to Changes in Runoff of the Yellow and Yangtze Rivers from 1950 to 2008. Sci. China Earth Sci. 2012, 56, 1398–1412. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Wang, J. Quantifying the Contributions of Climate Change and Human Activities to the Dramatic Reduction in Runoff in the Taihang Mountain Region, China. Appl. Ecol. Environ. Res. 2021, 19, 119–131. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, H.; Xu, Q.; Wang, Y.; Wang, Y.; Zhang, O.; Hao, J. Hydrological Evaluation of Open-Access Precipitation Data Using SWAT at Multiple Temporal and Spatial Scales. Hydrol. Earth Syst. Sci. 2020, 24, 3603–3626. [Google Scholar] [CrossRef]
- Morales-Velázquez, M.I.; Herrera, G.d.S.; Aparicio, J.; Rafieeinasab, A.; Lobato-Sánchez, R. Evaluating Reanalysis and Satellite-Based Precipitation at Regional Scale: A Case Study in Southern Mexico. Atmósfera 2021, 34, 189–206. [Google Scholar] [CrossRef]
- Chayña, E.L. Modelación Hidrológica Mediante El Uso de Precipitaciones Obtenidas Por Satélite En La Cuenca Del Río Ramis Perú. Master’s Thesis, Universidad Nacional del Altiplano de Puno, Puno, Peru, 2022. [Google Scholar]
- IDEAM. Lineamientos Conceptuales y Metodológicos Para La Evaluación Regional Del Agua (Ecuación Del IRH: IRH = Vp/Vt y Explicación Del Índice); IDEAM: Bogotá, Colombia, 2013.
- Martínez-Tunarroza, J.L.; Valenzuela-Mahecha, M.A.; Rodríguez-Vásquez, A.F.; García-Navarrete, O.L. Methodological Design to Determine Water Resource Management Indicators in Irrigation Districts. Agronomy 2022, 12, 1407. [Google Scholar] [CrossRef]
- CVS. Esquema Ordenamiento Territorial; CVS: Montería, Colombia, 2005. [Google Scholar]
- Morales-Acuña, E.; Linero-Cueto, J.R.; Canales, F.A. Assessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region. Hydrology 2021, 8, 128. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Bekić, D.; Leskovar, K. Evaluating CHIRPS and ERA5 for Long-Term Runoff Modelling with SWAT in Alpine Headwaters. Water 2025, 17, 2116. [Google Scholar] [CrossRef]
- IDEAM. Estudio Nacional Del Agua 2018; IDEAM: Bogotá, Colombia, 2018.
- IGAC. Estudio General de Suelos y Zonificación de Tierras Del Departamento de Córdoba; IGAC: Bogotá, Colombia, 2015.
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K. Soil and Water Assessment Tool: Theoretical Documentation: Version 2005; Grassland, Soil and Water Research Laboratory & Blackland Research Center: Temple, TX, USA, 2005. Available online: https://swat.tamu.edu/media/1292/swat2005theory.pdf (accessed on 15 January 2024).
- Abbaspour, K.C. SWAT Calibration and Uncertainty Programs. User Man. 2015, 103, 17–66. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.; Bäse, F. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Sao, D.; Kato, T.; Tu, L.H.; Thouk, P.; Fitriyah, A.; Oeurng, C. Evaluation of Different Objective Functions Used in the Sufi-2 Calibration Process of Swat-Cup on Water Balance Analysis: A Case Study of the Pursat River Basin, Cambodia. Water 2020, 12, 2901. [Google Scholar] [CrossRef]
- Tejaswini, V.; Krishna, V. Sensitivity and Uncertainty Analysis for SWAT Model Calibration Using SUFI-2: An Optimization Algorithm. Int. J. Agric. Food Sci. 2025, 7, 16–18. [Google Scholar] [CrossRef]
- Maldonado Santafé, L.C. Oferta hídrica ante escenarios de cambio climático en la cuenca hidrográfica La Vieja: Colombia. Doctoral Dissertation, Universidad Nacional de Colombia, Bogota, Indonesia, 2021. [Google Scholar]
- Tang, X.; Zhang, J.; Wang, G.; Jin, J.; Liu, C.; Liu, Y.; He, R.; Bao, Z. Uncertainty Analysis of SWAT Modeling in the Lancang River Basin Using Four Different Algorithms. Water 2021, 13, 341. [Google Scholar] [CrossRef]
- Watanabe, M.; Suzuki, T.; O’ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- IDEAM. Estudio de Escenarios de Cambio Climático Para Colombia 2011-2100, Herramientas Científicas Para La Toma de Decisiones; IDEAM: Bogotá, Colombia, 2015.
- Poveda, G.; Waylen, P.R.; Pulwarty, R.S. Annual and Inter-Annual Variability of the Present Climate in Northern South America and Southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 3–27. [Google Scholar] [CrossRef]
- Reboita, M.S.; Spinoni, J.; Blázquez, J.; Solman, A.; Carril, A.; Vrac, M.; Russo, S. Future Projections of Extreme Precipitation Climate Indices over South America Based on CORDEX-CORE Multimodel Ensemble. Atmosphere 2022, 13, 1463. [Google Scholar] [CrossRef]
- IDEAM. Tercera Comunicación Nacional de Cambio Climático; IDEAM: Bogotá, Colombia, 2015.
- Rodríguez Roa, A. Evaluación de Las Simulaciones de Precipitación y Temperatura de Los Modelos Climáticos Globales Del Proyecto CMIP5 Con El Clima Presente En Colombia; IDEAM: Bogotá, Colombia, 2012.
- Guzmán, A.M. Caracterización Del Comportamiento Futuro de La Precipitación Asociado al Fenómeno de Cambio Climático En El Área de Producción Hidroeléctrica Embalse Arenal, Costa Rica. Rev. Geográfica 2023, 166, 69–92. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Carrillo Peña, G.A. Estimación de La Producción Hídrica Para La Cuenca Del Río Tona Mediante El Modelo Hidrológico Semidistribuido Swat. Bachelor’s Thesis, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, 2018. [Google Scholar]
- Le, A.M.; Pricope, N.G. Increasing the Accuracy of Runoff and Streamflow Simulation in the Nzoia Basin, Western Kenya, through the Incorporation of Satellite-Derived CHIRPS Data. Water 2017, 9, 114. [Google Scholar] [CrossRef]
- Tan, M.L.; Armanuos, A.M.; Ahmadianfar, I.; Demir, V.; Al-Areeq, A.; Abba, S.; Halder, B.; Kilinc, H.; Yaseen, Z.; Heddam, S. Evaluation of NASA POWER and ERA5-Land for Estimating Tropical Precipitation and Temperature Extremes. J. Hydrol. 2023, 624, 129940. [Google Scholar] [CrossRef]
- Abbas, S.A.; Xuan, Y.; Bailey, R.T. Assessing Climate Change Impact on Water Resources in Water Demand Scenarios Using SWAT-MODFLOW-WEAP. Hydrology 2022, 9, 164. [Google Scholar] [CrossRef]
- Revueltas, J.E.; Zabaleta, A.; Mercado, T.; Aguirre, S. Cambios En El Clima Local y Su Efecto En La Regulación Hídrica En Microcuencas Del Departamento Del Magdalena, Norte de Colombia. Inf. Tecnológica 2020, 31, 193–206. [Google Scholar] [CrossRef]
- Valencia, S.; Villegas, J.C.; Hoyos, N.; Duque-Villegas, M.; Salazar, J.F. Streamflow Response to Land Use/Land Cover Change in the Tropical Andes Using Multiple SWAT Model Variants. J. Hydrol. Reg. Stud. 2024, 54, 101888. [Google Scholar] [CrossRef]












| Parameter | Definition | Value Initial | Value End |
|---|---|---|---|
| r__CN2.mgt | Number of the initial curve for the moisture condition | −0.3 | 0.3 |
| v__ALPHA_BF.gw | Baseline flow recession constant (days) | 0 | 1 |
| v__GWQMN.gw | Water limit level in the shallow aquifer | 0 | 5000 |
| v__GW_REVAP.gw | Coefficient of water rise to saturation zone (dimensionless) | 0 | 0.2 |
| v__REVAPMN.gw | Threshold water in the shallow aquifer for revap to occur (mm) | 0.01 | 500 |
| v__RCHRG_DP.gw | Deep aquifer percolation fraction | 0.01 | 1 |
| r__SOL_Z().sol | Depth from the soil surface to bottom of the layer | −0.25 | 0.25 |
| r__SOL_BD().sol | Moist bulk density | −0.5 | 0.6 |
| r__SOL_AWC().sol | Soil available water capacity (mm H20/mm soil) | −0.2 | 0.4 |
| r__SOL_K().sol | Saturated hydraulic conductivity (mm/hour) | −0.8 | 0.8 |
| v__ESCO.hru | Soil evaporation compensation factor(dimensionless) | 0 | 0.1 |
| Ranking | Parameter | Description | t-Stat | p-Value | Adjusted Value |
|---|---|---|---|---|---|
| 1 | R_CN2.mgt | Curve Number (surface runoff) | −5.981 | 5 × 10−9 | 0.0356 |
| 2 | V_GWQMN.gw | Minimum depth of water in the shallow aquifer required for return flow (mm) | 7.201 | 0 | 4768.75 |
| 3 | V_RCHRG_DP.gw | Deep aquifer percolation fraction | −3.825 | 0.000152 | 0.5339 |
| 4 | R_SOL_K(..).sol | Saturated hydraulic conductivity of the soil layer (mm/h) | −2.147 | 0.032 | 0.314 |
| 5 | R_SOL_AWC(..).sol | Available water capacity of the soil layer | 1.976 | 0.049 | 0.0231 |
| 6 | V_GW_REVAP.gw | Groundwater re-evaporation coefficient | 5.264 | 0.000003 | 0.14 |
| 7 | V_REVAPMN.gw | Threshold depth of water in the shallow aquifer for re-evaporation (mm) | −1.662 | 0.097 | 5.6349 |
| 8 | R_SOL_BD(..).sol | Soil bulk density (g/cm3) | 1.263 | 0.208 | 0.3676 |
| 9 | R_SOL_Z(..).sol | Soil layer depth (mm) | 1.09 | 0.277 | 0.223 |
| 10 | V_ALPHA_BF.gw | Baseflow alpha factor (days−1) | −0.745 | 0.456 | 0.296 |
| 11 | V_ESCO.hru | Soil evaporation compensation factor | 0.99 | 0.323 | 0.014 |
| Temporal Scale | Period | NSE | R2 | PBIAS (%) |
|---|---|---|---|---|
| Monthly | Calibration | 0.52 | 0.55 | −12.6 |
| Validation | 0.61 | 0.71 | 12 |
| Percentile | Q Historical (m3/s) | Q RCP 4.5 (m3/s) | Q RCP 8.5 (m3/s) | H-RCP 4.5 (m3/s) | H-RCP 8.5 (m3/s) |
|---|---|---|---|---|---|
| P25 | 16.61 | 14.13 | 16.75 | −2.47 | 0.14 |
| P50 | 41.75 | 23.18 | 25.5 | −18.56 | −16.25 |
| P75 | 52.50 | 34.08 | 36.5 | −18.42 | −16 |
| P90 | 61.66 | 44.57 | 46.5 | −17.09 | −15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Arteaga Madera, M.A.; Mercado Fernández, T.; Vergara Carvajal, A.D.; Serpa-Usta, Y.; López-Lambraño, A.A. SWAT-Based Assessment of the Water Regulation Index Under RCP 4.5 and RCP 8.5 Scenarios in the San Pedro River Basin. Hydrology 2026, 13, 45. https://doi.org/10.3390/hydrology13020045
Arteaga Madera MA, Mercado Fernández T, Vergara Carvajal AD, Serpa-Usta Y, López-Lambraño AA. SWAT-Based Assessment of the Water Regulation Index Under RCP 4.5 and RCP 8.5 Scenarios in the San Pedro River Basin. Hydrology. 2026; 13(2):45. https://doi.org/10.3390/hydrology13020045
Chicago/Turabian StyleArteaga Madera, Miguel Angel, Teobaldis Mercado Fernández, Amir David Vergara Carvajal, Yeraldin Serpa-Usta, and Alvaro Alberto López-Lambraño. 2026. "SWAT-Based Assessment of the Water Regulation Index Under RCP 4.5 and RCP 8.5 Scenarios in the San Pedro River Basin" Hydrology 13, no. 2: 45. https://doi.org/10.3390/hydrology13020045
APA StyleArteaga Madera, M. A., Mercado Fernández, T., Vergara Carvajal, A. D., Serpa-Usta, Y., & López-Lambraño, A. A. (2026). SWAT-Based Assessment of the Water Regulation Index Under RCP 4.5 and RCP 8.5 Scenarios in the San Pedro River Basin. Hydrology, 13(2), 45. https://doi.org/10.3390/hydrology13020045

