Perspective of Hydrodynamics in Microbial-Induced Carbonate Precipitation: A Bibliometric Analysis and Review of Research Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Keyword Selection
2.2. Document Collection and Analysis
2.3. Visualisation Mapping through VOSviewer and RStudio
3. Results and Discussion
3.1. Publication and Citation Trends
3.2. Most Cited Articles
3.3. Global Distribution and Leading Countries
3.4. Top Prolific Authors
3.5. Top Preferred Journals
3.6. Keywords and Textual Co-Occurrence Analyses via VOSviewer
3.7. Keyword Analysis via RStudio
4. Evolutionary Trends in Hydrodynamics Research on MICP
4.1. Early Direction (1999–2005)
4.2. Advancing MICP Potential Implementation (2006–2012)
4.3. Laboratory to Field-Scale Applications of MICP (2013–2017)
4.4. Emerging Frontiers and Directions in the Field (2018–2024)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhukya, P.K.; Adla, N.; Arnepalli, D.N. Coupled Bio-Chemo-Hydro-Mechanical Modeling of Microbially Induced Calcite Precipitation Process Considering Biomass Encapsulation Using a Micro-Scale Relationship. J. Rock Mech. Geotech. Eng. 2023, in press. [Google Scholar] [CrossRef]
- Amin, M.; Zomorodian, S.M.A.; O’Kelly, B.C. Reducing the Hydraulic Erosion of Sand Using Microbial-Induced Carbonate Precipitation. Proc. Inst. Civ. Eng. Ground Improv. 2017, 170, 112–122. [Google Scholar] [CrossRef]
- Ngari, R.W.; Thiong’o, J.K.; Wachira, J.M.; Muriithi, G.; Mutitu, D.K. Bioremediation of Mortar Made from Ordinary Portland Cement Degraded by Thiobacillus Thioparus Using Bacillus Flexus. Heliyon 2021, 7, e07215. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.A.; Sorour, N.M.; Saafan, M.A.; Abbas, R.N. Microbially-Induced-Calcite-Precipitation (MICP): A Biotechnological Approach to Enhance the Durability of Concrete Using Bacillus pasteurii and Bacillus sphaericus. Heliyon 2022, 8, e09879. [Google Scholar] [CrossRef] [PubMed]
- Vaskevicius, L.; Malunavicius, V.; Jankunec, M.; Lastauskiene, E.; Talaikis, M.; Mikoliunaite, L.; Maneikis, A.; Gudiukaite, R. Insights in MICP Dynamics in Urease-Positive Staphylococcus sp. H6 and Sporosarcina pasteurii Bacterium. Environ. Res. 2023, 234, 116588. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Front. Mater. 2019, 6, 126. [Google Scholar] [CrossRef]
- Abdelsamad, R.; Al Disi, Z.; Abu-Dieyeh, M.; Al-Ghouti, M.A.; Zouari, N. Evidencing the Role of Carbonic Anhydrase in the Formation of Carbonate Minerals by Bacterial Strains Isolated from Extreme Environments in Qatar. Heliyon 2022, 8, 116588. [Google Scholar] [CrossRef] [PubMed]
- Atashgahi, S.; Tabarsa, A.; Shahryari, A.; Hosseini, S.S. Effect of Carbonate Precipitating Bacteria on Strength and Hydraulic Characteristics of Loess Soil. Bull. Eng. Geol. Environ. 2020, 79, 4749–4763. [Google Scholar] [CrossRef]
- Yang, M.; Wang, S.; Liu, M.; Ning, X.; Wu, Y.; Nan, Z. Dose Relationships and Interactions of Four Materials and MICP Technology in Simultaneously Reducing the Exchangeable Parts of As, Pb, and Cd in Multiple Contaminated Soils. J. Soils Sediments 2023, 23, 3903–3916. [Google Scholar] [CrossRef]
- Gowthaman, S.; Iki, T.; Ichinohe, A.; Nakashima, K.; Kawasaki, S. Feasibility of Bacterial-Enzyme Induced Carbonate Precipitation Technology for Stabilizing Fine-Grained Slope Soils. Front. Built Environ. 2022, 8, 1044598. [Google Scholar] [CrossRef]
- Hang, L.; Gao, Y.; van Paassen, L.A.; He, J.; Wang, L.; Li, C. Microbially Induced Carbonate Precipitation for Improving the Internal Stability of Silty Sand Slopes under Seepage Conditions. Acta Geotech. 2022, 18, 2719–2732. [Google Scholar] [CrossRef]
- Wei, R.; Xiao, J.Z.; Wu, S.F.; Cai, H.; Wang, Z.W. Effectiveness of Microbially Induced Calcite Precipitation for Treating Expansive Soils. Adv. Civ. Eng. Mater. 2021, 10, 350–361. [Google Scholar] [CrossRef]
- Li, M.; Fang, C.; Kawasaki, S.; Achal, V. Fly Ash Incorporated with Biocement to Improve Strength of Expansive Soil. Sci. Rep. 2018, 8, 2565. [Google Scholar] [CrossRef] [PubMed]
- Raveh-Amit, H.; Gruber, A.; Abramov, K.; Tsesarsky, M. Mitigation of Aeolian Erosion of Loess Soil by Bio-Stimulated Microbial Induced Calcite Precipitation. CATENA 2024, 237, 107808. [Google Scholar] [CrossRef]
- Fattahi, S.M.; Soroush, A.; Huang, N. Biocementation Control of Sand against Wind Erosion. J. Geotech. Geoenviron. Eng. 2020, 146, 04020045. [Google Scholar] [CrossRef]
- Zhu, T.; Merroun, M.; Arhonditsis, G.; Dittrich, M. Attachment on Mortar Surfaces by Cyanobacterium Gloeocapsa PCC 73106 and Sequestration of CO2 by Microbially Induced Calcium Carbonate. MicrobiologyOpen 2021, 10, e1243. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Qian, C. Microbial-Induced Remediation of Zn2+ Pollution Based on the Capture and Utilization of Carbon Dioxide. Electron. J. Biotechnol. 2016, 19, 29–32. [Google Scholar] [CrossRef]
- Al Disi, Z.; Attia, E.; Ahmad, M.I.; Zouari, N. Immobilization of Heavy Metals by Microbially Induced Carbonate Precipitation Using Hydrocarbon-Degrading Ureolytic Bacteria. Biotechnol. Rep. 2022, 35, e00747. [Google Scholar] [CrossRef] [PubMed]
- Namdar-Khojasteh, D.; Bazgir, M.; Hashemi Babaheidari, S.A.; Asumadu-Sakyi, A.B. Application of Biocementation Technique Using Bacillus Sphaericus for Stabilization of Soil Surface and Dust Storm Control. J. Arid Land 2022, 14, 537–549. [Google Scholar] [CrossRef]
- Dong, Z.H.; Pan, X.H.; Tang, C.S.; Shi, B. Microbial Healing of Nature-like Rough Sandstone Fractures for Rock Weathering Mitigation. Environ. Earth Sci. 2022, 81, 394. [Google Scholar] [CrossRef]
- Khan, M.B.E.; Shen, L.; Dias-da-Costa, D. Self-Healing Behaviour of Bio-Concrete in Submerged and Tidal Marine Environments. Constr. Build. Mater. 2021, 277, 122332. [Google Scholar] [CrossRef]
- van der Bergh, J.M.; Miljević, B.; Vučetić, S.; Šovljanski, O.; Markov, S.; Riley, M.; Ranogajec, J.; Bras, A. Comparison of Microbially Induced Healing Solutions for Crack Repairs of Cement-Based Infrastructure. Sustainability 2021, 13, 4287. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Ong, D.E.L.; Li, P.Y.; Senian, N.; Hei, N.L.; Esnault-Filet, A.; Muda, K.; Nissom, P.M. Effects of Push-Pull Injection-Suction Spacing on Sand Biocementation Treatment. Geotech. Res. 2023, 11, 28–42. [Google Scholar] [CrossRef]
- Dagliya, M.; Satyam, N.; Sharma, M.; Garg, A. Experimental Study on Mitigating Wind Erosion of Calcareous Desert Sand Using Spray Method for Microbially Induced Calcium Carbonate Precipitation. J. Rock Mech. Geotech. Eng. 2022, 14, 1556–1567. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Muda, K.; Steven, R.; Mustapha, M.; Ibrahim, H.U.; Ouahbi, T. Insect Frass as a Substrate to Stimulate Native Ureolytic Bacteria for Microbial-Induced Carbonate Precipitation in Soil Biocementation. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Minto, J.M.; El Mountassir, G.; Lunn, R.J. Micro-Continuum Modelling of Injection Strategies for Microbially Induced Carbonate Precipitation. E3S Web Conf. 2019, 92, 11019. [Google Scholar] [CrossRef]
- Jeyapriya, S.P. Effect of Bioclogging and Biocementation on Permeability and Strength of Soil. Indian J. Ecol. 2018, 45, 560–565. [Google Scholar]
- Chen, M.; Gowthaman, S.; Nakashima, K.; Kawasaki, S. Influence of Humic Acid on Microbial Induced Carbonate Precipitation for Organic Soil Improvement. Environ. Sci. Pollut. Res. 2022, 30, 15230–15240. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Abedin, M.Z.; Bin Amin, M.; Nekmahmud, M.; Oláh, J. Sustainable Biofuel Economy: A Mapping through Bibliometric Research. J. Environ. Manag. 2023, 336, 117644. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.Y.; Muda, K.; Basri, H.F.; Omoregie, A.I.; Khudzari, J.M.; Ali, N.S.A.; Pauzi, F.M. Discovering Research Evolution and Emerging Trends in Ammonium Wastewater Treatment Technologies: A Bibliometric Analysis. Environ. Dev. Sustain. 2023, 1–35. [Google Scholar] [CrossRef]
- Alhassan, M.; Jalil, A.A.; Omoregie, A.I.; Bahari, M.B.; Van Tran, T.; Amusa, A.A. Silica-Based Materials in Methane Conversion: A Two-Decade Bibliometric and Literature Review (1995–2022). Top. Catal. 2024, 1–33. [Google Scholar] [CrossRef]
- Visser, M.; van Eck, N.J.; Waltman, L. Large-Scale Comparison of Bibliographic Data Sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Carley, S.; Rafols, I. Global Maps of Science Based on the New Web-of-Science Categories. Scientometrics 2013, 94, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Aguillo, I.F. Is Google Scholar Useful for Bibliometrics? A Webometric Analysis. Scientometrics 2012, 91, 343–351. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Kumpulainen, M.; Seppänen, M. Combining Web of Science and Scopus Datasets in Citation-Based Literature Study. Scientometrics 2022, 127, 5613–5631. [Google Scholar] [CrossRef]
- de Souza Oliveira Filho, J.; Pereira, M.G. Global Soil Science Research on Drylands: An Analysis of Research Evolution, Collaboration, and Trends. J. Soils Sediments 2021, 21, 3856–3867. [Google Scholar] [CrossRef]
- Purba, L.D.A.; Md Khudzari, J.; Iwamoto, K.; Mohamad, S.E.; Yuzir, A.; Abdullah, N.; Shimizu, K.; Hermana, J. Discovering Future Research Trends of Aerobic Granular Sludge Using Bibliometric Approach. J. Environ. Manag. 2022, 303, 114150. [Google Scholar] [CrossRef] [PubMed]
- Muniz, D.H.F.; Oliveira-Filho, E.C. Multivariate Statistical Analysis for Water Quality Assessment: A Review of Research Published between 2001 and 2020. Hydrology 2023, 10, 196. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Muda, K.; Ojuri, O.O.; Hong, C.Y.; Pauzi, F.M.; Ali, N.S.B.A. The Global Research Trend on Microbially Induced Carbonate Precipitation during 2001–2021: A Bibliometric Review. Environ. Sci. Pollut. Res. 2022, 29, 89899–89922. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, M.; Jalil, A.A.; Nabgan, W.; Hamid, M.Y.S.; Bahari, M.B.; Ikram, M. Bibliometric Studies and Impediments to Valorization of Dry Reforming of Methane for Hydrogen Production. Fuel 2022, 328, 125240. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Engqvist, L.; Frommen, J.G. The H-Index and Self-Citations. Trends Ecol. Evol. 2008, 23, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Alkhouri, N.B.; Mutka, M.C.; Stefanak, M.P.; Bearer, C. The Impact of COVID-19 on Manuscript Submissions to Pediatric Research. Pediatr. Res. 2021, 90, 6–7. [Google Scholar] [CrossRef] [PubMed]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-Mediated Soil Improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological Precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- DeJong, T.J.; Michael, B.F.; Nüsslein, K.; DeJong, J.T.; Fritzges, M.B.; Nüsslein, K. Microbially Induced Cementation to Control Sand Response to Undrained Shear. J. Geotech. Geoenviron. Eng. 2006, 132, 1381–1392. [Google Scholar] [CrossRef]
- Santhosh, K.R.; Ramakrishnan, V.; Bang, S.S. Remediation of Concrete Using Microorganisms. ACI Mater. J. 2001, 98, 3–9. [Google Scholar] [CrossRef] [PubMed]
- van Paassen, L.A.; Ghose, R.; van der Linden, T.J.M.M.; van der Star, W.R.L.L.; van Loosdrecht, M.C.M.M. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. J. Geotech. Geoenviron. Eng. 2010, 136, 1721–1728. [Google Scholar] [CrossRef]
- Harkes, M.P.; van Paassen, L.A.; Booster, J.L.; Whiffin, V.S.; van Loosdrecht, M.C.M.M. Fixation and Distribution of Bacterial Activity in Sand to Induce Carbonate Precipitation for Ground Reinforcement. Ecol. Eng. 2010, 36, 112–117. [Google Scholar] [CrossRef]
- Al Qabany, A.; Soga, K.; Santamarina, C.; Al Qabany, A.; Soga, K.; Santamarina, C. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. J. Geotech. Geoenviron. Eng. 2012, 138, 992–1001. [Google Scholar] [CrossRef]
- Cheng, L.; Cord-Ruwisch, R.; Shahin, M.A. Cementation of Sand Soil by Microbially Induced Calcite Precipitation at Various Degrees of Saturation. Can. Geotech. J. 2013, 50, 81–90. [Google Scholar] [CrossRef]
- Al Qabany, A.; Soga, K.; Al Qabany, A.; Soga, K. Effect of Chemical Treatment Used in MICP on Engineering Properties of Cemented Soils. Geotechnique 2013, 63, 331–339. [Google Scholar] [CrossRef]
- Mortensen, B.M.; Haber, M.J.; Dejong, J.T.; Caslake, L.F.; Nelson, D.C. Effects of Environmental Factors on Microbial Induced Calcium Carbonate Precipitation. J. Appl. Microbiol. 2011, 111, 338–349. [Google Scholar] [CrossRef] [PubMed]
- De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W. Influence of Urea and Calcium Dosage on the Effectiveness of Bacterially Induced Carbonate Precipitation on Limestone. Ecol. Eng. 2010, 36, 99–111. [Google Scholar] [CrossRef]
- Whiffin, V.S.; van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Whiffin, V.S. Microbial CaCO3 Precipitation for the Production of Biocement. Ph.D. Thesis, Murdoch University, Murdoch, WA, Australia, 2004; p. 20. [Google Scholar]
- Ma, G.; Xiao, Y.; Fan, W.; Chu, J.; Liu, H. Mechanical Properties of Biocement Formed by Microbially Induced Carbonate Precipitation. Acta Geotech. 2022, 17, 4905–4919. [Google Scholar] [CrossRef]
- Su, J.; Zhang, R.; Hu, X.; Ali, A.; Wang, Z. Calcium Precipitation to Remove Fluorine in Groundwater: Induced by Acinetobacter sp. H12 as a Template. Korean J. Chem. Eng. 2022, 39, 655–663. [Google Scholar] [CrossRef]
- Wang, Z.; Su, J.; Hu, X.; Ali, A.; Wu, Z. Isolation of Biosynthetic Crystals by Microbially Induced Calcium Carbonate Precipitation and Their Utilization for Fluoride Removal from Groundwater. J. Hazard. Mater. 2021, 406, 124748. [Google Scholar] [CrossRef] [PubMed]
- Zambare, N.M.; Lauchnor, E.G.; Gerlach, R. Controlling the Distribution of Microbially Precipitated Calcium Carbonate in Radial Flow Environments. Environ. Sci. Technol. 2019, 53, 5916–5925. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yuan, Z.; Li, Y.; Liu, H.; Feng, J.; de Wit, B. Experimental Study on the Mechanical Properties of Microbial Mixed Backfill. Constr. Build. Mater. 2020, 265, 120643. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2020, 22, 787–809. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, C. Permeability-Porosity Relation during Erosion-Induced Water Inrush: Experimental and Theoretical Investigations. Transp. Geotech. 2023, 38, 100893. [Google Scholar] [CrossRef]
- Williams, S.L.; Kirisits, M.J.; Ferron, R.D. Influence of Concrete-Related Environmental Stressors on Biomineralizing Bacteria Used in Self-Healing Concrete. Constr. Build. Mater. 2017, 139, 611–618. [Google Scholar] [CrossRef]
- Mirshahmohammad, M.; Rahmani, H.; Maleki-Kakelar, M.; Bahari, A. Effect of Sustained Service Loads on the Self-Healing and Corrosion of Bacterial Concretes. Constr. Build. Mater. 2022, 322, 126423. [Google Scholar] [CrossRef]
- Chaparro, S.; Rojas, H.A.; Caicedo, G.; Romanelli, G.; Pineda, A.; Luque, R.; Martínez, J.J. Whey as an Alternative Nutrient Medium for Growth of Sporosarcina pasteurii and Its Effect on CaCO3 Polymorphism and Fly Ash Bioconsolidation. Materials 2021, 14, 2470. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.C.; Ferris, F.G. The Coprecipitation of Sr into Calcite Precipitates Induced by Bacterial Ureolysis in Artificial Groundwater: Temperature and Kinetic Dependence. Geochim. Cosmochim. Acta 2005, 69, 4199–4210. [Google Scholar] [CrossRef]
- Levett, A.; Gagen, E.J.; Vasconcelos, P.M.; Zhao, Y.; Paz, A.; Southam, G. Biogeochemical Cycling of Iron: Implications for Biocementation and Slope Stabilisation. Sci. Total Environ. 2020, 707, 136128. [Google Scholar] [CrossRef] [PubMed]
- Makinda, J.; Kassim, K.A.; Ahmad, K.; Muhammed, A.S.; Zango, M.U. Hydraulic Conductivity and Calcium Carbonate Content of Biocemented Heavy-Metal Contaminated Mine Waste Soil. In Proceedings of the International Conference on Disaster Mitigation and Management (ICDMM 2021), Padang, Indonesia, 30 September–1 October 2021; Comfort, L., Saravanan, S., Sengara, I.W., Fauzan, E., Eds.; EDP Sciences: Les Ulis, France, 2021; Volume 331, p. 03001. [Google Scholar]
- Cheng, L.; Shahin, M.A. Stabilisation of Oil-Contaminated Soils Using Microbially Induced Calcite Crystals by Bacterial Flocs. Geotech. Lett. 2017, 7, 146–151. [Google Scholar] [CrossRef]
- Tobler, D.J.; Maclachlan, E.; Phoenix, V.R. Microbially Mediated Plugging of Porous Media and the Impact of Differing Injection Strategies. Ecol. Eng. 2012, 42, 270–278. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Tang, Q.; Shi, S. Bioremediation of Metal-Contaminated Soils by Microbially-Induced Carbonate Precipitation and Its Effects on Ecotoxicity and Long-Term Stability. Biochem. Eng. J. 2021, 166, 107856. [Google Scholar] [CrossRef]
- Daryono, L.R.; Nakashima, K.; Kawasaki, S.; Titisari, A.D.; Barianto, D.H.; Suyanto, I.; Rahmadi, A. Biomineralization of an Artificial Beachrock Based on Urease Microbial Activities for Coastal Risk Prevention. In Proceedings of the 2nd International Conference on Biosciences and Medical Engineering 2019: Towards Innovative Research and Cross-Disciplinary Collaborations, ICBME 2019, Bali, Indonesia, 11–12 April 2019; Mahat, N.A., Wahab, R.A., Huyop, F.Z., Keyon, A.S.A., Attan, N.B., Chandren, S., Gunam, I.B.W., Eds.; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2155, p. 020046. [Google Scholar]
- Xiao, Y.; He, X.; Wu, W.; Stuedlein, A.W.; Evans, T.M.; Chu, J.; Liu, H.; van Paassen, L.A.; Wu, H. Kinetic Biomineralization through Microfluidic Chip Tests. Acta Geotech. 2021, 16, 3229–3237. [Google Scholar] [CrossRef]
- Ekprasert, J.; Fongkaew, I.; Chainakun, P.; Kamngam, R.; Boonsuan, W. Investigating Mechanical Properties and Biocement Application of CaCO3 Precipitated by a Newly-Isolated Lysinibacillus sp. WH Using Artificial Neural Networks. Sci. Rep. 2020, 10, 16137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.V.; Nehdi, M.L.; Suleiman, A.R.; Allaf, M.M.; Gan, M.; Marani, A.; Tuyan, M. Crack Self-Healing in Bio-Green Concrete. Compos. B Eng. 2021, 227, 109397. [Google Scholar] [CrossRef]
- Zhang, J.; Su, P.; Li, L. Bioremediation of Stainless Steel Pickling Sludge through Microbially Induced Carbonate Precipitation. Chemosphere 2022, 298, 134213. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Elsworth, D. Strengthening Mylonitized Soft-Coal Reservoirs by Microbial Mineralization. Int. J. Coal Geol. 2018, 200, 166–172. [Google Scholar] [CrossRef]
- de Rezende, I.M.; Prietto, P.D.M.; Thomé, A.; Dalla Rosa, F. Mechanical Behavior of Microbially Induced Calcite Precipitation Cemented Sand. Geotech. Geol. Eng. 2022, 40, 1997–2008. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Z. Experimental Study on Microbial Solidification of Gravel-Containing Silty Clay under Different Calcium Sources. Geofluids 2022, 2022, 7321869. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Soga, K.; DeJong, J.T.; Kabla, A.J. Microscale Investigations of Temperature-Dependent Microbially Induced Carbonate Precipitation (MICP) in the Temperature Range 4–50 °C. Acta Geotech. 2022, 18, 2239–2261. [Google Scholar] [CrossRef]
- Lu, C.; Li, Z.; Wang, J.; Zheng, Y.; Cheng, L. An Approach of Repairing Concrete Vertical Cracks Using Microbially Induced Carbonate Precipitation Driven by Ion Diffusion. J. Build. Eng. 2023, 73, 106798. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Su, J.; Wang, X.; Ali, A.; Li, X. Microbial Induced Calcium Precipitation by Zobellella denitrificans sp. LX16 to Simultaneously Remove Ammonia Nitrogen, Calcium, and Chemical Oxygen Demand in Reverse Osmosis Concentrates. Environ. Res. 2024, 240, 117484. [Google Scholar] [CrossRef] [PubMed]
- Amidi, S.; Wang, J. Surface Treatment of Concrete Bricks Using Calcium Carbonate Precipitation. Constr. Build. Mater. 2015, 80, 273–278. [Google Scholar] [CrossRef]
- Phillips, A.J.; Lauchnor, E.; Eldring, J.; Esposito, R.; Mitchell, A.C.; Gerlach, R.; Cunningham, A.B.; Spangler, L.H. Potential CO2 Leakage Reduction through Biofilm-Induced Calcium Carbonate Precipitation. Environ. Sci. Technol. 2013, 47, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chu, J.; Liu, H.; Cheng, L. Improvement of Uniformity of Biocemented Sand Column Using CH3COOH-Buffered One-Phase-Low-PH Injection Method. Acta Geotech. 2023, 18, 413–428. [Google Scholar] [CrossRef]
- Jin, B.; Wang, S.; Lei, Y.; Jia, H.; Niu, Q.; Dapaah, M.F.; Gao, Y.; Cheng, L. Green and Effective Remediation of Heavy Metals Contaminated Water Using CaCO3 Vaterite Synthesized through Biomineralization. J. Environ. Manag. 2024, 353, 120136. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, Y.; Hu, J.; Hei, Y.; Xu, Z.; Su, J. Experimental Study on Pore Pressure Variation and Erosion Stability of Sandy Slope Model under Microbially Induced Carbonate Precipitation. Sustainability 2023, 15, 2650. [Google Scholar] [CrossRef]
- Seto, J.; Azaïs, T.; Cölfen, H. Formation of Aragonitic Layered Structures from Kaolinite and Amorphous Calcium Carbonate Precursors. Langmuir 2013, 29, 7521–7528. [Google Scholar] [CrossRef] [PubMed]
- Seto, J.; Picker, A.; Chen, Y.; Rao, A.; Evans, J.S.; Cölfen, H. Nacre Protein Sequence Compartmentalizes Mineral Polymorphs in Solution. Cryst. Growth Des. 2014, 14, 1501–1505. [Google Scholar] [CrossRef]
- Bachmeier, K.L.; Williams, A.E.; Warmington, J.R.; Bang, S.S. Urease Activity in Microbiologically-Induced Calcite Precipitation. J. Biotechnol. 2002, 93, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Canet, C.; Prol-Ledesma, R.M.; Melgarejo, J.C.; Reyes, A. Methane-Related Carbonates Formed at Submarine Hydrothermal Springs: A New Setting for Microbially-Derived Carbonates? Mar. Geol. 2003, 199, 245–261. [Google Scholar] [CrossRef]
- Chekroun, K.B.; Rodríguez-Navarro, C.; González-Muñoz, M.T.; Arias, J.M.; Cultrone, G.; Rodríguez-Gallego, M. Precipitation and Growth Morphology of Calcium Carbonate Induced by Myxococcus Xanthus: Implications for Recognition of Bacterial Carbonates. J. Sediment. Res. 2004, 74, 868–876. [Google Scholar] [CrossRef]
- Mozley, P.S.; Davis, J.M. Internal Structure and Mode of Growth of Elongate Calcite Concretions: Evidence for Small-Scale, Microbially Induced, Chemical Heterogeneity in Groundwater. Bull. Geol. Soc. Am. 2005, 117, 1400–1412. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Rodriguez-Navarro, C.; Pinar, G.; Carrillo-Rosua, F.J.; Rodriguez-Gallego, M.; Gonzalez-Munoz, M.T. Consolidation of Degraded Ornamental Porous Limestone Stone by Calcium Carbonate Precipitation Induced by the Microbiota Inhabiting the Stone. Chemosphere 2007, 68, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Bissett, A.; De Beer, D.; Schoon, R.; Shiraishi, F.; Reimer, A.; Arp, G. Microbial Mediation of Stromatolite Formation in Karst-Water Creeks. Limnol. Oceanogr. 2008, 53, 1159–1168. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Effect of Calcifying Bacteria on Permeation Properties of Concrete Structures. J. Ind. Microbiol. Biotechnol. 2011, 38, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Burbank, M.B.; Weaver, T.J.; Green, T.L.; Williams, B.; Crawford, R.L. Precipitation of Calcite by Indigenous Microorganisms to Strengthen Liquefiable Soils. Geomicrobiol. J. 2011, 28, 301–312. [Google Scholar] [CrossRef]
- Weil, M.H.; DeJong, J.T.; Martinez, B.C.; Mortensen, B.M. Seismic and Resistivity Measurements for Real-Time Monitoring of Microbially Induced Calcite Precipitation in Sand. Geotech. Test. J. 2012, 35, 330–341. [Google Scholar] [CrossRef]
- Arab, M.G.; Rohy, H.; Zeiada, W.; Almajed, A.; Omar, M. One-Phase EICP Biotreatment of Sand Exposed to Various Environmental Conditions. J. Mater. Civil. Eng. 2021, 33, 04020489. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, Y.; Shi, W.; Song, D.; Yu, L.; Shi, L.; Han, Z. Experimental Study on the Calcium Carbonate Production Rates and Crystal Size of EICP under Multi-Factor Coupling. Case Stud. Constr. Mater. 2023, 18, e01802. [Google Scholar] [CrossRef]
- Almajed, A.; Tirkolaei, H.K.; Kavazanjian, E., Jr.; Hamdan, N. Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content. Sci. Rep. 2019, 9, 1135. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Khodadadi Tirkolaei, H.; Kazembeyki, M.; van Paassen, L.A.; Hoover, C.G.; Seto, J.; Kavazanjian, E. Nanomechanical Characterization of Enzyme Induced Carbonate Precipitates. Crystals 2022, 12, 995. [Google Scholar] [CrossRef]
- Guan, D.; Zhou, Y.; Shahin, M.A.; Khodadadi Tirkolaei, H.; Cheng, L. Assessment of Urease Enzyme Extraction for Superior and Economic Bio-Cementation of Granular Materials Using Enzyme-Induced Carbonate Precipitation. Acta Geotech. 2022, 18, 2263–2279. [Google Scholar] [CrossRef]
- Cuccurullo, A.; Gallipoli, D.; Bruno, A.W.; Augarde, C.; Hughes, P.; La Borderie, C. Earth Stabilisation via Carbonate Precipitation by Plant-Derived Urease for Building Applications. Geomech. Energy Environ. 2022, 30, 100230. [Google Scholar] [CrossRef]
- Javadi, N.; Khodadadi, H.; Hamdan, N.; Kavazanjian, E. EICP Treatment of Soil by Using Urease Enzyme Extracted from Watermelon Seeds. In Proceedings of the 3rd International Foundation Congress and Equipment Expo 2018: Innovations in Ground Improvement for Soils, Pavements, and Subgrades, IFCEE 2018, Orlando, FL, USA, 5–10 March 2018; pp. 115–124. [Google Scholar]
- Imran, A.; Nakashima, K.; Evelpidou, N.; Kawasaki, S. Improvement of Using Crude Extract Urease from Watermelon Seeds for Biocementation Technology. Int. J. GEOMATE 2021, 20, 142–147. [Google Scholar] [CrossRef]
- Abo-El-Enein, S.A.A.; Ali, A.H.H.; Talkhan, F.N.; Abdel-Gawwad, H.A.A. Application of Microbial Biocementation to Improve the Physico-Mechanical Properties of Cement Mortar. HBRC J. 2013, 9, 36–40. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; McMillan, L.A.; Handley-Sidhu, S.; Riley, M.S.; Tobler, D.J.; Phoenix, V.R. A Field and Modeling Study of Fractured Rock Permeability Reduction Using Microbially Induced Calcite Precipitation. Environ. Sci. Technol. 2013, 47, 13637–13643. [Google Scholar] [CrossRef] [PubMed]
- Lauchnor, E.G.; Schultz, L.N.; Bugni, S.; Mitchell, A.C.; Cunningham, A.B.; Gerlach, R. Bacterially Induced Calcium Carbonate Precipitation and Strontium Coprecipitation in a Porous Media Flow System. Environ. Sci. Technol. 2013, 47, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Keykha, H.A.; Huat, B.B.K.; Asadi, A. Electrokinetic Stabilization of Soft Soil Using Carbonate-Producing Bacteria. Geotech. Geol. Eng. 2014, 32, 739–747. [Google Scholar] [CrossRef]
- Mountassir, G.E.; Lunn, R.J.; Moir, H.; Maclachlan, E. Hydrodynamic Coupling in Microbially Mediated Fracture Mineralization: Formation of Self-Organized Groundwater Flow Channels. Water Resour. Res. 2014, 50, 1–16. [Google Scholar] [CrossRef]
- Senthilkumar, V.; Palanisamy, T.; Vijayakumar, V.N. Fortification of Compressive Strength in Enterococcus Microorganism Incorporated Microbial Cement Mortar. Int. J. Chemtech. Res. 2014, 6, 636–644. [Google Scholar]
- Ganendra, G.; Wang, J.; Ramos, J.A.; Derluyn, H.; Rahier, H.; Cnudde, V.; Ho, A.; Boon, N. Biogenic Concrete Protection Driven by the Formate Oxidation by Methylocystis Parvus OBBP. Front. Microbiol. 2015, 6, 786. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Lee, C.J.; Chun, W.Y.; Kim, W.J.; Chung, C.W. Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste. J. Microbiol. Biotechnol. 2015, 25, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Lauchnor, E.G.; Topp, D.M.; Parker, A.E.; Gerlach, R. Whole Cell Kinetics of Ureolysis by Sporosarcina pasteurii. J. Appl. Microbiol. 2015, 118, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Sotoudehfar, A.R.; Sadeghi, M.M.; Mokhtari, E.; Shafiei, F. Assessment of the Parameters Influencing Microbial Calcite Precipitation in Injection Experiments Using Taguchi Methodology. Geomicrobiol. J. 2016, 33, 163–172. [Google Scholar] [CrossRef]
- Rowshanbakht, K.; Khamehchiyan, M.; Sajedi, R.H.; Nikudel, M.R. Effect of Injected Bacterial Suspension Volume and Relative Density on Carbonate Precipitation Resulting from Microbial Treatment. Ecol. Eng. 2016, 89, 49–55. [Google Scholar] [CrossRef]
- Feng, K.; Montoya, B.M. Influence of Confinement and Cementation Level on the Behavior of Microbial-Induced Calcite Precipitated Sands under Monotonic Drained Loading. J. Geotech. Geoenviron. Eng. 2016, 142, 04015057. [Google Scholar] [CrossRef]
- Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A. Application of Microbially Induced Calcite Precipitation in Erosion Mitigation and Stabilisation of Sandy Soil Foreshore Slopes: A Preliminary Investigation. Eng. Geol. 2016, 201, 96–105. [Google Scholar] [CrossRef]
- Tang, Y.; Lian, J.; Xu, G.; Yan, Y.; Xu, H. Effect of Cementation on Calcium Carbonate Precipitation of Loose Sand Resulting from Microbial Treatment. Trans. Tianjin Univ. 2017, 23, 547–554. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.-B.; Wang, H.-F.; Zeng, R.J. Microbially Induced Calcium Carbonate Precipitation Driven by Ureolysis to Enhance Oil Recovery. RSC Adv. 2017, 7, 37382–37391. [Google Scholar] [CrossRef]
- Bao, R.; Li, J.; Li, L.; Cutright, T.J.; Chen, L.; Zhu, J.; Tao, J. Effect of Microbial-Induced Calcite Precipitation on Surface Erosion and Scour of Granular Soils: Proof of Concept. Transp. Res. Rec. 2017, 2657, 10–18. [Google Scholar] [CrossRef]
- Tian, K.; Wu, Y.; Zhang, H.; Li, D.; Nie, K.; Zhang, S. Increasing Wind Erosion Resistance of Aeolian Sandy Soil by Microbially Induced Calcium Carbonate Precipitation. Land Degrad. Dev. 2018, 29, 4271–4281. [Google Scholar] [CrossRef]
- Nassar, M.K.; Gurung, D.; Bastani, M.; Ginn, T.R.; Shafei, B.; Gomez, M.G.; Graddy, C.M.R.; Nelson, D.C.; DeJong, J.T. Large-Scale Experiments in Microbially Induced Calcite Precipitation (MICP): Reactive Transport Model Development and Prediction. Water Resour. Res. 2018, 54, 480–500. [Google Scholar] [CrossRef]
- Gomez, M.G.; Graddy, C.M.R.; DeJong, J.T.; Nelson, D.C. Biogeochemical Changes During Bio-Cementation Mediated by Stimulated and Augmented Ureolytic Microorganisms. Sci. Rep. 2019, 9, 11517–11531. [Google Scholar] [CrossRef] [PubMed]
- Montoya, B.M.; Safavizadeh, S.; Gabr, M.A. Enhancement of Coal Ash Compressibility Parameters Using Microbial-Induced Carbonate Precipitation. J. Geotech. Geoenviron. Eng. 2019, 145, 04019018. [Google Scholar] [CrossRef]
- Wang, X.; Nackenhorst, U. A Coupled Bio-Chemo-Hydraulic Model to Predict Porosity and Permeability Reduction during Microbially Induced Calcite Precipitation. Adv. Water Resour. 2020, 139, 103563. [Google Scholar] [CrossRef]
- Hataf, N.; Baharifard, A. Reducing Soil Permeability Using Microbial Induced Carbonate Precipitation (MICP) Method: A Case Study of Shiraz Landfill Soil. Geomicrobiol. J. 2020, 37, 147–158. [Google Scholar] [CrossRef]
- Shougrakpam, S.; Trivedi, A. Harnessing Microbially Induced Calcite Precipitates to Use in Improving the Engineering Properties of Loose Sandy Soils. Sādhanā 2021, 46, 41. [Google Scholar] [CrossRef]
- Arpajirakul, S.; Pungrasmi, W.; Likitlersuang, S. Efficiency of Microbially-Induced Calcite Precipitation in Natural Clays for Ground Improvement. Constr. Build. Mater. 2021, 282, 122722. [Google Scholar] [CrossRef]
- Elmaloglou, A.; Terzis, D.; De Anna, P.; Laloui, L. Microfluidic Study in a Meter-Long Reactive Path Reveals How the Medium’s Structural Heterogeneity Shapes MICP-Induced Biocementation. Sci. Rep. 2022, 12, 19553. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wu, Y.; Liu, S.; Lu, L.; Wang, J. The Adaptability of Sporosarcina pasteurii in Marine Environments and the Feasibility of Its Application in Mortar Crack Repair. Constr. Build. Mater. 2022, 332, 127371. [Google Scholar] [CrossRef]
- Nagy, B.; Kustermann, A. Rehabilitation of Porous Building Components and Masonry by MICP Injection Method. Buildings 2023, 13, 1273. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.-S.; Pan, X.-H.; Xu, J.-J.; Zhang, X.-Y. Suppressing Drought-Induced Soil Desiccation Cracking Using MICP: Field Demonstration and Insights. J. Geotech. Geoenviron. Eng. 2024, 150, 04024006. [Google Scholar] [CrossRef]
- Bu, S.Z.; Zheng, Y.-L.; Lu, C.-H.; Cheng, L. Efficient Inhibition of ASR by Microbially Induced Calcium Carbonate Precipitation on Aggregates at a Low Degree of Saturation. J. Build. Eng. 2024, 84, 108516. [Google Scholar] [CrossRef]
Title of Article | Citation | References |
---|---|---|
Bio-mediated soil improvement | 1232 | [45] |
Microbiological precipitation of CaCO3 | 1198 | [46] |
Microbially induced cementation to control sand response to undrained shear | 1191 | [47] |
remediation of concrete using microorganisms | 761 | [48] |
Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment | 680 | [49] |
Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement | 545 | [50] |
Factors affecting efficiency of microbially induced calcite precipitation | 534 | [51] |
Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation | 520 | [52] |
Effect of chemical treatment used in MICP on engineering properties of cemented soils | 431 | [53] |
Effects of environmental factors on microbial induced calcium carbonate precipitation | 430 | [54] |
Authors | Publications | Citations | City and Country | References |
---|---|---|---|---|
Chu, Jian | 31 | 1609 | Singapore City, Singapore | [58] |
Su, Junfeng | 23 | 368 | Xi’an, China | [59] |
Wang, Zhao | 21 | 320 | Xi’an, China | [60] |
Ali, Amjad | 20 | 332 | Xi’an, China | [60] |
Achal, Varenyam | 18 | 1552 | Shantou, China | [13] |
Cheng, Liang | 18 | 1325 | Zhenjiang, China | [52] |
Kawasaki, Satoru | 16 | 478 | Sapporo, Japan | [13] |
Dejong, Jason T. | 14 | 3380 | Davis, United States | [45] |
Gerlach, Robin | 14 | 961 | Bozeman, United States | [61] |
Liu, Hanlong | 14 | 704 | Chongqing, China | [62] |
Journals | Publications | Citations | Publisher |
---|---|---|---|
Construction and Building Materials | 62 | 3124 | Elsevier |
Journal of Petroleum Science and Engineering | 45 | 914 | Elsevier |
Journal of Geotechnical and Geoenvironmental Engineering | 38 | 5291 | American Society of Civil Engineers |
Marine and Petroleum Geology | 37 | 1528 | Elsevier |
Journal of Materials in Civil Engineering | 20 | 779 | American Society of Civil Engineers |
Journal of Natural Gas Science and Engineering | 19 | 516 | Elsevier |
Chemosphere | 17 | 391 | Elsevier |
Geomicrobiology Journal | 16 | 1244 | Taylor & Francis Ltd. |
Acta Geotechnica | 15 | 448 | Springer Nature |
Journal of Environmental Management | 15 | 242 | Elsevier |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoregie, A.I.; Ouahbi, T.; Ong, D.E.L.; Basri, H.F.; Wong, L.S.; Bamgbade, J.A. Perspective of Hydrodynamics in Microbial-Induced Carbonate Precipitation: A Bibliometric Analysis and Review of Research Evolution. Hydrology 2024, 11, 61. https://doi.org/10.3390/hydrology11050061
Omoregie AI, Ouahbi T, Ong DEL, Basri HF, Wong LS, Bamgbade JA. Perspective of Hydrodynamics in Microbial-Induced Carbonate Precipitation: A Bibliometric Analysis and Review of Research Evolution. Hydrology. 2024; 11(5):61. https://doi.org/10.3390/hydrology11050061
Chicago/Turabian StyleOmoregie, Armstrong Ighodalo, Tariq Ouahbi, Dominic Ek Leong Ong, Hazlami Fikri Basri, Lin Sze Wong, and Jibril Adewale Bamgbade. 2024. "Perspective of Hydrodynamics in Microbial-Induced Carbonate Precipitation: A Bibliometric Analysis and Review of Research Evolution" Hydrology 11, no. 5: 61. https://doi.org/10.3390/hydrology11050061
APA StyleOmoregie, A. I., Ouahbi, T., Ong, D. E. L., Basri, H. F., Wong, L. S., & Bamgbade, J. A. (2024). Perspective of Hydrodynamics in Microbial-Induced Carbonate Precipitation: A Bibliometric Analysis and Review of Research Evolution. Hydrology, 11(5), 61. https://doi.org/10.3390/hydrology11050061