Previous Issue

Table of Contents

Toxics, Volume 6, Issue 4 (December 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:
Open AccessArticle Sub-Nanomolar Methylmercury Exposure Promotes Premature Differentiation of Murine Embryonic Neural Precursor at the Expense of Their Proliferation
Received: 7 September 2018 / Revised: 28 September 2018 / Accepted: 3 October 2018 / Published: 10 October 2018
PDF Full-text (20088 KB) | HTML Full-text | XML Full-text
Abstract
Methylmercury (MeHg) is a ubiquitous environmental pollutant that is known to be neurotoxic, particularly during fetal development. However, the mechanisms responsible for MeHg-induced changes in adult neuronal function, when their exposure occurred primarily during fetal development, are not yet understood. We hypothesized that
[...] Read more.
Methylmercury (MeHg) is a ubiquitous environmental pollutant that is known to be neurotoxic, particularly during fetal development. However, the mechanisms responsible for MeHg-induced changes in adult neuronal function, when their exposure occurred primarily during fetal development, are not yet understood. We hypothesized that fetal MeHg exposure could affect neural precursor development leading to long-term neurotoxic effects. Primary cortical precursor cultures obtained from embryonic day 12 were exposed to 0 nM, 0.25 nM, 0.5 nM, 2.5 nM, and 5 nM MeHg for 48 or 72 h. Total Hg accumulated in the harvested cells in a dose-dependent manner. Not all of the concentrations tested in the study affected cell viability. Intriguingly, we observed that cortical precursor exposed to 0.25 nM MeHg showed increased neuronal differentiation, while its proliferation was inhibited. Reduced neuronal differentiation, however, was observed in the higher dose groups. Our results suggest that sub-nanomolar MeHg exposure may deplete the pool of neural precursors by increasing premature neuronal differentiation, which can lead to long-term neurological effects in adulthood as opposed to the higher MeHg doses that cause more immediate toxicity during infant development. Full article
(This article belongs to the Special Issue Mercury and Methylmercury Toxicology and Risk Assessment)
Figures

Figure 1

Open AccessArticle Cytotoxicity and Toxicity Evaluation of Xanthone Crude Extract on Hypoxic Human Hepatocellular Carcinoma and Zebrafish (Danio rerio) Embryos
Received: 9 September 2018 / Revised: 26 September 2018 / Accepted: 4 October 2018 / Published: 9 October 2018
PDF Full-text (1890 KB) | HTML Full-text | XML Full-text
Abstract
Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2)
[...] Read more.
Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 μg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 μg/mL) and three times less sensitive when treated with >500 μg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 μg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 μg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG. Full article
(This article belongs to the Special Issue Contaminant Effects on Zebrafish Embryos)
Figures

Figure 1

Open AccessArticle Characterization of MS/MS Product Ions for the Differentiation of Structurally Isomeric Pesticides by High-Resolution Mass Spectrometry
Received: 19 September 2018 / Accepted: 27 September 2018 / Published: 2 October 2018
PDF Full-text (3153 KB) | HTML Full-text | XML Full-text
Abstract
Structural isomeric pesticides are used in agriculture and may be challenging to differentiate for accurate identification in pesticide monitoring programs. Due to structural similarity, isomeric pesticides are difficult to separate chromatographically, and thus, their accurate identification may rely solely on mass spectrometric analysis
[...] Read more.
Structural isomeric pesticides are used in agriculture and may be challenging to differentiate for accurate identification in pesticide monitoring programs. Due to structural similarity, isomeric pesticides are difficult to separate chromatographically, and thus, their accurate identification may rely solely on mass spectrometric analysis (MS). In this study, we challenged the ability of high-resolution quadrupole-orbitrap (Q-Orbitrap) mass spectrometry to produce and evaluate the tandem mass spectrometry (MS/MS) product ions for the selected five pairs of isomeric pesticides from different classes: Pebulate and vernolate, methiocarb and ethiofencarb, uniconazole and cyproconazole, sebuthylazine and terbuthylazine, and orbencarb and thiobencarb. The use of Q-Orbitrap instrument with a mass error <3 ppm allowed proposed elucidation of the product ion structures with consideration of the ion formulae, data interpretation, and literature searches. Product ions unique to pebulate, vernolate, methiocarb, ethiofencarb, and uniconazole were observed. Elucidation of the observed MS/MS product ion structures was conducted, and the fragmentation pathways were proposed. This information is valuable to increase selectivity in MS/MS analysis and differentiate isomeric pesticides, and thereby reduce the rates of false positives in pesticide monitoring programs. Full article
(This article belongs to the Special Issue Analysis of Chemical Contaminants in Food)
Figures

Figure 1

Open AccessArticle Pattern of Paracetamol Poisoning: Influence on Outcome and Complications
Received: 5 September 2018 / Revised: 24 September 2018 / Accepted: 28 September 2018 / Published: 29 September 2018
PDF Full-text (518 KB) | HTML Full-text | XML Full-text
Abstract
Acute paracetamol poisoning due to a single overdose may be effectively treated by the early administration of N-acetylcysteine (NAC) as an antidote. The prognosis may be different in the case of intoxication due to multiple ingestions or when the antidote is started with
[...] Read more.
Acute paracetamol poisoning due to a single overdose may be effectively treated by the early administration of N-acetylcysteine (NAC) as an antidote. The prognosis may be different in the case of intoxication due to multiple ingestions or when the antidote is started with delay. The aim of this work was to investigate the outcome of paracetamol poisoning according to the pattern of ingestion and determine the factors associated with the outcome. We performed a retrospective analysis over the period 2007–2017 of the patients who were referred to a tertiary hospital for paracetamol-related hepatotoxicity. Inclusion criteria were: accidental or voluntary ingestion of paracetamol, delay for NAC therapy of 12 h or more, liver enzymes (ALT) >1000 IU/L on admission. Ninety patients were considered. Poisoned patients following multiple ingestion were significantly older (45 ± 12 vs. 33 ± 14) (p = 0.001), with a higher incidence of liver steatosis (p = 0.016) or chronic ethanol abuse (p = 0.04). In comparison with the subgroup of favorable outcome, the patients with poor outcome were older, had higher values for ALT, bilirubin, lactate, and lower values for factor V and arterial pH. In multivariate analysis, the arterial lactate value was associated with a bad prognosis (p < 0.02) (adjusted odds ratio 1.74 and CI 95:1.09–2.77). The risk of poor outcome was greater in the subgroup with staggered overdose (p = 0.02), which had a higher mortality rate (p = 0.01). This retrospective analysis illustrates the different population patterns of patients who were admitted for a single ingestion of a paracetamol overdose versus multiple ingestions. This last subgroup was mainly represented by older patients with additional risk factors for hepatotoxicity; arterial lactate was a good predictor of severity. Full article
(This article belongs to the Section Toxicology and Public Health)
Figures

Figure 1

Open AccessArticle Real-Time Monitoring of Tetraselmis suecica in A Saline Environment as Means of Early Water Pollution Detection
Received: 15 August 2018 / Revised: 20 September 2018 / Accepted: 27 September 2018 / Published: 28 September 2018
PDF Full-text (1967 KB) | HTML Full-text | XML Full-text
Abstract
Biological water pollution, including organic pollutants and their possible transportation, via biofouling and ballast water, has the potential to cause severe economic and health impacts on society and environment. Current water pollution monitoring methods are limited by transportation of samples to the laboratory
[...] Read more.
Biological water pollution, including organic pollutants and their possible transportation, via biofouling and ballast water, has the potential to cause severe economic and health impacts on society and environment. Current water pollution monitoring methods are limited by transportation of samples to the laboratory for analysis, which could take weeks. There is an urgent need for a water quality monitoring technique that generates real-time data. The study aims to assess the feasibility of three sensing techniques to detect and monitor the concentrations of the model species Tetraselmis suecica in real-time using eleven samples for each method. Results showed UV-Vis spectrophotometer detected increasing concentration of Tetraselmis suecica with R2 = 0.9627 and R2 = 0.9672, at 450 nm and 650 nm wavelengths, respectively. Secondly, low-frequency capacitance measurements showed a linear relationship with increasing concentration of Tetraselmis suecica at 150 Hz (R2 = 0.8463) and 180 Hz (R2 = 0.8391). Finally, a planar electromagnetic wave sensor measuring the reflected power S11 amplitude detected increasing cell density at 4 GHz (R2 = 0.8019). Full article
(This article belongs to the Special Issue Emerging Contaminants in Water: Is It still a Conundrum?)
Figures

Figure 1

Back to Top