Next Article in Journal
Ecological Risk and Human Health Assessment of Heavy Metals in Sediments of Datong Lake
Previous Article in Journal
Distribution Characteristics of High-Background Elements and Assessment of Ecological Element Activity in Typical Profiles of Ultramafic Rock Area
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Research Progress on Chemical Compositions, Pharmacological Activities, and Toxicities of Quinone Compounds in Traditional Chinese Medicines

1
School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi 117004, China
2
National Institutes for Food and Drug Control, Beijing 102629, China
3
China National Center for Food Safety Risk Assessment, Beijing 100020, China
*
Authors to whom correspondence should be addressed.
Toxics 2025, 13(7), 559; https://doi.org/10.3390/toxics13070559
Submission received: 30 May 2025 / Revised: 25 June 2025 / Accepted: 27 June 2025 / Published: 30 June 2025
(This article belongs to the Section Drugs Toxicity)

Abstract

With the continuous development of research on natural medicines, quinone compounds have become increasingly important in the research field of chemical constituents of natural treatments. However, there is a lack of in-depth and systematic collation of their types, distribution, pharmacological activities, and potential toxicities. This article comprehensively reviews the structural types, biogenetic pathways, extraction and separation methods, structural identification techniques, pharmacological activities, and toxicities of quinone compounds. It is found that the main difficulties in the research of quinone compounds lie in the cumbersome traditional separation and structural identification processes, as well as the insufficient in-depth studies on the mechanisms of their activities and toxicities. This review aims to provide a reference for research on quinone compounds in natural products and offer ideas and suggestions for subsequent in-depth exploration of the pharmacological activities of quinone compounds, prevention and control of their toxicities, and the realization of rational drug use.

1. Introduction

Quinone compounds are an important class of chemical constituents in natural medicines. They refer to natural organic compounds with an unsaturated cyclohexanedione structure within the molecule or are easily transformed into such structures [1]. According to the differences in their structures, quinone compounds are mainly classified into benzoquinones, naphthoquinones, phenanthraquinones, and anthraquinones [2], among which anthraquinones and their derivatives are the most numerous types. Quinone compounds are widely distributed in plants of families such as Polygonaceae Juss., Rubiaceae Juss., Leguminosae Lindl., Rhamnaceae Juss., and Liliaceae Juss., and are also present in the metabolites of some lower plants such as lichens and fungi. They possess various biological activities, including purgative, antibacterial, anti-tumor, diuretic, and hemostatic effects. In recent years, significant breakthroughs have been achieved in the research and development of new drugs derived from natural quinone compounds across multiple fields. For example, sodium tanshinone IIA sulfonate, a drug for treating coronary heart disease [3], and buparvaquone, an antimalarial drug [4]. In recent years, remarkable progress has been made in the research on the pharmacological activities of quinone chemical constituents in traditional Chinese medicines. However, quinone compounds have many adverse reactions, such as hepatotoxicity, nephrotoxicity, and carcinogenicity, which require widespread attention. Traditional Chinese medicines containing anthraquinone components may cause adverse reactions, such as melanosis coli, drug-induced liver injury, and drug-induced kidney injury in clinical practice [5]. Zhou Xujun’s analysis of 130 patients with melanosis coli showed that among 108 patients with constipation, 97 had a history of taking anthraquinone laxatives. Among them, 73 patients were grade III, and the medication duration was 1–4 years [6]. Wang Xiong [7] conducted a retrospective analysis of 12 inpatients with drug-induced liver injury caused by taking Pleuropterus multiflorus (Thunb.) Nakai and its related preparations were admitted to the Department of Hepatology of the First Affiliated Hospital of Hunan University of Chinese Medicine from January 2017 to March 2024. The severity classification was as follows: 8 cases; grade 1, 3 cases; and grade 3, and 1 case was at grade 4. All patients with grade 3 and above liver injury received traditional Chinese medicine prescriptions, and liver injury in those who took proprietary Chinese medicines was mostly mild. After discontinuing the related preparations and receiving symptomatic supportive treatments, such as liver protection and transaminase level reduction, all patients improved and were discharged from the hospital. The occurrence of drug-induced kidney injury may be related to Aloe vera (Haw.) Berg, Senna alexandrina Mill., Astragalus membranaceus (Fisch.) Bunge, Reynoutria japonica Houtt., Senna obtusifolia (L.) H. S. Irwin and Barneby [8]. Zhao Fengbo [9] analyzed 172 patients with renal parenchymal acute kidney injury (AKI). The results showed that 39 cases were caused by the consumption of Chinese herbal medicines. Among the causative herbal medicines, Aloe vera (Haw.) Berg containing anthraquinone components was included.
The dynamic changes in the number of literature, to a certain extent, reflect the academic community’s attention and research progress on quinone compounds. This article conducted searches in the China National Knowledge Infrastructure (CNKI) and Web of Science databases. In CNKI, the advanced search method was adopted, with “quinones (exact)” as the search term; in the Web of Science, the search condition is set as: Topic = “quinone”. The search period was set from 1995 to 2024. After the search, 62,241 literature were obtained, among which 7927 were included in CNKI and 54,314 were included in the Web of Science. The number of references on quinone compounds has generally shown an upward trend. An increasing number of new quinone compounds have been extracted, separated, and identified, and their pharmacological activities and synthesis pathways have been further elucidated. This review elaborates on the chemical constituents, synthesis pathways, pharmacological activities, and toxicities of quinone compounds in traditional Chinese medicine, with the aim of providing scientific references for subsequent research on the pharmacological activities of quinone compounds, toxicity prevention and control, and safety evaluation standards.Figure 1 introduces the number of references based on quinone compounds.

2. Progress in Chemical Composition Research

2.1. Structure Type and Distribution

2.1.1. Benzoquinones

Benzoquinones are structurally divided into two major groups: ortho-benzoquinone and para-benzoquinone, and compounds with pro-benzoquinone structures are unstable; therefore, most naturally occurring benzoquinone compounds are para-benzoquinone derivatives [10]. The substituents of benzoquinone are more varied and are usually classified into small and large groups. Common small groups include hydroxyl, methoxy, carboxyl, and smaller hydrocarbon groups containing less than three carbons, while large groups include saturated or unsaturated chain hydrocarbons containing more than three carbon atoms, benzene rings, and more complex carbon-containing substituents. Figure 2 introduces the classification of the skeletal structures of quinone compounds.
Benzoquinones can be categorized into small-molecule benzoquinones, advanced straight-chain hydrocarbon benzoquinones, isopentenyl benzoquinones, furanobenzoquinones, flavonoid benzoquinones, terpene benzoquinones, and benzoquinones based on the nature of the substituent groups [11]. Small-molecule benzoquinones are common small-molecule substituents, such as hydroxyl, methoxy, and alkyl groups, which are attached to the parent nucleus of the benzoquinone. A total of 14 types of small-molecule benzoquinones have been identified, and examples of small-molecule benzoquinones include 2-methyl-p-quinone, 2, 6-dimethoxy-1, 4-benzoquinone, and others. Advanced straight-chain hydrocarbon benzoquinones have at least one advanced straight-chain aliphatic hydrocarbon attached to the parent nucleus of the benzoquinone, and nine types have been found, such as primin and arnebifuranone. Isopentenyl benzoquinones have a variable number of isopentenyl groups attached to the parent nucleus of the benzoquinone, of which 12 have been found, such as omphalone, 3-bydroxy-2-methyl-5-(3-methyl-2-butenyl)benzo-1,4-quinone. Furobenzoquinones are compounds formed by the fusion of a benzoquinone with a furan ring, of which there are three. An example of a furan-based benzoquinone is cyperaquinone. Flavonoid benzoquinones are structurally characterized by a skeleton similar to that of flavonoids, with the difference that the B ring of this class of compounds is not a benzene ring, but a benzoquinone and its derivatives, of which there are four, such as cyclofissoquinone and bodimoquinone. Terpene quinones are compounds with a terpene skeleton but with a benzoquinone structure in the molecule. There are four kinds, such as 3-acetoxymo-quinone. Biphenylquinone is a dimer consisting of two identical or different benzoquinones linked by a carbon-carbon bond, there are seven kinds. Examples of biphenylquinones include methylvilangin and lanciaquinone.
Toxics 13 00559 i001
1,4 Benzoquinone was synthesized using a two-step process. In the first step, compound 1 was reacted with paraformaldehyde in different solvents (37% hydrochloric acid, 47% hydrogen bromide, morpholine, and piperidine) for 2 h at 35 °C to give compounds 2a2d in high yields. The second step involved the oxidation of compounds 1a1d with cerium ammonium nitrate (CAN) at room temperature to obtain the desired compounds 2a2d in good yields. This method is short, high-yield, and easy to post-process [12]. Figure 3 introduces the synthetic pathways of quinone compounds.
Benzoquinones are found in Leguminosae Lindl., Asteraceae L., Comfreyaceae L., Araceae Juss., and some fungi. Among them, four isopentenyl-substituted benzoquinones were isolated from Nephthea chabrolii Audouin, one small-molecule benzoquinone, one high-level straight-chain hydrocarbon benzoquinone, and two isopentenyl-substituted benzoquinones from Arnebia euchroma (Royle) I.M. Johnst., and four small-molecule benzoquinones from Antrodia cinnamomea T. T. Chang & W. N. Chou. Three flavonoid benzoquinones were isolated from Dalbergia odorifera T. Chen. Two biphenoquinones and one advanced straight-chain hydrocarbon benzoquinone were isolated from Myrsine africana L. var. acuminata C. Y. Wu et C. Chen (synonym). Two isopentenyl-substituted benzoquinones were isolated from Atractylodes koreana (Nakai) Kita. Two terpene benzoquinones were isolated from Helianthus annuus L. Two advanced straight-chain hydrocarbon benzoquinones were isolated from Embelia ribes Burm. f. Table 1 presents the names and molecular formulas of benzoquinone compounds.
Table 1. Names and molecular formulas of the benzoquinone compounds.
Table 1. Names and molecular formulas of the benzoquinone compounds.
No.NameResourceMolecularClassificationRef.
12-methyl-p-quinoneBlaps rynchopetera FairmaireC7H6O2small molecule benzoquinone[13]
22,5-dimethyl-3-methoxy-p-benzoquinoneFluridobulus penneriC9H10O3small molecule benzoquinone[14]
32, 6-dimethoxy-1, 4-benzoquinoneAtractylodes macrocephala KoidzC8H8O4small molecule benzoquinone[15]
4aurantiogliocladinArnebia euchroma (Royle) I.M. Johnst.C10H12O4small molecule benzoquinone[16]
52-hydroxy-3-methoxy-5-methyl-p-benzoquinoneAntrodia cinnamomea T. T. Chang & W. N. ChouC8H8O4small molecule benzoquinone[17]
62-methoxy-6-methyl-p-benzoquinoneAntrodia cinnamomea T. T. Chang & W. N. ChouC8H8O3small molecule benzoquinone[17]
72,3-dimethoxy-5-methyl-p-benzoquinoneAntrodia cinnamomea T. T. Chang & W. N. ChouC9H10O4small molecule benzoquinone[17]
82-hydroxy-5-methoxy-3-methyl-p-benzoquinoneAntrodia cinnamomea T. T. Chang & W. N. ChouC8H8O4small molecule benzoquinone[17]
9anserinone APodospora anserina (Rabenh.) NiesslC11H12O4small molecule benzoquinone[18]
10anserinone BPodospora anserina (Rabenh.) NiesslC11H14O4small molecule benzoquinone[18]
112-hydroxy-3-methyl-5-methoxy-p-benzoquinonePterospermum heterophyllum HanceC8H8O4small molecule benzoquinone[14]
122.3-dimethyl-5, 6-dimethoxy-p-benzoquinoneGliocladium penicilloides CordaC10H12O4small molecule benzoquinone[14]
132, 5-dimethoxy-3, 6-dimethyl-p-benzoquinoneNeonectria fuckeliana (C. Booth) Castl. & RossmanC10H12O4small molecule benzoquinone[14]
14thymoquinoneNigella sativa L.C10H12O2small molecule benzoquinone[19]
15priminMiconia lepidota DC.C12H16O3advanced straight-chain hydrocarbon benzoquinone[20]
16embelinEmbelia ribes Burm. fC17H26O4advanced straight-chain hydrocarbon benzoquinone[21]
172,5-dihydroxy-3-tridecyl-1, 4-benzoquinoneEmbelia ribes Burm. f.C19H30O4advanced straight-chain hydrocarbon benzoquinone[21]
18myrsinoneMyrsine africana L. var. acuminata C. Y. Wu et C. Chen (synonym)C17H26O4advanced straight-chain hydrocarbon benzoquinone[14]
19idebenone-C19H30O5advanced straight-chain hydrocarbon benzoquinone[22]
202-methoxy-6-nonadecyl-1,4-benzoquinoneMiconia lepidota DC.C26H44O3advanced straight-chain hydrocarbon benzoquinone[23]
21(-)-a-tocospironeGynura japonica (Thunb.) JuelC29H50O4advanced straight-chain hydrocarbon benzoquinone[24]
22maesaquinoneMaesa japonica (Thunb.) MoritziC26H42O4advanced straight-chain hydrocarbon benzoquinone[25]
23paphiononePaphiopedilum exul (Ridl.) RolfeC20H30O5advanced straight-chain hydrocarbon benzoquinone[26]
24isopentenyl p-benzoquinonePhagnalon purpurescens Sch. Bip.C11H12O2isopentenyl benzoquinone[14]
253,5,6-trimethoxy-2-isopentene-p-benzoquinoneDendrobium nobile Lindl.C14H18O5isopentenyl
benzoquinone
[14]
26omphaloneLentinellus micheneri (Berk. & M. A. Curtis) PeglerC11H8O3isopentenyl benzoquinone[27]
272(E) -2-geranyl-6-methyl p-benzoquinoneAtractylodes koreana (Nakai) Kita.C17H22O2isopentenyl benzoquinone[14]
282-(Z) -2-geranyl-6-methyl p-benzoquinoneAtractylodes koreana (Nakai) Kita.C17H22O2isopentenyl benzoquinone[14]
29amebifuranoneArnebia euchroma (Royle) I.M. JohnstC18H20O5isopentenyl benzoquinone[14]
30arnebinoneArnebia euchroma (Royle) I.M. JohnstC18H22O4isopentenyl benzoquinone[14]
31chabrolobenzoquinone ENephthea chabrolii AudouinC27H38O3isopentenyl benzoquinone[28]
32chabrolobenzoquinone FNephthea chabrolii AudouinC29H40O4isopentenyl benzoquinone[28]
33chabrolobenzoquinone GNephthea chabrolii AudouinC27H38O3isopentenyl benzoquinone[28]
34chabrolobenzoquinone HNephthea chabrolii AudouinC29H42O5isopentenyl benzoquinone[28]
35atrovirinoneGarcinia atroviridis Griffith ex T. AndersonC25H28O8isopentenyl benzoquinone[29]
36cyperaquinoneCyperus nipponicus Franch. & Sav.C14H10O4furanobenzoquinone[30]
37albidinPenicillium albidum SoppC10H8O4furanobenzoquinone[14]
38graphisquinoneGraphis scripta (L.) Ach.C11H10O5furanobenzoquinone[14]
39chrysoquinaneEuphorbia esula L.C19H16O9flavonoid benzoquinone[14]
40claussequinoneDalbergia odorifera T.ChenC16H16O5flavonoid benzoquinone[14]
41bowdichioneDalbergia odorifera T.ChenC16H10O6flavonoid benzoquinone[14]
42donoherbivol-cyclocledoquinoneDalbergia odorifera T.ChenC32H28O9flavonoid benzoquinone[14]
433-Acetoxymo-quinoneCordia oncocalyx (Allemão) Baill.C12H14O4terpenebenzoquinone[31]
44glanduline AHelianthus annuus L.C15H20O2terpenebenzoquinone[14]
45glanduline BHelianthus annuus L.C15H18O2terpenebenzoquinone[14]
46methylvilanginMyrsine africana L. var. acuminata C. Y. Wu et C. Chen (synonym)C36H54O8biphenylquinone[25]
47methylanhydrovilanginMyrsine africana L. var. acuminata C. Y. Wu et C. Chen (synonym)C16H52O7biphenylquinone[25]
48lanciaquinoneArdisia japonica (Thunb.) Bl.C27H36O7biphenylquinone[32]
49neonambiquinone ANeonothopanus nambi (Speg.) R. H. Petersen & KrisaiC19H14O6biphenylquinone[33]
50volucrisporinVolucrispora aurantiaca HaskinsC18H12O4biphenylquinone[34]
51oosporeinBeauveria bassiana (Bals.-Criv.) Vuill.C14H18O8biphenylquinone[35]
52biembelinRapanea melanophloeos (L.) Meisn.C34H50O8biphenylquinone[14]
53embenones AKnema globularia (Lam.) Warb.C15H18O4other[35]
54embenones BKnema globularia (Lam.) Warb.C15H20O4other[35]
55triaziquoneArtemisia sieberi. JC12H13N3O2other[36]
56aziridyl benzoquinone-C16H22N2O6other[37]
57erectquione BHypericum erectum Sol. ex R.Br.C29H40O6other[38]
58erectquione CHypericum erectum Sol. ex R.Br.C25H34O6other[38]
59AtromentinAscocoryne sarcoidesC18H12O6other[39]
60Erectquione AHypericum erectum Sol. ex R.Br.C21H28O4ortho-benzoquinone[38]
Toxics 13 00559 i002Toxics 13 00559 i003Toxics 13 00559 i004

2.1.2. Naphthoquinones

Naphthoquinones can be structurally divided into three types: α(1,4) naphthoquinone, β(1,2) naphthoquinone, and amphi(2,6) naphthoquinone, of which most naturally occurring naphthoquinones are α-naphthoquinone derivatives [40]. They are mostly orange or orange-red crystals, and a few are purple.
Toxics 13 00559 i005
Common naphthoquinone substituents include hydroxyl, methoxy, aliphatic, and aromatic hydrocarbons. Naphthoquinones can be categorized based on the type of substituents as small-molecule-substituted naphthoquinones, benzoisochromanquinones, furanonaphthoquinones, isopentenyl naphthoquinones, etc. [11]. Small-molecule naphthoquinones are common small-molecule substituents, such as hydroxyl, methoxy, and alkyl groups, attached to the parent nucleus of naphthoquinone. Currently, 24 small-molecule-substituted naphthoquinones have been identified, including juglone and plumbagin; 20 benzoisochroman quinones, including davidianone A and mansonin A; 28 furano-naphthoquinones, including arthoniafurone B and cribrarione A; and 23 isopentenyl naphthoquinones, including lapachol and crassiflorone.
There are two mainstream methods for synthesizing 2-methyl-1,4-naphthoquinone. The first method uses 2-methylnaphthalene as the raw material and glacial acetic acid as the solvent, and 2-methyl-1,4-naphthoquinone is obtained via one-step oxidation with chromium trioxide. The main advantage of this method is that 2-methylnaphthalene is inexpensive, and the route is only one step. 2-Methylnaphthalene hydroquinone is obtained by Diels-Alder cycloaddition of butadiene and methylbenzoquinone, followed by oxidation with chromic anhydride to obtain 2-methyl-1,4-naphthoquinone [41].
Toxics 13 00559 i006
Naphthoquinones are mainly distributed in plants of the families Ulmaceae Mirb., Persicaceae Raf., and Albiziaceae Raf., in addition to some microorganisms and marine organisms. Among them, 20 naphthoquinones were isolated from Rhinacanthus nasutus (L.) Kurz, containing six benzoisochromanquinones and eight isoprenoid naphthoquinones; 7 naphthoquinones were isolated from Cordia curassavica (Jacq.) Roem. & Schult; Five naphthoquinones, containing one small-molecule naphthoquinone, and three furanoquinones were isolated from Plumbago zeylanica L.; four naphthoquinones were isolated from Chirita eburnea Hance; four benzoisochromanquinones were isolated from Ulmus pumila L.; three small-molecule naphthoquinones were isolated from Diospyros maritima Blume; three small-molecule naphthoquinones and three benzisochromanquinones were isolated from Ulmus davidiana Planch. Table 2 presents the names and molecular formulas of naphthoquinone compounds.
Table 2. Names and molecular formulas of naphthoquinone compounds.
Table 2. Names and molecular formulas of naphthoquinone compounds.
No.NameResourceFormulaClassificationRef.
613-bromoplumbaginDiospyros maritima BlumeC11H7BrO3small molecule naphthoquinones[42]
623-(2-hydroxyethyl)plumbaginDiospyros maritima BlumeC13H12O4small molecule naphthoquinones[42]
636-(1-ethoxyethyl)plumbaginDiospyros maritima BlumeC15H16O4small molecule naphthoquinones[43]
64jugloneJuglans regia L.C10H6O3small molecule naphthoquinones[14]
652-methyl-1, 4-naphthoquinoneJuglans regia L.C11H8O2small molecule naphthoquinones[14]
66lawsoneLythrum salicaria L.C10H6O4small molecule naphthoquinones[14]
672-amino-1.4-naphthoquinoneLaurus nobilis L.C10H7NO3small molecule naphthoquinones[14]
68plumbaginPlumbago zeylanica L.C11H8O3small molecule naphthoquinones[14]
69isoplumbaginImpatiens balsamina L.C11H8O3small molecule naphthoquinones[14]
70chimaphilinPyrola soldanellifolia AndresC12H10O3small molecule naphthoquinones[14]
717-methyl jugloneDiospyros usambarensis Engl.C11H8O3small molecule naphthoquinones[14]
722-methoxy-6-acetyl-7-methyljuglonePleuropterus multiflorus (Thunb.) NakaiC13H12O5small molecule naphthoquinones[44]
732-methoxystypandroneRumex japonicus HouttC14H12O5small molecule naphthoquinones[45]
742-butanoyl-3,6,8-trihydroxy-1,4-naphthoquinone
6-O-sulfate
Oxycomanthus japonicus J. F. W. MllerC14H11NaO9Ssmall molecule naphthoquinones[46]
752-butanoyl-3,6,8-trihydroxy-1,4-naphthoquinoneOxycomanthus japonicus J. F. W. MllerC14H12O6small molecule naphthoquinones[46]
76cribrarione BCribraria cancellata (Batsch) Nann.-Bremek.C12H10O6small molecule naphthoquinones[47]
77fusarnaphthoquinoe AFusarium spp.C15H18O7small molecule naphthoquinones[48]
787-carbomethoxy-2,8-dimethoxy-5-hydroxy-l,4-naphthoquinonePenicillium raistrickii Stolk & ScottC14H13O7small molecule naphthoquinones[49]
792,7-dimethoxy-5-hydroxy-1,4-naphthoquinonePenicillium raistrickii Stolk & ScottC12H10O5small molecule naphthoquinones[49]
808-formyl-7-hydroxy-5-isopropyl-2-methoxy-3-methyl-1,4-naphthoquinoneCeiba pentandra (L.) Gaertn.C16H16O5small molecule naphthoquinones[50]
812,7-dihydroxy-8-formyl-5-isopropyl-3-methyl-1.4-naphthoquinoneCeiba pentandra (L.) Gaertn.C15H14O5small molecule naphthoquinones[50]
827-hydroxy-5-isopropyl-2-methoxy-3-methylnaphthoquinoneBombax malabaricum DC.C15H16O4small molecule naphthoquinones[51]
83lanigeroneSalvia lanigera Poir. (Lamiaceae)C14H14O3small molecule naphthoquinones[52]
84salvigeroneSalvia lanigera Poir. (Lamiaceae)C21H26O4small molecule naphthoquinones[52]
85droseronePlumbago capensis ThunbC11H8O4small molecule naphthoquinones[53]
86davidianone AUlmus davidiana Planch.C15H12O4benzoisochromanquinone[54]
87davidianone BUlmus davidiana Planch.C16H12O5benzoisochromanquinone[54]
88davidianone CUlmus davidiana Planch.C17H16O5benzoisochromanquinone[54]
89mansonone EUlmus pumila L.C15H14O3benzoisochromanquinone[55]
90mansonone FUlmus pumila L.C15H12O3benzoisochromanquinone[55]
91mansonone HUlmus pumila L.C15H14O4benzoisochromanquinone[56]
92mansonone IUlmus pumila L.C15H14O4benzoisochromanquinone[57]
93rhinacanthoneRhinacanthus nasutus (L.) KurzC15H14O3benzoisochromanquinone[58]
94rhinacanthin ARhinacanthus nasutus (L.) KurzC15H14O4benzoisochromanquinone[59]
95rhinacanthin ORhinacanthus nasutus (L.) KurzC24H26O5benzoisochromanquinone[58]
96rhinacanthin PRhinacanthus nasutus (L.) KurzC24H26O5benzoisochromanquinone[58]
97rhinacanthin SRhinacanthus nasutus (L.) KurzC24H24O5benzoisochromanquinone[58]
98rhinacanthin TRhinacanthus nasutus (L.) KurzC24H26O5benzoisochromanquinone[60]
99mansonin AMansonia altissima A. Chev.C17H18O5benzoisochromanquinone[60]
100mansonin BMansonia altissima A. Chev.C17H18O6benzoisochromanquinone[60]
1015-methoxy-3,4-dehydroxanthomegninPaepalanthus latipes SilveiraC16H12O7benzoisochromanquinone[61]
102pyranokunthone AStereospermum kunthianum Cham.C20H20O4benzoisochromanquinone[62]
1034-O-methyl erythrostominoneCordyceps unilateralis (Tul.) Sacc. var. clavata (Y. Kobayasi)C18H18O8benzoisochromanquinone[63]
104halawanone AStreptomyces SchröterC23H22O9benzoisochromanquinone[64]
105pyranokunthone BStereospermum kunthianum Cham.C20H20O4benzoisochromanquinone[62]
106(3a,3′a,4β,β)-3,3′-dimethoxy-cis-[4,4′-bis(3,4,5,10-tetra-hydro-1H-naphtho(2,3-clpyran)]-5.5.10,10-tetraonePentas longiflora Oliv.C28H22O8benzoisochromanquinone[65]
107arthoniafurone BArthonia cinnabarina Ach.C14H10O5furanonaphthoquinone[66]
108fusarnaphthoquinone BFusarium LinkC15H16O5furanonaphthoquinone[48]
109arthoniafurone AArthonia cinnabarina (DC.) Wallr.C14H8O5furanonaphthoquinone[66]
110cribrarione ACribraria purpurea Schwein.C13H10O7furanonaphthoquinone[67]
1118-hydroxy-1-methylnaphtho[2,3-c]furan-4,9-dioneBulbine capitata Poelln.C13H8O4furanonaphthoquinone[68]
1125,8-dihydroxy-1-methylnaphtho[2,3-c]furan-4,9-dioneAloe ferox Mill.C13H8O5furanonaphthoquinone[69]
1135,8-dihydroxy-1-hydroxymethylnaphtho[2,3-c]furan-4,9-dioneAloe ferox Mill.C13H8O6furanonaphthoquinone[69]
114avicequinone AAvicennia alba BlumeC15H14O5furanonaphthoquinone[70]
115avicequinone BAvicennia alba BlumeC12H6O3furanonaphthoquinone[70]
116avicequinone CAvicennia alba BlumeC15H12O4furanonaphthoquinone[70]
117avicequinone DAvicennia alba BlumeC15H12O5furanonaphthoquinone[70]
118avicequinone EMendoncia cowanii (S. Moore) BenoistC15H14O5furanonaphthoquinone[71]
1192-(1′-methylethenyl)naphtho[2,3-b]furan-4,9-dioneNewbouldia laevis (P. Beauv.) Seem. ex BureauC15H10O3furanonaphthoquinone[72]
1202-isopropenyl-9-methaxy-1,8-dioxa-dicyclopenta[b,g]naphthal-ene-4,10-dionePlumbago zeylanica L.C18H12O5furanonaphthoquinone[73]
1219-hydroxy-2-isopropenyl-1,8-dioxa-dicyclopenta[b,g]naphthal-ene-4,10-dionePlumbago zeylanica L.C17H10O5furanonaphthoquinone[74]
1222-(1-hydroxy-l-methyl-ethyl)-9-methoxy-1,8-dioxa-dicyclo-penta[b,g]naphthalene-4,10-dionePlumbago zeylanica L.C18H14O6furanonaphthoquinone[73]
123(R)-7-hydroxy-a-dunnioneChirita eburnea HanceC15H14O4furanonaphthoquinone[74]
124(R)-8-hydroxy-a-dunnioneChirita eburnea HanceC15H14O4furanonaphthoquinone[74]
125(R)-a-7,8-dihydroxy-a-dunnioneChirita eburnea HanceC15H14O5furanonaphthoquinone[74]
126(R)-7-methoxy-6,8-dihydroxy-a-dunnioneChirita eburnea HanceC16H16O6furanonaphthoquinone[74]
1277,8-dimethoxydunnioneSinningia leucotricha (Hoehne) H. E. MooreC17H18O5furanonaphthoquinone[75]
128dehydro-a-isodunnioneTectona grandis L. f.C15H12O3furanonaphthoquinone[76]
1295-hydroxy-7-methoxydehydroiso-a-lapachoneNewbouldia laevis (P. Beauv.) Seemann ex BureauC16H14O5furanonaphthoquinone[77]
130glycoquinoneGlycosmis pentaphylla (Retz.) CorrêaC20H24O4furanonaphthoquinone[78]
131(2R)-6,8-dihydroxy-a-dunnioneLysionotus pauciflorus Maxim.C15H14O5furanonaphthoquinone[79]
132balsaminone DImpatiens balsamina L.C20H14O7furanonaphthoquinone[80]
133(2R)-6-hydroxy-7-methoxy-dehydroiso-α-lapachoneSpermacoce latifolia Aubl.C15H14O5furanonaphthoquinone[81]
134crassifloroneDiospyros crassiflora HiernC21H12O6furanonaphthoquinone[82]
135lapacholTabebuia avellanedae Lorentz ex Griseb.C15H14O3isopentenyl naphthoquinone[83]
136hydroxysesamoneSesamum indicum L.C15H14O5isopentenyl naphthoquinone[84]
1372,3-epoxysesamoneSesamum indicum L.C15H14O5isopentenyl naphthoquinone[84]
138lantalucratin DLantana involucrata L.C17H18O5isopentenyl naphthoquinone[85]
139lantalucratin ELantana involucrata L.C17H18O6isopentenyl naphthoquinone[85]
140lantalucratin FLantana involucrata L.C17H18O7isopentenyl naphthoquinone[85]
141butylalkanninArnebia hispidissima (Sieber ex Lehm.) A.DC.C20H22O6isopentenyl naphthoquinone[86]
142alkanninArnebia hispidissima (Sieber ex Lehm.) A.DC.C6H16O5isopentenyl naphthoquinone[86]
143rhinacanthin BRhinacanthus nasutus (L.) KurzC25H28O5isopentenyl naphthoquinone[59]
144rhinacanthin CRhinacanthus nasutus (L.) KurzC25H30O5isopentenyl naphthoquinone[58]
145rhinacanthin GRhinacanthus nasutus (L.) KurzC25H30O6isopentenyl naphthoquinone[58]
146rhinacanthin HRhinacanthus nasutus (L.) KurzC25H30O6isopentenyl naphthoquinone[58]
147rhinacanthin IRhinacanthus nasutus (L.) KurzC25H30O6isopentenyl naphthoquinone[58]
148rhinacanthin JRhinacanthus nasutus (L.) KurzC25H28O6isopentenyl naphthoquinone[58]
149rhinacanthin KRhinacanthus nasutus (L.) KurzC25H32O7isopentenyl naphthoquinone[58]
150rhinacanthin LRhinacanthus nasutus (L.) KurzC25H32O8isopentenyl naphthoquinone[58]
151cordiaquinone ACordia curassavica (Jacq.) Roem. & SchultC21H26O3isopentenyl naphthoquinone[87]
152chabrolonaphthoquinone ANephthea chabrolii Milne Edwards & HaimeC27H32O4isopentenyl naphthoquinone[88]
153chabrolonaphthoquinone BNephthea chabrolii Milne Edwards & HaimeC29H38O5isopentenyl naphthoquinone[28]
1546,8-dihydroxy-2,7-dimethoxy-3-(1,1-dimethylprop-2-enyl)-1,4-naphthoquinonesLysionotus pauciflorus Maxim.C17H18O6isopentenyl naphthoquinone[79]
1557-hydroxy-2-O-methyldunniolSinningia conspicua (Seem.) FockeC16H15O4isopentenyl naphthoquinone[89]
1567-methoxy-2-O-methyldunniolSinningia conspicua (Seem.) FockeC17H17O4isopentenyl naphthoquinone[89]
1573,5,8-tribydroxy-6-methoxy-2-(5-oxohexa-
1,3-dienyl-1.4-naphthoquinone
Cordyceps unilateralis (Tul.) PetchC17H14O7isopentenyl naphthoquinone[63]
158rhinacanthin DRhinacanthus nasutus (L.) KurzC23H20O7other[58]
159rhinacanthin MRhinacanthus nasutus (L.) KurzC22H20O5other[90]
160rhinacanthin NRhinacanthus nasutus (L.) KurzC27H24O7other[58]
161rhinacanthin QRhinacanthus nasutus (L.) KurzC28H26O7other[58]
162rhinacanthin URhinacanthus nasutus (L.) KurzC17H18O5other[58]
163rhinacanthin VRhinacanthus nasutus (L.) KurzC25H22O6other[58]
164cordiaquinone ECordia curassavica (Jacq.) Roemer&SchultesC21H24O3other[87]
165cordiaquinone BCordia curassavica (Jacq.) Roemer&SchultesC21H24O3other[87]
166cordiaquinone KCordia curassavica (Jacq.) Roemer&SchultesC21H22O3other[87]
167cordiaquinone FCordia curassavica (Jacq.) Roemer&SchultesC26H30O5other[87]
168cordiaquinone GCordia curassavica (Jacq.) Roemer&SchultesC21H26O4other[87]
169cordiaquinone HCordia curassavica (Jacq.) Roemer&SchultesC21H26O4other[87]
170cordiaquinone JCordia curassavica (Jacq.) Roemer&SchultesC21H24O3other[87]
171isagarinPentas longifloraC15H12O4other[91]
1723-hydroxy-2-metoxy-8,8,10-trimethyl-8H-antracen-1,4,5-trioneByrsonima microphylla A.Juss.C18H16O5other[92]
1733,7-dihydroxy-2-methoxy-8,8,10-trimethyl-
7,8-dihydro-6H-antracen-1,4,5-trione
Byrsonima microphylla A.Juss.C18H18O6other[92]
174sterekunthal AStereospermum kunthianum Cham.C20H18O5other[62]
175stereiqunone CStereospermum kunthianum Cham.C19H16O3other[93]
176sterequinone EStereospermum personatum (Hassk.) ChatterjeeC19H16O4other[93]
177sterekunthal BStereospermum personatum (Hassk.) ChatterjeeC20H18O4other[62]
178sterequinone BStereospermum personatum (Hassk.) ChatterjeeC21H20O5other[93]
1793,8′-biplumbaginDiospyros maritima BlumeC22H14O6other[43]
180isozeylanonePlumbago zeylanica L.C22H14O6other[94]
181ethylidene-3,3′-biplumbaginDiospyros maritima BlumeC24H18O6other[43]
182ethylidene-3,6′-biplumbaginDiospyros maritima BlumeC24H18O6other[43]
183ethylidene-6,6′-biplumbaginDiospyros maritima BlumeC24H18O6other[95]
184balsaminone EImpatiens balsamina L.C22H16O5other[80]
185adenophylloneHeterophragma adenophyllum SeemC30H22O5other[96]
186dilapachoneHeterophragma adenophyllum SeemC30H26O6other[96]
187fusarnaphthoquinone CFusarium spp.C29H26O11other[48]
188hygrocin AStreptomyces hygroscopicus JensenC28H31NO8other[97]
189hygrocin BStreptomyces hygroscopicus JensenC28H29NO8other[97]
190lippisidoquinoneLippia sidoides Cham.C30H26O5other[98]
191phytonadioneAnethum graveolens L.C31H46O2other[99]
192maritinoneDiospyros anisandra S.F.BlakeC22H14O6other[100]
Toxics 13 00559 i007Toxics 13 00559 i008Toxics 13 00559 i009Toxics 13 00559 i010Toxics 13 00559 i011Toxics 13 00559 i012Toxics 13 00559 i013

2.1.3. Phenanthrenequinones

Phenanthrenequinones are an important class of natural products widely distributed in nature. These compounds are characterized by a tricyclic structure containing three rings and are classified mainly based on variations in the oxygen substitution site of the parent structure. Depending on the oxygen substitution site, phenanthrenequinones can be classified as para-oxygen substituted 1,4 phenanthrenequinone (para-phenanthrenequinone), pro-oxygen substituted 9,10 phenanthrenequinone (o-phenanthrenequinone I), and 3,4 phenanthrenequinone (o-Phenanthrenequinone II) [101].
Toxics 13 00559 i014
The “one-pot method has become a powerful example of resource and energy efficiency, as well as environmental sustainability. The ability to perform multiple synthetic transformations in a single reaction vessel. The pot method reduces chemical waste and makes the overall operation more environmentally friendly. Pompy Sarkar discovered the synthesis of 9,10-phenanthrenequinone by the one-pot method. In the initial step, 2-bromobenzaldehyde (1a) was coupled with 2-formylphenylboronic acid (2) under standard Pd(0) conditions. The appearance of 3a was observed under standard Suzuki reaction conditions. The resulting product was then treated with Cu salt and TBHP. This combination leads to the formation of 9,10-phenanthrenequinone [102].
Toxics 13 00559 i015
Phenanthrenequinone is mainly found in plants of Labiatae Juss., Orchidaceae Juss., and Senecio L., as well as in Streptomyces Waksman & Henrici. Among them, 11 phenanthrenequinones were isolated from Salvia miltiorrhiza Bunge, comprising one para-phenanthrenequinone and 10 type II o-phenanthrenequinones; six para-phenanthrenequinones were isolated from Dendrobium nobile Lindl.; and three phenanthrenequinones, comprising one para-phenanthrenequinone and two type II o-phenanthrenequinones, were isolated from Salvia trijuga Diels. Table 3 introduces the names and molecular formulas of phenanthraquinone compounds.
Table 3. Names and molecular formulas of phenanthraquinone compounds.
Table 3. Names and molecular formulas of phenanthraquinone compounds.
No.NameResourceFormulaClassification Ref.
193trijuganone ASalvia trijuga Diels.C18H14O4para-phenanthrenequinone[103]
194bauhinioneBauhinia variegata L.C17H16O4para-phenanthrenequinone[104]
195ochrone ACoelogyne ochracea Lindl.C13H12O4para-phenanthrenequinone[105]
196stemanthraquinoneStemona tuberosa Lour.C16H14O4para-phenanthrenequinone[106]
197dioscoreanoneDioscorea membranacea PierreC16H12O5para-phenanthrenequinone[107]
198denbinobinDendrobium nobile Lindl.C16H12O5para-phenanthrenequinone[108]
1997-hydroxy-5,6-dimethoxy-1,4-phenanthrenequinoneDendrobium moniliforme (L.) Sw.C16H12O5para-phenanthrenequinone[109]
200moniliforminFusarium verticillioides (Sacc.) NirenbergC16H10O6para-phenanthrenequinone[110]
201phenanobiles ADendrobium nobile Lindl.C14H8O5para-phenanthrenequinone[101]
202phenanobiles BDendrobium nobile Lindl.C16H13O5para-phenanthrenequinone[101]
203phenanobiles CDendrobium nobile Lindl.C14H10O4para-phenanthrenequinone[101]
2046,7-dihydroxy-2-methoxy-1,4-phenanthrenedioneDioscorea opposita Thunb.C15H10O5para-phenanthrenequinone[101]
205pyranospiranthoquinoneSpiranthes sinensis (Pers.) AmesC20H18O5para-phenanthrenequinone[14]
206ephemeranthoquinoneFlickingeria comata (Bl.) Hawkes.C15H12O4para-phenanthrenequinone[111]
207annoquinone AAnnona montana Macfad.C15H10O3para-phenanthrenequinone[112]
208danshenxinkun CSalvia miltiorrhiza BungeC21H20O4para-phenanthrenequinone[110]
209cypripediquinone ACypripedium macranthum Sw.C17H14O5o-phenanthrenequinone I[111]
210bulbophyllanthroneBulbophyllum odoratissimum (J. E. Sm.) Lindl.C17H14O6o-phenanthrenequinone I[112]
211Sch6 86 31Spiromyces sp.C19H16O4o-phenanthrenequinone I[14]
212biruloquinoneMycosphaerella rubella (Westend.)C17H10O7o-phenanthrenequinone I[14]
213danshenxinkun ASalvia miltiorrhiza BungeC18H16O4o-phenanthrenequinone II[113]
214danshenxinkun BSalvia miltiorrhiza BungeC16H12O3o-phenanthrenequinone II[113]
215danshenxinkun DSalvia miltiorrhiza BungeC18H16O3o-phenanthrenequinone II[113]
216cryptotanshinoneSalvia miltiorrhiza BungeC19H20O3o-phenanthrenequinone II[113]
217tanshinone ISalvia miltiorrhiza BungeC18H12O3o-phenanthrenequinone II[113]
218dihydrotanshinone ISalvia miltiorrhiza BungeC18H14O3o-phenanthrenequinone II[113]
219tanshinone IIASalvia miltiorrhiza BungeC19H18O3o-phenanthrenequinone II[113]
220hydroxytanshinone IIASalvia miltiorrhiza BungeC19H18O4o-phenanthrenequinone II[113]
221tanshinone IIBSalvia miltiorrhiza BungeC19H18O4o-phenanthrenequinone II[113]
222miltironeSalvia miltiorrhiza BungeC18H17O2o-phenanthrenequinone II[113]
223trijuganone BSalvia trijuga Diels.C18H16O3o-phenanthrenequinone II[103]
224trijuganone CSalvia trijuga Diels.C20H20O5o-phenanthrenequinone II[103]
Toxics 13 00559 i016Toxics 13 00559 i017

2.1.4. Anthraquinones

Anthraquinones are the most abundant natural quinones [1]. Anthraquinones include anthraquinone derivatives, their reduction products, oxyanthrone or anthrone, and derivatives of their dimers. In anthraquinones, positions 1, 4, 5, and 8 are referred to as α-positions, positions 2, 3, 6, and 7 are referred to as β-positions, and positions 9 and 10 are referred to as meso-positions. The substituents of anthraquinones include methyl, hydroxymethyl, carboxyl, aldehyde, hydroxyl, and methoxy groups. Compared with benzoquinone and naphthoquinone, anthraquinone substituents contain fewer carbons, generally no more than six carbons, and the complexity and diversity of substituents are not as great as those of benzoquinone and naphthoquinone.
There are two main biosynthetic pathways for anthraquinones in medicinal plants: the polyketide pathway and the mangiferyl/pho-succinyl benzoic acid pathway [114,115,116,117]. The polyketide pathway uses acetyl coenzyme A and malonyl coenzyme A as substrates to generate anthraquinones via polyketide synthase III. The mangiferolic acid/o-succinylbenzoic acid pathway uses isobranchialic acid, α-ketoglutaric acid, and thiamine diphosphate as substrates to synthesize anthraquinones in a series of reactions catalyzed by o-succinylbenzoic acid synthase [118].
Polyketide pathway (top) and mangiferyl/phosuccinobenzoic acid pathway (bottom)
Toxics 13 00559 i018
Based on the structure of the parent nucleus, anthraquinones can be categorized into two main groups: monoanthraquinones and dianthraquinones [119]. The vast majority of natural anthraquinones are found in higher plants, fungi, and lichens. Among higher plants, quinones are most abundant in the Rubiaceae Juss., and anthraquinones are more abundant in the Fabaceae Lindl. and Rhamnaceae Juss., Polygonaceae Juss., Zygophyllaceae R. Br., and Liliaceae Juss. Anthraquinones are more abundant in Aspergillus Micheli ex Fries and Penicillium spp. among molds. Twenty-one anthraquinones were found in Pleuropterus multiflorus (Thunb.) Nakai, including four rhodopsin-type anthraquinones, three anthraquinone glycosides, and 14 dianthrone compounds; Seventeen anthraquinones were found in Rheum palmatum L., containing five rhodopsin-anthraquinones, two anthraquinones oxidized, one anthrone, and seven dianthrones; thirteen anthraquinones, including three anthraquinones oxidized and nine anthraquinones, were isolated from the plant Harungana madagascariensis Lam. ex Poir.; ten anthraquinones were isolated and obtained from the plant Galium sinaicum (Delile ex Decne.) Boiss., which contains seven alizarin-type anthraquinones. Nine anthraquinones, including eight anthraquinones (including three anthraquinone glycosides) and one oxidized anthracenol, were identified in the plant Picramnia antidesma Sieber ex Steud.Ten anthraquinones, including three alizarin-type anthraquinones and three anthraquinone oxidizers, were found in Rubia cordifolia L.; Seven anthraquinones, including five rhodopsin-type anthraquinones and two rhodopsin-type anthraquinone glycosides, were found in the Bulbine frutescens (L.) Willd. Seven anthraquinones, including six alizarin-type anthraquinones, were found in the Prismatomeris tetrandra (Roxb.) K. Schum. Six anthraquinones have been found in Stereospermum colais (Buch.-Ham. ex Dillwyn) Mabb., and five dianthrones have been found in the Senna alexandrina Milll.
Monoanthraquinones
The vast majority of natural anthraquinones contain hydroxyl groups, and mono-anthracene-nucleated anthraquinones are usually classified into rhodopsin- and chrysophanol-types based on the substitution position of the hydroxyl group [1]. Anthraquinones with hydroxyl groups on both benzene rings belong to the rhodopsin type, such as chrysazin and chrysophorol. Anthraquinones with a hydroxyl group on one benzene ring are of the chrysin type, such as alizarin and digitolutein. Some anthraquinones also exist as glycosides. Table 4 presents the names and molecular formulas of anthraquinone compounds.
Toxics 13 00559 i019
Table 4. Names and molecular formulas of anthraquinone compounds.
Table 4. Names and molecular formulas of anthraquinone compounds.
No.NameResourceFormulaClassificationRef.
225chrysazinRheum palmatum L.C14H8O4rhodopsin-type anthraquinone[14]
226chrysophanolRheum palmatum L.C15H10O4rhodopsin-type anthraquinone[14]
227emodinRheum palmatum L.C15H10O5rhodopsin-type anthraquinone[120]
228isochrysophanolRheum palmatum L.C15H12O4rhodopsin-type anthraquinone[14]
229RheinRheum palmatum L.C15H8O6rhodopsin-type anthraquinone[14]
2304-hydroxymethyl chrysazinTripterygium wilfordii Hook. fC15H12O5rhodopsin-type anthraquinone[14]
2311,8-dihydroxy-4-methylanthraquinonecyanobacteriumC15H10O4rhodopsin-type anthraquinone[121]
232monodictyquinone AMonodictys cerebriformis G. Z. Zhao & T. Y. ZhangC16H12O5rhodopsin-type anthraquinone[122]
233carviolinPenicillium Link ex Fr.C16H12O6rhodopsin-type anthraquinone[123]
2341-O-methylemodinSenna obtusifolia (L.) H. S. Irwin & Barneby.C16H12O5rhodopsin-type anthraquinone[124]
235ω-acetylcarviolinZopfiella longicaudata (Ces.) Sacc.C18H14O7rhodopsin-type anthraquinone[125]
236ω-hydroxyemodinZopfiella longicaudata (Ces.) Sacc.C15H10O6rhodopsin-type anthraquinone[46]
237lunatinCurvularia lunata (Wakker) BoedijnC15H10O6rhodopsin-type anthraquinone[125]
238ptilometric acid 6-O-sulfateTropiometra afra macrodiscus (Hartlaub)C18H13NaO10Srhodopsin-type anthraquinone[46]
239ptilometric acidTropiometra afra macrodiscus (Hartlaub)C18H14O7rhodopsin-type anthraquinone[46]
240cassanthraquinone ACassia siamea Lam.C20H14O6rhodopsin-type anthraquinone[126]
241ventilanone LVentilago denticulata Willd.C18H14O7rhodopsin-type anthraquinone[127]
242ventilanone MVentilago denticulata Willd.C18H16O6rhodopsin-type anthraquinone[127]
2431,8-dihydroxy-3-succinic acid monoethyl ester-6-methylanthraquinone - C19H13O8rhodopsin-type anthraquinone[128]
244Aloe emodinPleuropterus multiflorus (Thunb.) NakaiC15H10O5rhodopsin-type anthraquinone[44]
245emodin methyl etherPleuropterus multiflorus (Thunb.) NakaiC16H12O5rhodopsin-type anthraquinone[44]
246ω-hydroxyemodin 8-methyl etherPleuropterus multiflorus (Thunb.) NakaiC16H12O6rhodopsin-type anthraquinone[44]
247emodin 8-methyl etherPleuropterus multiflorus (Thunb.) NakaiC16H12O5rhodopsin-type anthraquinone[44]
248vismiaquinone CVismia martiana Rchb.f.C21H20O5rhodopsin-type anthraquinone[129]
249asparasone AAspergillus parasiticus SpeareC18H14O8rhodopsin-type anthraquinone[130]
250laurentiquinone AVismia laurentii De Wild.C22H20O7rhodopsin-type anthraquinone[131]
251laurenquinone AVismia laurentii De Wild.C22H20O7rhodopsin-type anthraquinone[132]
2523-O-(2-hydroxy-3-methylbut-3-enyl)-emodinVismia guineensis (L.) ChoisyC20H18O6rhodopsin-type anthraquinone[133]
2533-O-(2-methoxy-3-methylbut-3-enyl)-emodinVismia guineensis (L.) ChoisyC21H20O6rhodopsin-type anthraquinone[133]
2543-O-(E-3-hydroxymethylbut-2-enyl)-emodinVismia guineensis (L.) ChoisyC20H18O6rhodopsin-type anthraquinone[133]
2553-O-(3-hydroxymethyl-4-hydroxybut-2-enyl)-emodinVismia guineensis (L.) ChoisyC20H18O7rhodopsin-type anthraquinone[133]
256pruniflorone JCratoxylum formosum (Jack) DyerC25H26O6rhodopsin-type anthraquinone[134]
257araliorhamnone AAraliorhamnus vaginata H.PerrierC18H12O8rhodopsin-type anthraquinone[135]
258laurenquinone BVismia laurentii De Wild.C22H18O7rhodopsin-type anthraquinone[132]
259laurentiquinone CVismia laurentii De Wild.C24H20O9rhodopsin-type anthraquinone[136]
260ploiariquinone APloiarium alternifolium (Szyszył.) Melch.C25H24O5rhodopsin-type anthraquinone[137]
2614′-demethylknipholoneBulbine capitata Poelln.C23H16O8rhodopsin-type anthraquinone[138]
262knipholoneKniphofia foliosa Hochst.C24H18O8rhodopsin-type anthraquinone[139]
263isoknipholoneKniphofia foliosa Hochst.C24H18O8rhodopsin-type anthraquinone[140]
264knipholone-6-methyl etherBulbine capitata Poelln.C25H20O8rhodopsin-type anthraquinone[68]
265gaboroquinone ABulbine frutescens (L.) Willd.C24H18O9rhodopsin-type anthraquinone[141]
266gaboroquinone BBulbine frutescens (L.) Willd.C24H18O9rhodopsin-type anthraquinone[141]
267sodium ent-knipholone 6′-O-sulfateBulbine frutescens (L.) Willd.C24H17NaO11Srhodopsin-type anthraquinone[142]
268sodium 4′-O-demethylknipholone 6′-O-sulfateBulbine frutescens (L.) Willd.C23H15NaO11Srhodopsin-type anthraquinone[142]
269sodium isoknipholone 6-O-sulfateBulbine frutescens (L.) Willd.C24H17NaO11Srhodopsin-type anthraquinone[142]
27011-hydroxysulfurmycinoneStreptomyces sp.C23H20O10rhodopsin-type anthraquinone[143]
271blanchaquinoneStreptomyces sp.C22H20O7rhodopsin-type anthraquinone[143]
272brasiliquinone DNocardia brasiliensis Lindenberg & CohnC28H29NO8rhodopsin-type anthraquinone[144]
273cratoxyarborequinone ACratoxylum sumatranum (Jack) BlumeC44H46O9rhodopsin-type anthraquinone[144]
274cratoxyarborequinone BCratoxylum sumatranum(Jack) BlumeC49H54O9rhodopsin-type anthraquinone[145]
275floribundoneSenna septemtrionalis (Viv.) H. S. Irwin & Barneby.C32H22O10rhodopsin-type anthraquinone[146]
276phaeosphenonePhaeosphaeria sp.C30H26O10rhodopsin-type anthraquinone[147]
277R-(-)-skyrin-6-O-β-xylopyranosideHypericum perforatum L.C35H26O14rhodopsin-type anthraquinone[148]
2788-O-β-D-glucopyranosyl-1,1′,8′-trihydroxy-
3,3′-dimethyl-2,7′-bianthraquinone
Eremurus chinensis O.Fedtsch.C36H28O13rhodopsin-type anthraquinone[149]
279floribundiquinone ABerchemia polyphylla var. leioclada (Hand.-Mazz.) Hand.-Mazz.C32H26O10rhodopsin-type anthraquinone[150]
280floribundiquinone BBerchemia polyphylla var. leioclada (Hand.-Mazz.) Hand.-Mazz.C32H26O10rhodopsin-type anthraquinone[150]
281floribundiquinone CBerchemia polyphylla var. leioclada (Hand.-Mazz.) Hand.-Mazz.C31H24O9rhodopsin-type anthraquinone[150]
282floribundiquinone DBerchemia polyphylla var. leioclada (Hand.-Mazz.) Hand.-Mazz.C32H26O10rhodopsin-type anthraquinone[150]
283anhydrophlegmacin-9′,10′-quinoneCassia torosa Cav.C32H26O10rhodopsin-type anthraquinone[151]
284isosenguloneSenna multiglandulosa (Jacq.) H.S.Irwin & Barneby.C32H22O10rhodopsin-type anthraquinone[152]
285icterinoidin ADermocybe icterinoides (Peck) Hesler & A.H. Sm.C30H22O10rhodopsin-type anthraquinone[153]
286icterinoidin BDermocybe icterinoides (Peck) Hesler & A.H. Sm.C30H22O10rhodopsin-type anthraquinone[153]
287febrifuquinoePsorospermum febrifugum Spach.C40H38O10rhodopsin-type anthraquinone[154]
288chaetomanoneChaetomium globosum KunzeC31H24O12rhodopsin-type anthraquinone[155]
289bulbineloneside ABulbinella floribunda (Aiton) T.Durand & Schinz.C30H28O13rhodopsin-type anthraquinone[156]
290bulbineloneside BBulbinella floribunda (Aiton) T.Durand & Schinz.C28H24O12rhodopsin-type anthraquinone[156]
291bulbineloneside CBulbinella floribunda (Aiton) T.Durand & Schinz.C28H24O12rhodopsin-type anthraquinone[156]
292bulbineloneside DBulbinella floribunda (Aiton) T.Durand & Schinz.C29H26O13rhodopsin-type anthraquinone[156]
293alizarinRubia cordifolial L.C14H8O4alizarin-type anthraquinone[14]
294alizarin 2-methyl etherRubia cordifolia L.C15H10O4alizarin-type anthraquinone[14]
295digitoluteinVentilago goughii GambleC16H14O4alizarin-type anthraquinone[14]
2966-ethylalizarinGalium spurium L.C15H12O4Alizarin-type anthraquinone[14]
297altersolanol AStemphylium botryosum var. lactucumC16H13O7alizarin-type anthraquinone[14]
298rubiawallin ARubia wallichiana DecneC16H12O5alizarin-type anthraquinone[157]
2991,4-dihydroxy-2,3-dimethoxyanthraquinoneHedyotis herbacea L.C16H12O6alizarin-type anthraquinone[158]
3002-methoxy-1,3,6-trihydroxyanthraquinoneMorinda citrifolia L.C15H10O6alizarin-type anthraquinone[159]
3016-methylanthragallol 3-methyl etherGalium sinaicum (Delile ex Decne.) Boiss.C16H12O5alizarin-type anthraquinone[160]
3027-methylanthragallol 1,3-dimethyl etherGalium sinaicum (Delile ex Decne.) Boiss.C17H14O5alizarin-type anthraquinone[160]
3037-methylanthragallol 2-methyl etherGalium sinaicum (Delile ex Decne.) Boiss.C16H12O5alizarin-type anthraquinone[160]
3047-formylanthragallol 1,3-dimethyl etherGalium sinaicum (Delile ex Decne.) Boiss.C17H12O6alizarin-type anthraquinone[160]
3058-hydroxy-6,7-dimethoxy-2-methyl-9,10-anthraquinonePrismatomeris tetrandra (Roxb.) K. Schum.C17H14O5alizarin-type anthraquinone[161]
3061,3-dihydroxy-5,6-dimethoxy-2-methyl-9,10-anthraquinonePrismatomeris tetrandra (Roxb.) K. Schum.C17H14O6alizarin-type anthraquinone[162]
3073-dihydroxy-1,5,6-trimethoxy-2-methyl-9,10-anthraquinonePrismatomeris tetrandra (Roxb.) K. Schum.C18H16O6alizarin-type anthraquinone[162]
3086-hydroxy-1, 2, 3-trimethoxy-7-methylanthracene-9, 10-dionePrismatomeris tetrandra (Roxb.) K. Schum.C18H16O6alizarin-type anthraquinone[162]
3096-(hydroxymethyl)-1, 2,3-trimethoxyanthracene-9, 10-dionePrismatomeris tetrandra (Roxb.) K. Schum.C18H16O6alizarin-type anthraquinone[163]
3107-hydroxy-6-(hydroxymethyl)-1, 2-dimethoxyanthracene-9,10-dionePrismatomeris tetrandra (Roxb.) K. Schum.C17H14O6alizarin-type anthraquinone[163]
3118-hydroxyanthragallol 2,3-dimethyl etherGalium sinaicum (Delile ex Decne.) Boiss.C16H12O6alizarin-type anthraquinone[160]
312copareolatin 5,7-dimethyl etherGalium sinaicum (Delile ex Decne.) Boiss.C17H14O6alizarin-type anthraquinone[160]
313copareolatin 6,7-dimethyl etherGalium sinaicum (Delile ex Decne.) Boiss.C17H14O6alizarin-type anthraquinone[160]
3145,15-dimethylmorindolMorinda citrifolia L.C17H14O6alizarin-type anthraquinone[164]
3151,5,15-tri-O-methylmorindolMorinda citrifolia L.C18H16O6alizarin-type anthraquinone[165]
316(2R)-6-hydroxy-7-methoxy-dehydroiso-α-lapachoneSpermacoce alata Aubl.C15H10O6alizarin-type anthraquinone[81]
317ventilanone NVentilago denticulata Willd.C16H12O6alizarin-type anthraquinone[127]
3183,4,8-trihydroxy-1-methylanthra-9,10-quinone-2-carboxylic acid methyl esterEleutherine plicata Herb.C17H12O7alizarin-type anthraquinone[166]
3194,8-dihydroxy-3-methoxy-1-methylanthra-9,10-quinone-2-carboxylic acid methyl esterEleutherine plicata Herb.C18H14O7alizarin-type anthraquinone[167]
3202-hydroxyemodin 1-methyl etherSenna tora (L.) Roxb.C16H12O6alizarin-type anthraquinone[168]
321araliorhamnone BAraliorhamnus vaginata H.PerrierC19H14O8alizarin-type anthraquinone[135]
322bostrycoidinFusarium solani (Mart.) Sacc.C15H11NO5alizarin-type anthraquinone[169]
3236-methoxylucidinω-ethyl etherPrismatomeris tetrandra (Roxb.) K. Schum.C18H16O6other[161]
324guinizarinGalium sinaicum (Delile ex Decne.) Boiss.C14H8O4other[14]
325pachybasinRheum moorcroftianum RoyleC15H10O3other[14]
3262-hydroxy-3-methyl-anthraquinoneHedyotis diffusa Willd.C15H10O3other[14]
327tectoquinoneAcatypha india L.C15H10O2other[14]
3281-hydroxyanthraquinoneMorinda officinalis HowC15H10O2other[14]
3292-methylol anthraquinoneMorinda parvifolia Bartl. ex DC.C15H10O3other[14]
3305-hydroxy-2-methyl-anthraquinoneRubia tinctorum Linn.C15H10O3other[14]
331barleriaquinone IBarleria buxifolia L.C15H10O3other[14]
332barleriaquinone IIBarleria buxifolia L.C16H10O5other[14]
3332-methylquinizarinGalium sinaicum (Delile ex Decne.) Boiss.C15H12O4other[14]
334damnacantholDamnacanthus major Siebold & Zucc.C16H14O5other[14]
335ziganeinSalvia przewalskii Maxim.C15H10O4other[14]
3361-amino-2,4-dibromoanthraquinone - C14H7Br2NO2other[14]
337munjistin methyl esterSalvia miltiorrhiza BungeC16H10O6other[116]
338fridamycin ESpiroplectammina parvula SchwagerC20H20O7other[14]
339soranjidiolMorinda elliptica (Hook.f.) Ridl.C15H10O4other[14]
340ω-hydroxy-phomarinDigitalis cariensis Boiss. ex Jaub. & SpachC15H10O5other[14]
341rubiawallin CRubia wallichiana DecneC16H10O5other[157]
3422-formyl-1-hydroxyanthraquinoneMorinda elliptica (Hook.f.) Ridl.C15H8O4other[170]
343sterequinone FStereospermum colais (Buch.-Ham. ex Dillwyn) Mabb.C19H16O3other[170]
344sterequinone HStereospermum colais (Buch.-Ham. ex Dillwyn) Mabb.C19H18O3other[171]
3451-acetoxy-3-methoxy-9,10-anthraquinoneRubia cordifolia L.C17H12O5other[172]
346ophiohayatone COphiorrhiza hayatana OhwiC15H8O5other[173]
347munjistin-1-O-methyl etherRhynchotechum vestitum Wall. ex ClatkeC16H10O6other[174]
3481,3-dimethoxy-2-methoxymethylanthraquinoneCoussarea macrophylla (Mart.) Müll.Arg.C18H16O5other[175]
3491-hydroxy-2-hydroxymethyl-3-methoxyanthraquinoneRubia wallichiana DecneC16H12O5other[157]
3502-n-butoxymethyl-1,3-dihydroxyanthraquinoneMorinda angustifolia Roxb.C19H18O5other[176]
3511-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinoneSaprosma scortechinii King & GambleC17H12O6other[177]
352rubiawallin BRubia wallichiana DecneC16H12O4other[157]
3531,7-dihydroxy-2-hydroxymethyl-9,10-anthraquinoneHemiboea subcapitata ClarkeC15H10O5other[178]
354sterequinone GStereospermum colais (Buch.-Ham. ex Dillwyn) Mabb.C20H18O4other[171]
355anthrakunthoneStereospermum kunthianum Cham.C19H16O4other[62]
3563,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinoneKnoxia valerianoides Thorel ex PitardC15H10O5other[179]
357ophiohayatone AOphiorrhiza hayatana OhwiC16H12O5other[173]
358pustulineHeterophyllaea pustulata Hook.f.C16H12O4other[180]
3596-hydroxyxanthopurpurinGalium sinaicum (Delile ex Decne.) Boiss.C14H8O5other[160]
3603-methoxycarbonyl-1,5-dihydroxyanthraquinoneEngelhardia roxburghiana Wall.C16H10O6other[181]
3611,3,6-trihydroxy-2-methoxymethyl-9,10-anthraquinoneSaprosma scortechinii King & GambleC16H12O6other[177]
3621-methoxy-3,6-dihydroxy-2-hydroxymethyl-9,10-anthra-quinoneSaprosma scortechinii King & GambleC16H12O6other[177]
363aloesaponarin IAloe camperi Schweinf.C17H12O6other[182]
364aloesaponarin I 3-methyl etherAloe camperi Schweinf.C18H14O6other[183]
365alatinoneCassia alata L.C15H10O5other[184]
366przewalskinone BCassia italica Mill.C16H12O5other[185]
3672-Methyl-1-nitroanthraquinone-C15H9NO4other[186]
3683,8-dihydroxy-6-methoxy-1-methylanthra-9,10-quinone-2-carboxylic acid methyl esterGladiolus gandavensis Van HoutteC18H14O7other[187]
369ventilanone OVentilago denticulata Willd.C16H12O6other[127]
370scorpinoneAmorosia littoralis Mantle & D.Hawksw. B.R.C16H13NO4other[188]
3711-amino-2-methylanthraquinone - C15H11NO2other[189]
372dielsiquinoneGuatteria dielsiana R.E.Fr.C15H11NO4other[190]
373marcanine BGoniothalamus marcanii CraibC16H13NO4other[129]
374marcanine CGoniothalamus marcanii CraibC16H13NO5other[123]
375marcanine DGoniothalamus marcanii CraibC15H11NO5other[129]
376marcanine EGoniothalamus marcanii CraibC16H13NO5other[129]
377araliorhamnone CAraliorhamnus vaginata H.PerrierC17H10O7other[135]
378laurentiquinone BVismia laurentii De Wild.C22H18O7other[136]
379sterequinone IStereospermum personatum (Hassk.) ChatterjeeC20H18O4other[171]
380sterequinone AStereospermum colais (Buch.-Ham. ex Dillwyn) Mabb.C19H14O2other[93]
381sterequinone DStereospermum colais (Buch.-Ham. ex Dillwyn) Mabb.C20H16O3other[93]
3822-hydroxymethyl-10-hydroxy-1,4-anthraquinoneHedyotis herbacea Lour.C15H10O4other[190]
3832,3-dimethoxy-9-hydroxy-1,4-anthraquinoneHedyotis herbacea Lour.C16H12O5other[163]
3849,10-dimethoxy-2-methylanthra-1,4-quinone - C17H14O4other[191]
385physcionRheum palmatum L.C16H12O5other[192]
3862-aminoanthraquinone - C14H9NO2other[193]
387kengaquinoneHarungana madagascariensis Lam. ex Poir.C25H26O5other[194]
388newbouldiaquinoneNewbouldia laevis (P.Beauv.) Seem. ex BureauC25H14O5other[195]
389newbouldiaquinone ANewbouldia laevis (P.Beauv.) Seem. ex BureauC25H14O6other[196]
390tectograndoneTectona grandis L. f.C30H20O10other[197]
391(S)-5,5′-bisoranjidiolHeterophyllaea pustulata Hook.f.C30H18O8other[180]
392presenguloneSenna sophera (L.) Roxb.C32H26O10other[198]
393scutianthraquinone AScutia myrtina (L.) Roxb.C39H32O13other[199]
394scutianthraquinone BScutia myrtina (L.) Roxb.C38H30O13other[199]
395scutianthraquinone CScutia myrtina (L.) Roxb.C34H24O12other[199]
396scutianthraquinone DScutia myrtina (L.) Roxb.C61H53O20other[199]
397mitoxantrone - C22H28N4O6Other[200]
398sulfemodin 8-O-β-D-glucosideRheum palmatum L.C21H20O13Santhraquinone glycosides of rhodopsin type[201]
3991-methyl-8-hydroxyl-9,10-anthraquinone-3-O-β-D-glucopyranosideRheum palmatum L.C22H19O11anthraquinone glycosides of rhodopsin type[202]
4004′-O-demethylknipholone-4′-O-β-D-glucosideBulbine frutescens (L.) Willd.C29H26O13anthraquinone glycosides of rhodopsin type[142]
401sodium-4′-O-demethylknipholone-4′-β-D-gluc-opyranoside 6′-O-sulfateBulbine frutescens (L.) Willd.C29H25NaO16Santhraquinone glycosides of rhodopsin type[142]
402aloinAloe vera (L.) Burm.f.C21H22O9anthraquinone glycosides of rhodopsin type[203]
403emodin-1-O-β-gentiobiosideCassia obtusifoliaC27H30O15anthraquinone glycosides of rhodopsin type[204]
404knipholone-8-β-D-gentiobiosideBulbine narcissifoliaC36H38O18anthraquinone glycosides of rhodopsin type[205]
405bulbineloneside EBulbinella floribundaC34H34O17anthraquinone glycosides of rhodopsin type[156]
406emodin-8-O-β-D-glucopyranosidePleuropterus multiflorus (Thunb.) NakaiC21H20O10anthraquinone glucoside[44]
407emodin methyl ether-8-O-β-D-glucopyranosidePleuropterus multiflorus (Thunb.) NakaiC22H22O10anthraquinone glucoside[44]
408polygonum multiflorum ethylPleuropterus multiflorus (Thunb.) NakaiC21H22O9anthraquinone glucoside[44]
409halawanone CStreptomyceteC21H20O7anthraquinone glucoside[64]
410nepalenside ARumex nepalensis Spreng.C21H22O11anthraquinone glucoside[206]
411nepalenside BRumex nepalensis Spreng.C21H22O11anthraquinone glucoside[206]
412rubiadin-3-O-β-glucosideRhynchotechum vestitum Wall. ex C. B. ClarkeC21H20O9anthraquinone glucoside[174]
413lucidin-3-O-β-glucosideRhynchotechum vestitum Wall. ex C. B. ClarkeC21H20O10anthraquinone glucoside[174]
414lasianthuoside ALasianthus acuminatissimus Miq.C22H22O10anthraquinone glucoside[207]
415lasianthuoside BLasianthus acuminatissimus Miq.C23H24O10anthraquinone glucoside[207]
416lasianthuoside CLasianthus acuminatissimus Miq.C28H32O14anthraquinone glucoside[208]
417putorinoside APutoria calabrica Pers.C22H22O12anthraquinone glucoside[209]
418putorinoside BPutoria calabrica Pers.C22H22O11anthraquinone glucoside[209]
4191,3-dihydroxy-2-carbomethoxy-9,10-anthraquinone3-O-β-primeverosideSaprosma scortechinii King & GambleC27H28O15anthraquinone glucoside[177]
4201.3,6-trihydroxy-2-hydroxymethyl-9,10-anthraquinone 3-O-β-primeverosideSaprosma scortechinii
King & Gamble
C26H28O15anthraquinone glucoside[177]
421emodin-6-O-β-D-glucopyranosideReynoutria japonica Houtt.C21H20O10anthraquinone glucoside[210]
Anthraquinones, in a broad sense, include anthraquinone derivatives and their products with different degrees of reduction, such as oxyanthrone and anthrone. The reduction of anthraquinone in an acidic environment produces anthranol and its reciprocal isomer, anthrone. The hydroxyl derivatives of anthranol (or anthrone) often co-exist with the corresponding hydroxyl anthraquinone in plants in either the free or bound state. Table 5 presents the names and molecular formulas of oxanthrol and anthrone compounds.
Toxics 13 00559 i020
Table 5. Names and molecular formulas of oxanthrol and anthrone compounds.
Table 5. Names and molecular formulas of oxanthrol and anthrone compounds.
No.NameResourceFormulaClassificationRef.
422rubiasin ARubia cordifolia L.C15H16O2oxyanthrone[211]
423rubiasin BRubia cordifolia L.C15H16O2oxyanthrone[211]
424rubiasin CRubia cordifolia L.C15H16O2oxyanthrone[211]
4251-oxo-4(S),9-dihydroxy-8-methoxy-6-hydroxymethyl-1,2,3,4-tetrahydroanthraceneEremurus chinensis O.Fedtsch.C16H16O5oxyanthrone[149]
426aloesaponol III-8-methyl etherEremurus persicus (Jaub. & Spach) Boiss.C16H16O4oxyanthrone[212]
427kenganthranol AHarungana madagascariensis Lam. ex Poir.C30H36O5oxyanthrone[194]
428kenganthranol BHarungana madagascariensis
Lam. ex Poir.
C25H28O5oxyanthrone[194]
429kenganthranol CHarungana madagascariensis
Lam. ex Poir.
C26H30O6oxyanthrone[194]
43010-hydroxycascaroside CRheum australe D. DonC27H32O14oxyanthrone glycoside[213]
43110-hydroxycascaroside DRheum australe D. DonC27H32O14oxyanthrone glycoside[213]
432mayosideMycobacterium microtiC26H24O11oxyanthrone glycoside[214]
433mayoside BMycobacterium microtiC26H24O11oxyanthrone glycoside[214]
434mayoside CPicramnia teapensis Tul.C33H34O16oxyanthrone glycoside[215]
435mayoside EPicramnia latifolia Tul.C27H24O9oxyanthrone glycoside[216]
436rubanthrone ARubus ulmifolius SchottC17H14O10anthrone[217]
437rubanthrone BRubus ulmifolius SchottC17H16O9anthrone[217]
438rubanthrone CRubus ulmifolius SchottC16H12O10anthrone[217]
439knipholone anthroneKniphofia foliosa Hochst.C24H20O7anthrone[218]
440isoknipholone anthroneKniphofia foliosa Hochst.C24H20O7anthrone[218]
441harunganol AHarungana madagascariensis Lam. ex Poir.C25H28O4anthrone[219]
442harunganol BHarungana madagascariensis Lam. ex Poir.C30H36O4anthrone[219]
443harungin anthroneHarungana madagascariensis Lam. ex Poir.C30H36O4anthrone[194]
444bazouanthroneHarungana madagascariensis Lam. ex Poir.C30H36O5anthrone[194]
445harunmadagascarin AHarungana madagascariensis Lam. ex Poir.C30H34O4anthrone[194]
446harunmadagascarin BHarungana madagascariensis Lam. ex Poir.C35H42O4anthrone[194]
447harunmadagascarin CHarungana madagascariensis Lam. ex Poir.C30H36O4anthrone[220]
448harunmadagascarin DHarungana madagascariensis Lam. ex Poir.C30H36O5anthrone[220]
449kenganthranol DHarungana madagascariensis Lam. ex Poir.C30H32O6anthrone[220]
450abyquinone CBulbine abyssinica A.Rich.C30H24O8anthrone[221]
451(R)-prechrysophanolStreptomyces Waksman & HenriciC15H14O4anthrone[222]
452torosachrysoneDermocybe splendida E. HorakC16H16O5anthrone[223]
453atrochrysoneAspergillus oryzae (Ahlburg) CohnC15H14O5anthrone[224]
454aloe barbendolAloe vera (L.) Burm. f.C15H14O4anthrone[225]
455acetyltorosachrysonePsorospermum glaberrimum Hochr.C18H18O6anthrone[226]
456vismione HPsorospermum glaberrimum Hochr.C22H24O6anthrone[227]
457vismione DVismia orientalis (Engl.) Byng & Christenh.C25H30O5anthrone[228]
458vismione LPsorospermum aurantiacum Engl.C25H30O5anthrone[229]
459vismione MPsorospermum aurantiacum EnglC26H32O5anthrone[229]
460asperflavinMicrosporum sp.C21H24O9anthrone[230]
4615-hydroxyaloin AAloe nobilis A.BergerC21H22O10anthrone glycoside[231]
4625-hydroxyaloin A 6′-O-acetateAloe nobilis A.BergerC23H24O11anthrone glycoside[231]
463picramnioside APicramnia antidesma Sieber ex Steud.C27H24O10anthrone glycoside[232]
464picramnioside BPicramnia antidesma Sieber ex Steud.C22H22O10anthrone glycoside[232]
465picramnioside CPicramnia antidesma Sieber ex Steud.C22H22O10anthrone glycoside[232]
46610-epi-uveosidePicramnia antidesma Sieber ex Steud.C27H24O9anthrone glycoside[233]
467uveosidePicramnia antidesma Sieber ex Steud.C27H24O9anthrone glycoside[233]
468microstigmin AAloe microstigma Salm-DyckC30H28O13anthrone glycoside[234]
469microdontin AAloe microdonta Salm-DyckC30H28O11anthrone glycoside[234]
470microdontin BAloe microdonta Salm-DyckC30H28O13anthrone glycoside[235]
471cascaroside ERhamnus purshiana DC.C27H32O14anthrone glycoside[236]
472cascaroside FRhamnus purshiana DC.C27H32O14anthrone glycoside[236]
47310R-chrysaloin 1-O-β-D-glucopyranosideRheum emodi D. DonC27H32O13anthrone glycoside[213]
474isofoliosoneBulbine capitata Poelln.C24H20O8anthrone glycoside[138]
475picramnioside DPicramnia teapensis Tul.C26H24O10anthrone glycoside[237]
476picramnioside EPicramnia teapensis Tul.C26H24O10anthrone glycoside[237]
477picramnioside FPicramnia teapensis Tul.C33H34O15anthrone glycoside[215]
478picramniosdie GPicramnia latifolia Tul.C27H24O8anthrone glycoside[216]
479picramnioside HPicramnia latifolia Tul.C27H24O8anthrone glycoside[216]
480mayoside DPicramnia latifolia Tul.C27H24O9anthrone glycoside[216]
Toxics 13 00559 i021Toxics 13 00559 i022Toxics 13 00559 i023Toxics 13 00559 i024Toxics 13 00559 i025Toxics 13 00559 i026Toxics 13 00559 i027Toxics 13 00559 i028Toxics 13 00559 i029Toxics 13 00559 i030Toxics 13 00559 i031Toxics 13 00559 i032Toxics 13 00559 i033Toxics 13 00559 i034Toxics 13 00559 i035
Dithranones
To date, about 63 species of dianthrones have been reported. These dianthrones can be classified into eight types based on their aglycone models. Type I compounds are emodin (C10→C10) emodin linked dianthrones, type II compounds are emodin (C10→C10) physcion linked dianthrones, type III are physcion (C10→C10) physcion linked dianthrones, type IV compounds are aloe-emodin (C10→C10) aloe-emodin linked dianthrones, type V compounds are rhein (C10→C10) rhein linked dianthrones, type VI compounds are rhein (C10→C10) aloe-emodin linked dianthrones, type VII compounds are chrysophanol (C10→C10) chrysophanol linked dianthrones and type VIII compounds are emodin (C10→C10) chrysophanol linked dianthrones. There are different kinds of substituent groups in these dianthrones, such as glycosylation, hydroxyl, isopentene, and malonyl groups. Table 6 introduces the names and molecular formulas of dianthrone compounds.
Toxics 13 00559 i036Toxics 13 00559 i037Toxics 13 00559 i038Toxics 13 00559 i039Toxics 13 00559 i040

2.2. Extraction and Separation Methods

Quinones are the active chemical components of several traditional Chinese medicines. In nature, quinones exist in two forms: free and glycosylated. The physical and chemical properties of glycosides differ greatly, especially their polarity and solubility; therefore, their extraction and separation methods are different.Figure 4 introduces the extraction and separation methods of quinone compounds.

2.2.1. Extraction

Chinese medicines often contain both anthraquinones and their glycosides. The first step in the extraction of anthraquinone glycosides is to determine whether they should be extracted simultaneously or separately. Currently, the available extraction methods include alkaline extraction and acid precipitation, organic solvent extraction, physical field-enhanced extraction, water vapor distillation, lead salt method, supercritical fluid extraction, pressurized liquid extraction, and solid-phase extraction [14].
Alkali Extraction and Acid Precipitation Method
The acid precipitation method is applicable to quinone compounds containing acidic groups. In the alkali extraction and acid precipitation methods, the substance to be measured is first dissolved in a suitable solvent to form a solution. Then, an appropriate amount of alkali solution was added dropwise to the solution to neutralize the acidic substance with the alkali. When the hydrogen ions in the acidic substance are completely neutralized, the resulting salt forms ions in the solution that remain dissolved. Quinone compounds with different positions and numbers of free hydroxyl groups have different degrees of acidity; therefore, they can be extracted using different concentrations of alkaline aqueous solutions. Zhang Yuebin [261] extracted cornhusk rutin by alkali extraction and acid precipitation method, and the optimal process determined by response surface method was as follows: material-liquid ratio of 1:17 (g/mL), water bath temperature of 85 °C, and water bath time of 40 min, and the extraction rate of cornhusk rutin was 6.5328%.
Organic Solvent Extraction Methods
The most commonly used method for extracting quinones is organic solvent extraction, and the commonly used solvents include methanol and ethyl acetate. Zhang Liangming [262] extracted the total anthraquinones from cassia seeds, and the optimal process was 70% volume fraction of ethanol, extraction time of 2.0 h, material-liquid ratio of 1:30 (g:mL), and extraction temperature of 85 °C, which resulted in a high extraction rate and a stable process. Under these conditions, the average extraction rate of total anthraquinone from cassia seed was 4.79%.
Physical Field Enhanced Extraction
The addition of a physical field (e.g., microwave or ultrasound) to the traditional solvent can improve the extraction effect and shorten the extraction time. Lili Cao [263] extracted anthraquinones from the rhizomes of Rubia cordifolia by an ultrasonic-assisted method. The optimal extraction conditions were an ultrasonic time of 31.29 min, solvent dosage of 13.47 mL, solvent concentration of 81.15%, and a theoretical prediction of anthraquinone extraction rate in the rhizome of Cynanchum officinale of 7.64%.
Steam Distillation Method
Some compounds with small relative molecular masses are volatile and can be distilled with water vapor. If the compounds are volatile and water-insoluble, they can be extracted using water vapor distillation. The water vapor distillation method is applicable to benzoquinone and naphthoquinone compounds. Du Zexiang [264] used hydrodistillation to extract quinones from the stems of Plumbago zeylanica and determined the content of plumbagin in the compounds. The results showed that the plumbagin content in the fresh and dried stems of Plumbago zeylanica was 0.0423% and 0.0420%, respectively.
Lead Salt Method
Lead salt precipitation is a classical method for separating certain herbal components. Since lead acetate and alkaline lead acetate can form insoluble lead salts or complex salt precipitates with a variety of herbal ingredients in aqueous and alcoholic solutions, this property can be utilized to separate the active ingredients from impurities [265].
Supercritical Fluid Extraction Methods
The CO2-supercritical fluid extraction method utilizes the properties of high density, low viscosity, and large diffusion coefficient of CO2 in the supercritical state to extract the active ingredients, which have the advantages of low extraction temperature, high extraction rate of the active ingredients, and short operation cycle [266]. Zhu K [267] determined the optimal extraction process for the determination of anthraquinone in Rheum officinale by CO2-supercritical fluid method using the orthogonal test method, the optimal extraction conditions were 40 °C maintaining 20 MPa pressure for 2 h, and using 75% ethanol as the entraining agent.
Solid-Phase Extraction Method
Solid-phase extraction (SPE) is a simple and convenient method for the pretreatment of samples that can effectively eliminate the interference of the sample matrix, simplify the elution conditions of liquid chromatography analysis, and shorten the analysis time. Zhao Jiangli [268] established an analytical method for the determination of hydroquinone and phenol in cosmetics by solid-phase extraction and high-performance liquid chromatography, and the detected concentration andquantitative concentration can meet the technical requirements of the «Cosmetic Safety Code», which can be used for the determination of hydroquinone and phenol in cosmetics with complex matrices.
Pressurized Liquid Extraction Method
The pressurized liquid extraction method uses a conventional solvent to extract solid or semi-solid samples under relatively high temperature and pressure [269]. Ong and Soon [270] employed pressurized liquid extraction (PLE) to extract thermally unstable components, such as tanshinone I and tanshinone IIA, from Salvia miltiorrhiza Bunge. PLE was carried out dynamically under the following conditions: a flow rate of 1 mL/min, temperature of 95–140 °C, applied pressure of 10–20 bar, and extraction times of 20 and 40 min. The extraction efficiency of PLE is higher than that of other methods.

2.2.2. Separation

pH Gradient Extraction Method
pH gradient extraction is a traditional method for separating quinones. Quinones contain free hydroxyl groups at different locations and numbers, with different acidic strengths, and different quinones can be selectively extracted using different concentrations of alkaline aqueous solutions [271]. He Ying [272] determined the anthraquinones in the browning products of pomegranate pericarp and used pH gradient extraction for separation and column chromatography purification to obtain four anthraquinones, which were identified as rhubarb phenol, rhubarb, rhubarb acid, and rhubarb methyl ether, and the optimal process conditions were ethanol concentration of 75%, ethanol dosage of 90 mL, extraction time of 25 min, and extraction temperature of 25 °C. The extracts were extracted at 25 °C, and the extracts were extracted at 25 min.Figure 5 introduces the flow chart for the separation of anthraquinone compounds from pomegranate peels.
Chromatographic Methods
The most commonly used method for separating quinones is chromatography, which is particularly effective for separating quinones with free phenolic hydroxyl groups, especially anthraquinones. Conventional chromatographic methods include paper chromatography and column chromatography. An increasing number of new techniques have been applied to the separation of quinone compounds, such as high-performance liquid chromatography, high-performance countercurrent chromatography, droplet countercurrent chromatography, large-pore adsorbent resin, and flash column chromatography. High-performance liquid chromatography (HPLC) is a great complement to traditional chromatography, and with the continuous development of technology, HPLC has been greatly improved, and its operation and data processing are more automated. Chromatographic columns are packed with an ever-increasing variety of materials that can separate substances under normal-phase, reversed-phase, and even chiral conditions.HPLC instruments can be connected to a wide variety of monitors and are increasingly used in the separation of quinones. Jun Huang [273] established a high-performance liquid chromatographic assay for the separation of lawsone, which was sensitive, rapid, and simple, and was corroborated by high-performance liquid chromatography-tandem mass spectrometry to ensure accurate results. High-speed countercurrent chromatography (HSCCC) is a continuous liquid-liquid chromatographic technique that does not require solid-phase carriers. Tian, G [274] used multidimensional high-performance countercurrent chromatography to obtain four major components, tanshinone IIA, tanshinone I, dihydrotanshinone I, and cryptotanshinone II, with purities above 95%. Droplet countercurrent chromatography (DCCC) separates compounds based on differences in partitioning between two immiscible liquid phases. This method requires the system to be separated into two phases in a short period and form droplets efficiently [275].
Macroporous Adsorption Resin Method
Macroporous adsorption resin separation technology is a process of extraction and refinement that uses special adsorbents to selectively adsorb the active ingredients and remove the ineffective ingredients from the compound decoction of traditional Chinese medicine [276]. Zhenkang Lu [277] used macroporous adsorbent resin for the separation and purification of Juglans cyan bark pigment, and the dynamic adsorption and desorption experiments showed that the D-101 macroporous adsorbent resin was the most effective for the separation and purification of Juglans cyan bark pigment. The optimum conditions for adsorption were an initial concentration of 1.5 mg/mL, a flow rate of 0.5 mL/min, a pH of 3, and a volume of 50 mL of sample solution. The optimum conditions for desorption were an elution flow rate of 1.5 mL/min, ethanol concentration of 90% in the eluate, and elution pH of 4.

2.3. Structural Identification Methods

Common methods for the structural identification of benzoquinone include ultraviolet absorption spectroscopy, infrared absorption spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry.

2.3.1. Benzoquinones

Benzoquinones exist in a long conjugated system, and in the UV absorption spectrum, the molecules can show long absorption peaks in both the near-UV and visible regions. The three main absorption bands of benzoquinone are: ca. 240 nm (strong absorption); ca. 285 nm (medium to strong absorption); and ca. 400 nm (weak absorption). Benzoquinones are most characterized in the infrared spectra by the telescopic vibrational absorption peaks of carbonyl, hydroxyl, and double bonds at 1675–1653 cm−1C=O), 3600–3140 cm−1OH), 1640–1200 cm−1C=C). The number of absorption peaks and the wavenumber of the carbonyl group of the benzoquinone compound are closely related to the substituents on benzoquinone. When there is a hydroxyl substitution in the molecule, the hydrogen bonding between the carbonyl group and the hydroxyl group will cause a significant decrease in the wavenumber of the carbonyl absorption peak. If the molecular structure is symmetrical after the substitution of the substituent group, the compound is the same as unsubstituted benzoquinone, and there is only one base absorption peak in the infrared absorption spectrum. In the NMR hydrogen spectrum, the chemical shift of the unsubstituted benzoquinone ring proton is δH 6.72(s); when there is a substitution of an electron-donating group on the ring, it causes the chemical shifts of the other protons to be shifted to the higher field. In the NMR carbon spectra, the chemical shift of the unsubstituted benzoquinone carbonyl carbon is around δC 187, and substitution of the substituents around the benzoquinone carbonyl group induces a shift in the chemical shift of the carbonyl carbon. In the mass spectrum, the chemical shift of the carbonyl carbon is shifted to a higher field when the electron-donating group is substituted. In the mass spectrum, the molecular ion peak of unsubstituted benzoquinone is m/z 108, and cleavage fragments of m/z 82, m/z 80, and m/z 54 appear in its mass spectrum. A fragmentation ion peak (m/z 52) with two consecutive CO removals was present in the mass spectrum of benzoquinone. For substituted benzoquinones, this cleavage pattern provides an important basis for deducing the type of substituent.

2.3.2. Naphthoquinones

The UV absorption of naphthoquinone mainly originates from two parts of the structure: the naphthalene-like and quinone-like structures. The naphthalene structure has three main absorption bands at 245, 251, and 335 nm, while the quinone structure has a main absorption band at 257 nm [1]. When OH, OCH3, and other electron-donating groups are substituted in the molecule, the corresponding absorption bands are redshifted. The characteristic absorption peaks in the IR pattern of naphthoquinone remained in the carbonyl stretching vibration absorption peak from 1675 to 1653 cm−1 and the backbone vibration absorption peak between 1635 and 1648 cm−1 of the aromatic ring. In the NMR hydrogen spectra, when there is no substituent on the naphthoquinone (1.4-naphthoquinone) ring, the chemical shift of the ring proton is δH 6.95. In NMR carbon spectra, when there is an electron-donating substituent on the quinone ring, the quinone ring proton is shifted to the high field, and the degree of shift is related to the magnitude of the electron-donating effect [278]. When there is an electron-donating substituent on the quinone ring, such as C3 substituted with -OH or -OR, the chemical shift of C-3 is shifted to the low field by about 20 ppm, and that of C-2 is shifted to the high field by 30 ppm. When the C2 substituent is R, the C-2 signal shifts to the low field by about 10, and the C3 signal shifts to the high field by about 8. The extent of the shift of C2 to the low field increased with increasing R. The C2 substituent is a substituent of the C2 position in quinone rings.

2.3.3. Phenanthrenequinones

Phenanthrenequinone, although structurally classified as a phenanthrenequinone, is biosynthetically classified as a diterpene quinone based on the structures of other coexisting congeners [11]. The vast majority of diterpene quinones have a rosinane or rearranged rosinane-type skeleton and include many pro-quinone types. Most quinone carbonyls in this group are present on the C-ring of the rosinane diterpenes, with 1,4-p-quinone and, in a few cases, also the o-type, usually with an isopropyl unit on the C-ring. The presence of this structural unit can be judged mainly by the chemical shifts of the protons and the shape of the peaks on ′H NMR. Most of the quinone carbonyls in this group are present on the C-ring of the rosinane diterpenes, with 1,4-p-quinone and, in a few cases, also the o-type, usually with an isopropyl unit on the C-ring, and the presence of this structural unit can be judged mainly by the chemical shifts of the protons and the shape of the peaks on 1H NMR. Generally, the chemical shifts of 16-CH3 and 17-CH3 are around 1.10, each appearing as a double peak. The C-15 hypomethyl proton appeared around 3.00 and showed a heptagonal peak due to coupled cleavage with both methyl protons. The 13C NMR chemical shift values of the carbonyl group are mainly derived from the presence or absence of hydroxyl groups in the neighboring environment, and the chemical shift of the carbonyl group with hydrogen bonding is shifted to a lower field. Methyl, hydroxyl, acetyl, and a third carbonyl group are also often present in the diterpene skeleton structure, and the substitution positions of these groups are usually based on two-dimensional mapping. The positions of these substituents are usually determined by a comprehensive analysis of the 1H COSY, HMQC, and HMBC spectra. In addition, the diterpene skeleton is often broken in this type of structure, and the identification of its structure is also mainly based on the analysis of NMR data. Where conditions permitted, confirmation was made by X-ray single-crystal diffraction data analysis [14].

2.3.4. Anthraquinones

In the UV absorption spectrum, anthraquinone has four main absorption bands caused by the benzene-like and quinone-like structures, with four absorption peaks at 252, 325, 272, and 405 nm. Most natural anthraquinones have hydroxyl substitutions, and the UV absorption spectra of hydroxy anthraquinones have five main absorption peaks: the I absorption peak is around 230 nm; the II absorption peak is 240–260 nm (caused by the benzene-like structure); the III absorption peak is 262–295 nm (caused by the quinone-like structure); the IV absorption peak is 305–389 nm (caused by the benzene-like structure); and the V absorption peak is greater than 400 nm (caused by C=O in the quinone-like structure) [1]. The information provided by the UV-Vis spectra of anthraquinones is of some use for structural speculation; however, because of the plethora of exceptions, UV-Vis spectral data are usually used only as circumstantial evidence for structural analysis. The IR absorption spectra of hydroxyanthraquinone are characterized by carbonyl stretching vibrational absorption near 1670 cm−1. Hydroxyl stretching vibrational absorption in the 3600–3150 cm−1 interval and benzene ring backbone vibrational absorption in the 1600–1480 cm−1 interval [279].In 1H NMR, the NMR signals of the aryl hydrogens of the anthraquinone parent nucleus can be divided into two categories: α-aryl hydrogens are in the negatively shielded region of C=O, which are more affected by the carbonyl group, and the resonance occurs in the lower magnetic field region, with the peak centered around δ8.07 [280]; β-aryl hydrogens are less affected by the carbonyl group, and the resonance occurs in the higher magnetic field region, with the peak centered around δ6.67 [271]. 13C NMR plays an important role in the identification of quinones. 13C NMR is important for the identification of quinones. The carbon atoms of the quinone parent nucleus can be classified into four groups, and the chemical shift values of these carbons in unsubstituted anthraquinones are as follows: α-C 126.6, β-C 134.3, carbonyl carbon 182.5, and quaternary carbon 132.9. When there is a hydroxyl substitution at the α-position, the chemical shift of the carbonyl carbon is shifted to the lower field to about 187 [14].

3. Progress in Pharmacological Activity Research

Quinones are abundant in nature, and their pharmacological activities, including immunomodulatory, antitumor, anti-inflammatory, antibacterial, antioxidant, and laxative effects, have received widespread attention.

3.1. Immunomodulatory Effects

Quinones exert multiple regulatory effects on the immune system. At the level of immune cells, it can activate macrophages to enhance phagocytosis, regulate their polarization, affect the differentiation and cytotoxicity of T-lymphocyte subpopulations, and regulate the activation and proliferation of B-lymphocytes and antibody secretion. Shen Jie established an SLE model and tested the parameters of lymph node size, spleen index, kidney index, Th cell subpopulation, and B cell activation index in mice. After Embelin treatment, the Th1/Th2 and Treg/Th17 ratios in the lymph nodes and spleens of SLE mice were significantly elevated. Moreover, the concentrations of dsDNA, ssDNA, and IgG in the serum of mice were significantly decreased. It was concluded that embelin exerts a therapeutic effect on SLE mice by regulating the balance of Th cell subpopulations and inhibiting the activation of Th and B cells, demonstrating that letterbox quinone has immunomodulatory and therapeutic effects on SLE [281].

3.2. Anti-Tumor Activity

Quinones exhibit anti-tumor effects. On the one hand, quinones can induce apoptosis in cancer cells by activating the endogenous apoptotic pathway. On the other hand, quinones can interfere with the cell cycle of tumor cells, causing them to stagnate at a certain stage and inhibiting the proliferation of tumor cells. In addition, quinones can inhibit tumor angiogenesis and reduce nutrient supply to tumors. Moreover, it can enhance the immune function of the body and activate immune cells to recognize and kill cancer cells, thus playing a multi-faceted positive role in the anti-tumor process. Common antitumor components include embelin [282], emodin [283], chrysophanol [284], tanshinone IIA [285], juglone [286], plumbagin [287], aloe-emodin [288], dioscoreanone [289], and denbinobin [290]. Table 7 introduces the anti-proliferative effects of quinone compounds on cells.
Avci, H [286] used MTT to determine the cytotoxic effect of juglone. Treatment of BxPC-3 human pancreatic cancer cells with different concentrations of juglone reduced the expression of MMP-2 and -9 genes in a dose-dependent manner, and VEGF induced a significant reduction in the level of expression of Phactr-1 gene, indicating that huperzine has an anti-metastatic effect on human pancreatic cancer cells. Zhang utilized the thiazolyl blue reduction method (MMT) to detect the antiproliferative effect of Dendrobium officinale phenanthrenequinone on human ovarian cancer cells HO-8910PM, while the Transwell assay was used to detect changes in the metastatic ability of the cells. The expression of apoptosis- and metastasis-related genes and protein levels in HO-8910PM cells was detected using reverse transcription-polymerase chain reaction and protein blotting. The results of the MTT assay showed that the proliferation inhibitory effect of dendrobium phenanthrenequinone at 3 μmol/L and 10 μmol/L on ovarian cancer cells was significant, and dendrobium phenanthrenequinone inhibited the proliferation and metastasis of ovarian cancer cells by upregulating the expression of CASP3, CASP9, and CAV1, and downregulating the expression of SOX2. The experimental results demonstrated that dendrobium phenanthrenequinone has anti-invasive and metastatic therapeutic effects on human ovarian cancer cells [291]. Yang suggested that rhodopsin inhibited SREBP1-dependent and SREBP1-non-dependent cell proliferation and led to caspase-dependent and caspase-non-dependent induction of endogenous apoptosis in HCC [292]. The IC50 value of rhodopsin in L02 cells was 36.69 μg/L [293]. The toxicity of rhodopsin on normal human cells (IC50 values ranging from 92.59 to 185.18 μmol/L) was slightly lower than the IC50 values of rhodopsin on cancer cells (10 to 80 μmol/L).

3.3. Antioxidant Activity

Anthraquinones possess antioxidant effects and play a positive role in protecting the body against oxidative stress damage. Quinones with antioxidant effects include idebenone [294], plumbagin [295], juglone [296], alkannin [297], tanshinone I [298], tanshinone IIA [299], emodin, physcion [300], and aloe-emodin [301]. Idebenone exerts antioxidant effects that are mainly dependent on the benzoquinone ring, which has both reduced (hydroquinone) and oxidized forms [287]. The ketone bond can generate unstable semiquinone through a reduction reaction or further reduction to form dihydroubiquinone, which exhibits strong antioxidant activity. Hao Xu [294] examined the expression of SIRT3 in oxidative stress-injured HT22 cells before and after the use of ibuprofen and found that ibuprofen counteracted oxidative stress-injured neuronal apoptosis by affecting the CD38-SIRT3-P53 pathway. The optimal extraction process of naphthoquinones in water walnut leaves was determined by one-way and orthogonal tests, i.e., 50% v/v ethanol solution as extraction solvent, 1:50 (g/mL), extraction temperature of 60 °C, and extraction time of 5 h. The extraction of naphthoquinones reached 168.14 mg/g under these conditions. Hu Tian determined the optimal extraction process of naphthoquinone components in the leaves of Platycarya strobilacea Siebold & Zucc, through a single-factor and orthogonal experiment. That is, an ethanol solution with a volume fraction of 50% was used as the extraction solvent, with a solid-liquid ratio of 1:50 (g/mL), extraction temperature of 60 °C, and extraction time of 5 h. Under these conditions, the amount of naphthoquinone extract reached 168.14 mg/g. By measuring their reducing power, it was found that the DPPH radical scavenging ability of both the naphthoquinone extract of Narcissus aquifolium Pourr., and VC gradually increased with increasing sample mass concentration. However, the scavenging rate of DPPH radicals by both the naphthoquinone extract of Narcissus aquifolium Pourr., and VC gradually stabilized when the mass concentration of the naphthoquinone extract of Narcissus aquifolium Pourr., and VC was greater than 0.6 mg/mL. The results indicated that the naphthoquinone constituents of water walnut leaves have good antioxidant activity in vitro [302]. Table 8 introduces the antioxidant activity of quinone compounds.

3.4. Anti-Inflammatory Activity

Anthraquinones have significant anti-inflammatory effects, and their mechanism of action mainly involves the regulation of inflammatory factors and the inhibition of related signaling pathways. Through in vivo experiments in mice, Jie found that alcohol extracts of Rubia cordifolia L. exert anti-inflammatory effects by inhibiting the production of pro-inflammatory factors in serum and promoting the production of anti-inflammatory factors. Rubia cordifolia L. alcohol extract in the middle concentration group and high concentration group had similar therapeutic effects to that of dexamethasone on adjuvant arthritis in mice, resulting in a reduction in inflammatory cell infiltration in the articular cavity of the ankle joint in mice. The MDA and SOP levels in liver homogenates showed that the components in Rubia cordifolia L. inhibit inflammation partly through the elimination of free radicals and reactive oxygen molecules in vivo and partly through the metabolism of glutathione in the liver [303]. Liu Mingxin demonstrated that the naphthoquinone constituents of Arnebia euchroma (Royle) I. M. Johnst. were able to downregulate the expression of inflammatory mediators PGE2, NO, and inflammatory cytokines IL-1β and TNF-α, inhibit xylene-induced mouse auricular swelling, and exert certain anti-inflammatory effects in vitro using a macrophage inflammation model and in vivo in an animal model [304].

3.5. Antimicrobial Activity

Quinones have significant antimicrobial effects and inhibit a wide range of bacteria to varying degrees [305]. Their inhibitory mechanism mainly lies in their ability to inhibit the oxidation and dehydrogenation processes of bacterial sugars and metabolic intermediates, and they can bind to DNA, interfering with its template function, and thus inhibiting the synthesis of proteins and nucleic acids [306]. Zhenkang Lu treated E. coli with juglone at concentrations of 0.0625, 0.125, 0.25, 0.5, 1, 2 mg/mL, and 4 mg/mL, and the relative conductivity of E. coli cell membranes increased which means that juglone resulted in impaired integrity of E. coli membranes, and increased permeability of cell membranes. Fluorescence emission spectroscopy results showed that juglone interacts with membrane proteins, thereby changing the structure of the E. coli cell membrane. The results of crystal violet and bladed azurite staining experiments showed that juglone could weaken the respiration of E. coli by inhibiting the formation of E. coli biofilms and eventually inhibiting its activity. SDS—PAGE and E. coli genome synthesis analysis revealed that juglone inhibited the expression of proteins, DNA, and RNA in E. coli, thereby acting as an antibacterial agent [307].

3.6. Anti-Fibrotic Effect

Quinones have antifibrotic effects. One of these mechanisms involves the inhibition of fibrosis-related cytokine expression, interference with signaling pathways, and reduction of extracellular matrix synthesis. Anthraquinone can inhibit the over-activation of the MAPK pathway in hepatic stellate cells, thereby inhibiting the activation of hepatic stellate cells, reducing their transformation to myofibroblasts, reducing the synthesis of extracellular matrix, and reducing the degree of liver fibrosis. In vitro antifibrotic tests on rat HSC were performed, and it was concluded that 2,3,5-trihydroxy-4,9-dimethoxyphenanthrene, 2,3,5-trihydroxy-4-methoxyphenanthrene, and denbinobin phenanthrenequinone from Dendrobium officinale could all reduce the number of HSC cells. These three phenanthrenes exhibit antifibrotic activity by inducing the selective death of hematopoietic stem cells, providing a new avenue for the prevention and treatment of liver fibrosis [308].

3.7. Laxative Effect

Quinone compounds have purgative effects. The primary action sites of the combined anthraquinones of Rhei Radix or the free anthraquinones of Rheum palmatum L. Radix are the small intestine and stomach, followed by the colon. It can be seen that the anthraquinones of Rheum palmatum L. Radix et Rhizoma can act directly without the need for transformation in the large intestine [309]. Chen Yan-Yan [310] showed that after administration of Da Huang Gan Cao Tang to constipated mice, the time to peak and the area under the drug-time curve of the plasma anthraquinones emodin, aloe emodin, emodin-8-O-β-D-glucoside, conjugated dianthrones senecioside A, and glycyrrhetinic acid were higher than those of control mice. Compared to normal mice, rhubarb-glycyrrhiza glabra soup exhibited a stronger purifying effect in constipated mice, with an increase in fecal excretion and a shorter time to the first detachment.

3.8. Antidepressant Effects

Anthraquinones from medicinal plants, such as chrysin, also have antidepressant activity and are often used in antidepressant therapy. Chrysin has been found to improve depressive symptoms in rats, and high doses of chrysin can activate 5-hydroxytryptamine receptors (5-HT) in the hippocampus of depressed rats, stimulate neurotransmitter transmission, and increase the degree of excitability in rats. This anthraquinone analog reduced the degree of depression in rats [118].

4. Progress in Toxicity Studies

4.1. Digestive System Toxicity

4.1.1. Hepatotoxicity

As exogenous substances, the main chemical components of quinones are oxidized and reduced under the action of the cytochrome P450-based monooxygenase system in the liver and are finally converted into polar compounds for excretion [311]. Hu Xichen conducted three consecutive months of gavage and histopathological examination of the rat liver. At the end of three months, histopathological sections of the liver showed scattered inflammatory cell infiltration, congestion of hepatic sinusoids, active proliferation of Kupffer cells, and phagocytosis of pigment particles under a light microscope. In the transmission electron microscopy of the high-dose group, chromatin was clumped together in the nuclei of some hepatocytes or collected in the subnuclear membranes, the mitochondria were mildly swollen, the structure of capillary bile ducts was not clear in individual specimens, and the number of Kupffer cells was increased. In some specimens, the structure of the capillary bile ducts was unclear, and the number of Kupffer cells was increased. After the recovery period, no obvious pathological changes were observed in the liver pathology section under the microscope in each administered group. The results demonstrated that long-term gavage of prepared Polygonum multiflorum can cause liver inflammatory injury in rats, and the liver can be normalized after stopping the drug [312]. Z.H. Mao investigated the potential cytotoxicity and DNA-breaking effects of rhein, chrysophanol, emodin methyl ether, and aloe emodin on HepaRG in normal human-derived hepatocytes by using high-concentration assay and alkaline comet electrophoresis. The four rhubarb anthraquinones were found to be toxic to hepatocytes to varying degrees. Among them, the effects of emodin methyl ether on elevated reactive oxygen species and mitochondrial damage were more pronounced, and the toxicity of aloe emodin was mainly manifested by the modulation of free Ca2+ levels in hepatocytes. Oxidative stress injury may be an important molecular mechanism responsible for potential hepatocytotoxicity and genotoxicity [313].

4.1.2. Enterotoxicity

Quinones usually exist as glycosides and are not degraded by gastric acid. When anthraquinones is administered orally, it enters the stomach and small intestine through the esophagus, is absorbed into the bloodstream through the small intestinal mucosa, is converted to glucuronide conjugates by phase II enzymes in the liver and intestines [314], and is transported to various tissues and organs throughout the body through the heart to exert a variety of pharmacological effects [315]. Prolonged use of laxatives containing anthraquinones can cause colorectal melanosis (MC). MC is a non-inflammatory, benign, reversible pigmentation characterized by colorectal mucosal lesions [316], which has been found to be due to intestinal mucosal epithelial cellular turnover and deposition of lipofuscin by electron microscopy and histopathology. The presence of anthraquinone-containing laxatives in the colon significantly increases the risk of developing colorectal melanosis. SteerH W Ultrastructural and histochemical staining of colonic tissues from six normal colons and seven patients with melanotic polyps revealed that anthraquinone laxatives increased the number of macrophages in the lamina propria of the colonic mucosa. In addition, they enhance the lysosomal activity of macrophages, Schwann cells, and neuronal cells in the lamina propria of the colonic mucosa, as well as increase the number of lysosomes [317].
Cheng Ying used acridine orange staining and mitochondrial membrane potential staining to detect the effects of rhubarb sap metabolites, rhein, emodin, and aloe emodin on the acidic vesicular organelles and mitochondrial membrane potential in NCM460 and HT29 cells, respectively, and the effects of autophagy and apoptosis-related proteins on the expression levels were detected by western blot. The results showed that rhubarb sap metabolites, rhein, emodin, and aloe emodin, induced autophagy and apoptosis in NCM460 and HT29 cells, suggesting that rhubarb may exert a toxic effect on human colon cells by promoting autophagy and apoptosis [318].

4.2. Urinary Toxicity

Quinones can cause proteinuria, oliguria, anuria, hematuria, and other symptoms, and long-term or large amounts of exposure may lead to acute and chronic nephritis, renal failure, and even uremia and other serious kidney diseases, seriously affecting the normal function of the urinary system and overall health of the body. When emodin is ingested in excess, it interferes with the filtration function of the kidneys and the reabsorption of the renal tubules, resulting in the excretion of protein components that should have been reabsorbed back into the bloodstream through urine, leading to proteinuria. Lan Jie observed the effects of anthraquinone components in Pleuropterus multiflorus (Thunb.) Nakai on human renal cortical proximal tubule epithelial cell line HK-2 cells and detected the changes in mitochondrial membrane potential of HK-2 cells using JC-10. The mitochondrial membrane potential of the five anthraquinone monoconstituents declined with an increase in the treatment concentration and prolongation of the administration time, among which chrysophanin and aloe emodin had the fastest rate of decline, followed by rhodochrospiracol. The apoptosis of HK-2 cells after the administration of the five anthraquinone monomer components were detected by flow assay, and it was found that significant apoptosis was visible only after the administration of Rhein, Aloe emodin greater than or equal to 25 μmol/L for 48 h and and and Rhein 50 and 100 μmol/L for 48 h (p < 0.05). It was concluded that emodin, Aloe emodin, and Rhein can damage HK-2 cells with a potential risk of nephrotoxicity [319].

4.3. Reproductive Toxicity

Quinones may have adverse effects on the uterus and placenta during pregnancy. They cross the placental barrier and exert direct toxic effects on the fetus. Chang determined that emodin induced apoptosis, i.e., embryonic cytotoxicity, in mouse blastocysts by treating them with 25, 50, or 75 μmol/L emodin for 24 h at 37 °C and examining DNA fragmentation using the TUNEL assay. Membrane-associated protein V staining revealed a significantly higher number of membrane-associated protein V-positive/PI-negative (apoptotic) cells in the ICM and TE of emodin-treated blastocysts than in the control group. Emodin significantly inhibited cell proliferation and induced apoptosis in the ICM and TE of mouse blastocysts. Selective inhibition of RAR activity in emodin-treated blastocysts. Therefore, this substance may negatively affect embryonic development by decreasing RARβ expression, which in turn downregulates the RARβ-mediated developmental signaling pathways. Emodin triggers apoptosis in mouse blastocysts, leading to impaired embryonic development via the intrinsic cell death pathway [320].
Quinones can interfere with the normal physiological processes of testicular spermatogenic cells and damage DNA in sperm cells, causing gene mutations or chromosomal aberrations, thereby reducing the quality and quantity of spermatozoa. N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is acutely toxic to organisms. Yao Kezhen exposed C57Bl/6 male mice to 6PPD-Q for 40 days at a dose of 4 mg/kg bw. After 40 days of exposure to C57Bl/6 male mice, exposure to 6PPD-Q not only resulted in decreased testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) results, thus indicating that 6PPD-Q exposure leads to impaired male fertility [321].

4.4. Carcinogenicity

The International Agency for Research on Cancer (IARC) of the World Health Organization (WHO) classifies carcinogens into five groups, of which quinones are classified as group 2B and group 3 carcinogens. The IARC classifies 1-amino-2,4-dibromoanthraquinone, anthraquinone, dantron (chrysazin; 1,8-dihydroxyanthraquinone), 1-hydroxyanthraquinone, 2-methyl-1-nitroanthraquinone (uncertain purity), and mitoxantrone as Group 2B carcinogens, i.e., possibly carcinogenic to humans, but evidence of carcinogenicity in humans is limited. Limited evidence of carcinogenicity in humans and insufficient evidence of carcinogenicity in experimental animals, or insufficient evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. 1-amino-2-methylanthraquinone, 2-aminoanthraquinone, and aziridyl benzoquinone are classified as Group 3 carcinogens, i.e., their carcinogenicity to humans is doubtful, and there are insufficient human or animal data. Table 9 introduces carcinogenic quinone compounds and their classifications.

5. Summary

Summarizing and analyzing the research literature at home and abroad, the current research on quinones focuses on their types, pharmacological activities, and toxicity, and abundant research results have been achieved in these fields. The application and potential risks of quinones in the field of medicine and health have been investigated from the perspectives of classification of chemical structure, verification of biological activity, and exploration of toxicity mechanism, which provides a rich theoretical basis and practical experience for the development of quinones in natural medicine and related products. However, it should be pointed out that this study also has certain limitations. For example, in toxicity research, the molecular mechanism of quinone toxicity remains unclear; in technical terms, the efficiency of extraction and separation techniques is limited, and structural identification is overly dependent on traditional methods. Based on the limitations of the current study, further systematic research can be carried out in the following aspects: firstly, a systematic toxicity evaluation of quinones in traditional Chinese medicine and risk assessment to evaluate the safety of these ingredients; secondly, with the help of a 3D organoid co-culture model, further in-depth investigation into the toxicity mechanism of quinones, clarifying the key links and molecular mechanisms of their toxicity, and synthesizing quinone compounds with high bioactivity and low toxicity. We will synthesize quinone derivatives with high biological activity and low toxicity to expand the application potential of quinone compounds. Finally, we will develop an efficient and accurate online identification technology for the rapid identification of quinone compounds in traditional Chinese medicine.

Author Contributions

Conceptualization, Z.L., J.Y., X.L., Y.P., P.C., L.Z., J.Y., X.C.,W.J., X.G. and F.W.; investigation, Z.L., R.Y., and H.G.; writing—original draft preparation, Z.L.; writing—review and editing, Z.L., J.Y. and X.L.; supervision, X.L., Y.P., P.C., L.Z., J.Y., X.C., W.J., X.G. and F.W.; project administration, J.Y.; funding acquisition, J.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Textual Research on the Original Sources of Commonly Used Medicinal Materials in Ethnic Medicines and Study on Reference Medicinal Materials, Research on Key Technologies for Quality Control of Characteristic Ethnic Medicines in Xinjiang and Their Industrial Application and Research on Rapid Identification Methods for Varieties Based on the “Identity Card” Characteristics of Chemical Components, grant numbers “2023B03001-2, 2024B02023-2 and 2023YFC3504105”.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available upon request from the corresponding author.

Acknowledgments

Thanks to Yang Jianbo and Liu Xiaoqiu for their guidance on this study.

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

  1. Peng, Y.H.; Liu, X.Q.; Lv, H.Y. Natural Medicinal Chemistry, 2nd ed.; Chemical Industry Press: Beijing, China, 2020. [Google Scholar]
  2. Yang, Y.T.; Zhang, G.Y.; Yang, D.F.; Zhang, Y.Q.; Zhang, L.; Wu, S.; Li, X.; Zhou, Y.Z. Research progress on the regulation of lipid metabolism in the body by active components of traditional Chinese medicine. Chin. Herb. Med. 2024, 55, 3127–3136. [Google Scholar]
  3. Wu, R.; Li, K.F.; Wang, W.F. Efficacy of sodium tanshinone IIA sulfonate combined with metoprolol in the treatment of senile coronary heart disease and its effect on ventricular remodeling. Clin. Med. Res. Pract. 2025, 10, 53–56. [Google Scholar] [CrossRef]
  4. Yuan, H.L.; Zhao, Y.L.; Fan, D.S.; He, W.L.; Zhao, P.P.; Cai, Y. Improved synthesis method of buparvaquone. Chem. Bull. 2021, 84, 952–957. [Google Scholar] [CrossRef]
  5. Tao, M.B.; Zhang, L.; Liu, F.; Chen, L.; Liu, Y.P.; Chen, H.P. Research progress on the safety of traditional Chinese medicines containing anthraquinone components. Pharmacol. Clin. Chin. Mater. Med. 2016, 32, 238–243. [Google Scholar] [CrossRef]
  6. Zhou, X.J. Analysis of clinical characteristics of 130 cases of melanosis coli. Jilin Med. J. 2014, 35, 3487–3488. [Google Scholar]
  7. Wang, X.; Sun, K.W.; Tian, T.; Zeng, W.T.; Yuan, W. Clinical analysis of 12 cases of drug-induced liver injury caused by Polygonum multiflorum and its related preparations. Liver 2024, 29, 1538–1540. [Google Scholar] [CrossRef]
  8. Duan, Y.H. Literature analysis of traditional Chinese medicine varieties causing kidney damage. Strait. Pharm. J. 2014, 26, 138–139. [Google Scholar]
  9. Zhao, F.B.; Li, T.J.; Zhao, H.; Guo, J.W.; Zhang, J.G. Clinical analysis of 356 cases of acute kidney injury in inpatients of a nephrology-specialized hospital. J. Intern. Med. Theor. Pract. 2015, 10, 177–180. [Google Scholar] [CrossRef]
  10. Holliday, A.E.; Walker, F.M.; Brodie, E.D., III; Formica, V.A. Differences in defensive volatiles of the forked fungus beetle, Bolitotherus cornutus, living on two species of fungus. J. Chem. Ecol. 2009, 35, 1302–1308. [Google Scholar] [CrossRef]
  11. Dong, M.; Ming, X.; Xiang, T.; Feng, N.; Zhang, M.; Ye, X.; He, Y.; Zhou, M.; Wu, Q. Recent research on the physicochemical properties and biological activities of quinones and their practical applications: A comprehensive review. Food Funct. 2024, 15, 8973–8997. [Google Scholar] [CrossRef]
  12. Qiu, Y.F.; Lu, B.; Yan, Y.Y.; Luo, W.Y.; Gao, Z.Q.; Wang, J. A convenient synthesis of 1,4-benzoquinones. J. Chem. Res. 2019, 43, 124–126. [Google Scholar] [CrossRef]
  13. Shi, Z.M.; Wang, Q.; Lu, X.X.; Zeng, H.P.; Xiao, H.; Zhang, C.G.; Liu, H. Study on the physicochemical properties and druglikeness prediction of methyl-p-benzoquinone. J. Dali. Univ. 2024, 9, 26–32. [Google Scholar]
  14. Lu, Y. Chemistry of Quinones (Series of Natural Product Chemistry), 2nd ed.; Chemical Industry Press: Beijing, China, 2009; ISBN 978-7-122-04505-8. [Google Scholar]
  15. Yang, D.Y.; Yu, H.; Wu, X.Y.; Zhu, Y.H.; Xiao, X.L.; Xu, W.A.; Chen, Y.X.; Gong, Q.F. Research progress on chemical components and biological activities of Atractylodes macrocephala Koidz. Chin. Arch. Tradit. Chin. Med. 2023, 41, 171–182. [Google Scholar] [CrossRef]
  16. Zhang, W.Q. Study on the Chemical Components and Anti-Inflammatory Activities of Arnebia euchroma (Royle) Johnst. Master’s Thesis, Southern Medical University, Guangzhou, China, 2022. [Google Scholar]
  17. Chen, C.Y.; Wang, J.J.; Kao, C.L.; Li, H.T.; Wu, M.D.; Cheng, M.J. A New Benzoquinone from Antrodia camphorata. Chem. Nat. Compd. 2022, 58, 614–616. [Google Scholar] [CrossRef]
  18. Wang, H.J.; Gloer, K.B.; Gloer, J.B.; Scott, J.A.; Malloch, D. Anserinones A and B: New antifungal and antibacterial benzoquinones from the coprophilous fungus Podospora anserina. J. Nat. Prod. 1997, 60, 629–631. [Google Scholar] [CrossRef]
  19. Gupta, I.; Peddha, M.S. Anti-adipogenic activity of oleoresin from Nigella sativa L. seeds via modulation of PPAR-γ and C/EBP-α expression in 3T3-L1 adipocytes. Adv. Tradit. Med. 2024. [Google Scholar] [CrossRef]
  20. Ko, J.-H.; Lee, S.-G.; Yang, W.M.; Um, J.-Y.; Sethi, G.; Mishra, S.; Shanmugam, M.K.; Ahn, K.S. The Application of Embelin for Cancer Prevention and Therapy. Molecules 2018, 23, 621. [Google Scholar] [CrossRef]
  21. Liu, J. Study on the Chemical Components and Biological Activities of Embelia ribes Burm.f. and Hypericum spathulatum Hook.f. & Thomson ex Dyer. Master’s Thesis, Dali Univercity, China, 2018. [Google Scholar]
  22. De Gaetano, F.; Mannino, D.; Celesti, C.; Bulzomí, M.; Iraci, N.; Giofrè, S.V.; Esposito, E.; Paterniti, I.; Ventura, C.A. Randomly methylated β-cyclodextrin improves water-solubility, cellular protection and mucosa permeability of idebenone. Int. J. Pharm. 2024, 665, 124718. [Google Scholar] [CrossRef]
  23. Gunatilaka, A.A.; Berger, J.M.; Evans, R.; Miller, J.S.; Wisse, J.H.; Neddermann, K.M.; Bursuker, I.; Kingston, D.G. Isolation, synthesis, and structure-activity relationships of bioactive benzoquinones from Miconia lepidota from the Suriname rainforest. J. Nat. Prod. 2001, 64, 2–5. [Google Scholar] [CrossRef]
  24. Lin, W.Y.; Kuo, Y.H.; Chang, Y.L.; Teng, C.M.; Wang, E.C.; Ishikawa, T.; Chen, I.S. Anti-platelet aggregation and chemical constituents from the rhizome of Gynura japonica. Planta Med. 2003, 69, 757–764. [Google Scholar] [CrossRef]
  25. Arot Manguro, L.O.; Midiwo, J.O.; Kraus, W.; Kraus, W.; Ugi, I. Benzoquinone derivatives of Myrsine africana and Maesa lanceolata. Phytochemistry 2003, 64, 855–862. [Google Scholar] [CrossRef] [PubMed]
  26. Lertnitikul, N.; Teerasukpimol, L.; Aekanantakul, P.; Pooreecharurot, N.; Sukrong, S.; Boonyong, C.; Poldorn, P.; Rungrotmongkol, T.; Sukandar, E.R.; Aonbangkhen, C.; et al. A new benzoquinone and a new stilbenoid from Paphiopedilum exul (Ridl.) Rolfe. Nat. Prod. Res. 2024, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
  27. Zhou, R.Y.; Li, N.; Luo, W.Y.; Wang, L.L.; Zhang, Y.Y.; Wang, J. A Simple and Convenient Two-step Synthesis of Idebenone. Org. Prep. Proced. Int. 2021, 53, 397–401. [Google Scholar] [CrossRef]
  28. Su, J.H.; Ahmed, A.F.; Sung, P.J.; Wu, Y.C.; Sheu, J.H. Meroditerpenoids from a Formosan soft coral Nephthea chabrolii. J. Nat. Prod. 2005, 68, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
  29. Permana, D.; Lajis, N.H.; Mackeen, M.M.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H. Isolation and bioactivities of constitutents of the roots of Garcinia atroviridis. J. Nat. Prod. 2001, 64, 976–979. [Google Scholar] [CrossRef]
  30. Pirouz, M.; Abaee, M.S.; Harris, P.; Mojtahedi, M.M. One-pot synthesis of benzofurans via heteroannulation of benzoquinones. Heterocycl. Commun. 2021, 27, 24–31. [Google Scholar] [CrossRef]
  31. Ferreira, P.M.P.; De Almeida, A.A.C.; Conceição, M.L.P.; Pessoa, O.D.L.; Marques, L.G.A.; Capasso, R.; Pessoa, C. Cordia oncocalyx and oncocalyxones: From the phytochemistry to the anticancer action and therapeutic benefits against chronic diseases. Fitoterapia 2023, 169, 105624. [Google Scholar] [CrossRef]
  32. Guillonneau, L.; Taddei, D.; Moody, C.J. Synthesis of the reported structure of the bisbenzoquinone lanciaquinone, isolated from Maesa lanceolata. Org. Lett. 2008, 10, 4505–4508. [Google Scholar] [CrossRef]
  33. Sangsopha, W.; Lekphrom, R.; Schevenels, F.T.; Saksirirat, W.; Bua-Art, S.; Kanokmedhakul, K.; Kanokmedhakul, S. New p-terphenyl and benzoquinone metabolites from the bioluminescent mushroom Neonothopanus nambi. Nat. Prod. Res. 2020, 34, 2186–2193. [Google Scholar] [CrossRef]
  34. Chandra, P.; Read, G.; Vining, L.C. Studies on the biosynthesis of volucrisporin. II Metabolism of some phenylpropanoid compounds by Volucrispora aurantiaca Haskins. Can. J. Biochem. 1966, 44, 403–413. [Google Scholar] [CrossRef]
  35. Truong Nguyen, H.; Duong, T.H.; Dang, M.K.; Pham, M.D.; Pham, N.K.; Tri Mai, D.; Son Dang, V.; Nguyen, N.H.; Sichaem, J. Two New Benzoquinone Derivatives from Vietnamese Knema globularia Stems. Chem. Biodivers. 2024, 21, 4. [Google Scholar] [CrossRef]
  36. Lin, Y.L.; Su, Y.T.; Chen, B.H. A study on inhibition mechanism of breast cancer cells by bis-type triaziquone. Eur. J. Pharmacol. 2010, 637, 1–10. [Google Scholar] [CrossRef] [PubMed]
  37. Prins, B.; Koster, A.S.; Verboom, W.; Reinhoudt, D.N. Microsomal superoxide anion production and NADPH-oxidation in a series of 22 aziridinylbenzoquinones. Biochem. Pharmacol. 1989, 38, 3753–3757. [Google Scholar] [CrossRef] [PubMed]
  38. An, T.-Y.; Shan, M.-D.; Hu, L.-H.; Liu, S.-J.; Chen, Z.-L. Polyprenylated phloroglucinol derivatives from Hypericum erectum. Phytochemistry 2002, 59, 395–398. [Google Scholar] [CrossRef] [PubMed]
  39. Wieder, C.; Peres da Silva, R.; Witts, J.; Jäger, C.M.; Geib, E.; Brock, M. Characterisation of ascocorynin biosynthesis in the purple jellydisc fungus Ascocoryne sarcoides. Fungal. Biol. Biotechnol. 2022, 9, 8. [Google Scholar] [CrossRef]
  40. Pei, J.; Hsu, C.-C.; Wang, Y.; Yu, K.F. Corona discharge-induced reduction of quinones in negative electrospray ionization mass spectrometry. RSC Adv. 2017, 7, 43540–43545. [Google Scholar] [CrossRef]
  41. Ding, H.; Sun, B.; Jin, C. Review on the synthesis methods of 2-methyl-1,4-naphthoquinone. Zhejiang Chem. Ind. 2023, 54, 23–26. [Google Scholar]
  42. Higa, M.; Ogihara, K.; Yogi, S. Bioactive naphthoquinone derivatives from Diospyros maritima BLUME. Chem. Pharm. Bull. 1998, 46, 1189–1193. [Google Scholar] [CrossRef]
  43. Higa, M.; Noha, N.; Yokaryo, H.; Ogihara, K.; Yogi, S. Three new naphthoquinone derivatives from Diospyros maritima Blume. Chem. Pharm. Bull. 2002, 50, 590–593. [Google Scholar] [CrossRef]
  44. Yao, R.; Guo, H.; Zhang, X.S.; Wang, Y.; Guo, X.H.; Chen, J.; Li, J.H.; Xu, L.; Yang, J.B.; Jing, W.G.; et al. Research progress on the processing technology, chemical components and pharmacological activities of processed Polygonum multiflorum. Front. Pharm. 2024, 28, 523–535. [Google Scholar]
  45. Nishina, A.; Kubota, K.; Osawa, T. Antimicrobial components, trachrysone and 2-methoxystypandrone, in Rumex japonicus Houtt. J. Agric. Food Chem. 1993, 41, 1772–1775. [Google Scholar] [CrossRef]
  46. Takahashi, D.; Maoka, T.; Tsushima, M.; Fujitani, K.; Kozuka, M.; Matsuno, T.; Shingu, T. New Quinone Sulfates from the Crinoids Tropiometra afra macrodiscus and Oxycomanthus japonicus. Chem. Pharm. Bull. 2002, 50, 1609–1612. [Google Scholar] [CrossRef] [PubMed]
  47. Iwata, D.; Ishibashi, M.; Yamamoto, Y.; Cribrarione, B. A new naphthoquinone pigment from the myxomycete Cribraria cancellata. J. Nat. Prod. 2003, 66, 1611–1612. [Google Scholar] [CrossRef] [PubMed]
  48. Trisuwan, K.; Khamthong, N.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Anthraquinone, Cyclopentanone, and Naphthoquinone Derivatives from the Sea Fan-Derived Fungi Fusarium spp. PSU-F14 and PSU-F135. J. Nat. Prod. 2010, 73, 1507–1511. [Google Scholar] [CrossRef]
  49. Rong, X.G.; Ma, L.Y.; Liu, W.Z.; Liu, D.S. A new naphthoquinone compound from Penicillium raistrickii. Chin. J. Mar. Drugs 2024, 43, 10–16. [Google Scholar] [CrossRef]
  50. Kishore, P.H.; Reddy, M.V.; Gunasekar, D.; Caux, C.; Bodo, B. A new naphthoquinone from Ceiba pentandra. J. Asian Nat. Prod. Res. 2003, 5, 227–230. [Google Scholar] [CrossRef]
  51. Sreeramulu, K.; Rao, K.V.; Rao, C.V.; Gunasekar, D. A new naphthoquinone from Bombax malabaricum. J. Asian Nat. Prod. Res. 2001, 3, 261–265. [Google Scholar] [CrossRef]
  52. Lee, I.S.; Kaneda, N.; Suttisri, R.; El-Lakany, A.M.; Sabri, N.N.; Kinghorn, A.D. New orthoquinones from the roots of Salvia lanigera. Planta Med. 1998, 64, 632–634. [Google Scholar] [CrossRef]
  53. Sreelatha, T.; Hymavathi, A.; Murthy, J.M.; Rani, P.U.; Rao, J.M.; Babu, K.S. Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis Thunb. Bioorg. Med. Chem. Lett. 2010, 20, 2974–2977. [Google Scholar] [CrossRef]
  54. Kim, J.P.; Kim, W.G.; Koshino, H.; Jung, J.; Yoo, I.D. Sesquiterpene O-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry 1996, 43, 425–430. [Google Scholar] [CrossRef]
  55. Wang, D.; Xia, M.Y.; Cui, Z.; Tashiro, S.; Onodera, S.; Ikejima, T. Cytotoxic effects of mansonone E and F isolated from Ulmus pumila. Biol. Pharm. Bull. 2004, 27, 1025–1030. [Google Scholar] [CrossRef]
  56. Changwong, N.; Sabphon, C.; Ingkaninan, K.; Sawasdee, P. Acetyl- and Butyryl-cholinesterase Inhibitory Activities of Mansorins and Mansonones. Phytother. Res. 2012, 26, 392–396. [Google Scholar] [CrossRef] [PubMed]
  57. El-Halawany, A.M.; Chung, M.H.; Ma, C.-M.; Komatsu, K.; Nishihara, T.; Hattori, M. Anti-estrogenic activity of mansorins and mansonones from the heartwood of Mansonia gagei DRUMM. Chem. Pharm. Bull. 2007, 55, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
  58. Panichayupakaranant, P.; Charoonratana, T.; Sirikatitham, A. RP-HPLC Analysis of Rhinacanthins in Rhinacanthus nasutus: Validation and Application for the Preparation of Rhinacanthin High-Yielding Extract. J. Chromatogr. Sci. 2009, 47, 705–708. [Google Scholar] [CrossRef] [PubMed]
  59. Wu, T.-S.; Tien, H.-J.; Yeh, M.-Y.; Lee, K.-H. Isolation and cytotoxicity of rhinacanthin-A and -B, two naphthoquinones, from Rhinacanthus nasutus. Phytochemistry 1988, 27, 3787–3788. [Google Scholar] [CrossRef]
  60. Luo, J.; Wu, Z.L.; Huang, X.J.; Zhang, X.Q.; Fan, C.L.; Ye, W.C.; Wang, Y. Two new pyranonaphthoquinone compounds from Mansoa alliacea (Lam.) A.H.Gentry. China J. Chin. Mat. Med. 2021, 46, 3364–3367. [Google Scholar] [CrossRef]
  61. Kitagawa, R.R.; Villegas, W.; Carlos, I.Z.; Raddi, M.S.G. Antitumor and immunomodulatory effects of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin. Rev. Bras. Farmacogn. 2011, 21, 1084–1088. [Google Scholar] [CrossRef]
  62. Onegi, B.; Kraft, C.; Köhler, I.; Freund, M.; Jenett-Siems, K.; Siems, K.; Beyer, G.; Melzig, M.F.; Bienzle, U.; Eich, E. Herbal remedies traditionally used against malaria part 6 -: Antiplasmodial activity of napthoquinones and one anthraquinone from Stereospermum kunthianum. Phytochemistry 2002, 60, 39–44. [Google Scholar] [CrossRef]
  63. Kittakoop, P.; Punya, J.; Kongsaeree, P.; Lertwerawat, Y.; Jintasirikul, A.; Tanticharoen, M.; Thebtaranonth, Y. Bioactive naphthoquinones from Cordyceps unilateralis. Phytochemistry 1999, 52, 453–457. [Google Scholar] [CrossRef]
  64. Ford, P.W.; Gadepelli, M.; Davidson, B.S. Halawanones A-D, New polycyclic quinones from a marine-derived streptomycete. J. Nat. Prod. 1998, 61, 1232–1236. [Google Scholar] [CrossRef]
  65. El-Hady, S.; Bukuru, J.; Kesteleyn, B.; Van Puyvelde, L.; Nguyen, T.V.; De Kimpe, N. New pyranonaphthoquinone and pyranonaphthohydroquinone from the roots of Pentas longiflora. J. Nat. Prod. 2002, 65, 1377–1379. [Google Scholar] [CrossRef] [PubMed]
  66. Yamamoto, Y.; Kinoshita, Y.; Thor, G.R.; Hasumi, M.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Yoshimura, I. Isofuranonaphthoquinone derivatives from cultures of the lichen Arthonia cinnabarina (DC.) Wallr. Phytochemistry 2002, 60, 741–745. [Google Scholar] [CrossRef] [PubMed]
  67. Naoe, A.; Ishibashi, M.; Yamamoto, Y. Cribrarione A, a new antimicrobial naphthoquinone pigment from a myxomycete Cribraria purpurea. Tetrahedron 2003, 59, 3433–3435. [Google Scholar] [CrossRef]
  68. Bezabih, M.; Motlhagodi, S.; Abegaz, B.M. Isofuranonaphthoquinones and phenolic and knipholone derivatives from the roots of Bulbine capitata. Phytochemistry 1997, 46, 1063–1067. [Google Scholar] [CrossRef]
  69. Piggott, M.J.; Wege, D. The synthesis of 5-hydroxy-3-methylnaphtho[2,3-c]furan-4,9-dione and 5,8-dihydroxy-1-methylnaphtho[2,3-c]furan-4,9-dione. Aust. J. Chem. 2003, 56, 691–702. [Google Scholar] [CrossRef]
  70. Ito, C.; Katsuno, S.; Kondo, Y.; Tan, H.T.; Furukawa, H. Chemical constituents of Avicennia alba. Isolation and structural elucidation of new naphthoquinones and their analogues. Chem. Pharm. Bull. 2000, 48, 339–343. [Google Scholar] [CrossRef]
  71. Williams, R.B.; Norris, A.; Miller, J.S.; Razafitsalama, L.J.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G.I. Two new cytotoxic naphthoquinones from Mendoncia cowanii from the rainforest of Madagascar. Planta Med. 2006, 72, 564–566. [Google Scholar] [CrossRef]
  72. Gormann, R.; Kaloga, M.; Li, X.C.; Ferreira, D.; Bergenthal, D.; Kolodziej, H. Furanonaphthoquinones, atraric acid and a benzofuran from the stem barks of Newbouldia laevis. Phytochemistry 2003, 64, 583–587. [Google Scholar] [CrossRef]
  73. Kishore, N.; Mishra, B.B.; Tiwari, V.K.; Tripathi, V. Difuranonaphthoquinones from Plumbago zeylanica roots. Phytochem. Lett. 2010, 3, 62–65. [Google Scholar] [CrossRef]
  74. Cai, X.H.; Luo, X.D.; Zhou, J.; Hao, X.J. Quinones from Chirita eburnea. J. Nat. Prod. 2005, 68, 797–799. [Google Scholar] [CrossRef]
  75. Verdán, M.H.; Koolen, H.H.F.; Salvador, M.J.; Barison, A.; Stefanello, M.E.A. A New Naphthoquinone from Sinningia leucotricha (Gesneriaceae). Nat. Prod. Commun. 2015, 10, 625–626. [Google Scholar] [CrossRef] [PubMed]
  76. Gupta, P.K.; Singh, P. A naphthoquinone derivative from Tectona grandis (Linn.). J. Asian Nat. Prod. Res. 2004, 6, 237–240. [Google Scholar] [CrossRef] [PubMed]
  77. Gafner, S.; Wolfender, J.-L.; Nianga, M.; Hostettmann, K. A naphthoquinone from Newbouldia laevis roots. Phytochemistry 1998, 48, 215–216. [Google Scholar] [CrossRef]
  78. Ito, C.; Kondo, Y.; Rao, K.S.; Tokuda, H.; Nishino, H.; Furukawa, H. Chemical constituents of Glycosmis pentaphylla: Isolation of a novel naphthoquinone and a new acridone alkaloid. Chem. Pharm. Bull. 1999, 47, 1579–1581. [Google Scholar] [CrossRef]
  79. Zhong, Y.J.; Wen, Q.F.; Li, C.Y.; Su, X.H.; Yuan, Z.P.; Li, Y.F. Two New Naphthoquinone Derivatives from Lysionotus pauciflorus. Helv. Chim. Acta 2013, 96, 1750–1756. [Google Scholar] [CrossRef]
  80. Li, Q.; Guo, Z.H.; Wang, K.B.; Zhang, X.S.; Lou, Y.T.; Zhao, Y.Q. Two new 1,4-naphthoquinone derivatives from Impatiens balsamina L. flowers. Phytochem. Lett. 2015, 14, 8–11. [Google Scholar] [CrossRef]
  81. Luo, Y.; Shen, H.Y.; Shen, Q.X.; Cao, Z.H.; Zhang, M.; Long, S.Y.; Wang, Z.B.; Tan, J.W. A new anthraquinone and a new naphthoquinone from the whole plant of Spermacoce latifolia. J. Asian Nat. Prod. Res. 2017, 19, 869–876. [Google Scholar] [CrossRef]
  82. Tangmouo, J.G.; Meli, A.L.; Komguem, J.; Kuete, V.; Ngounou, F.N.; Lontsi, D.; Beng, V.P.; Choudhary, M.I.; Sondengam, B.L. Crassiflorone, a new naphthoquinone from Diospyros crassiflora (Hien). Tetrahedron Lett. 2006, 47, 3067–3070. [Google Scholar] [CrossRef]
  83. Hussain, H.; Krohn, K.; Ahmad, V.U.; Miana, G.A.; Green, I.R. Lapachol: An overview. Arkivoc 2007, 2007, 145–171. [Google Scholar] [CrossRef]
  84. Hasan, A.; Furumoto, T.; Begum, S.; Fukui, H. Hydroxysesamone and 2,3-epoxysesamone from roots of Sesamum indicum. Phytochemistry 2001, 58, 1225–1228. [Google Scholar] [CrossRef]
  85. Hayashi, K.; Chang, F.R.; Nakanishi, Y.; Bastow, K.F.; Cragg, G.; McPhail, A.T.; Nozaki, H.; Lee, K.H. Antitumor agents. 233. Lantalueratins A–F, new cytotoxic naphthoquinones from Lantana involucrata. J. Nat. Prod. 2004, 67, 990–993. [Google Scholar] [CrossRef] [PubMed]
  86. Shukla, Y.N.; Srivastava, A.; Singh, S.C.; Kumar, S. New naphthoquinones from Arnebia hispidissima roots. Planta Med. 2001, 67, 575–577. [Google Scholar] [CrossRef] [PubMed]
  87. Ioset, J.R.; Marston, A.; Gupta, M.P.; Hostettmann, K. Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica. Phytochemistry 2000, 53, 613–617. [Google Scholar] [CrossRef] [PubMed]
  88. Sheu, J.H.; Su, J.H.; Sung, P.J.; Wang, G.H.; Dai, C.F. Novel meroditerpenoid—related metabolites from the formosan soft coral Nephthea chabrolii. J. Nat. Prod. 2004, 67, 2048–2052. [Google Scholar] [CrossRef]
  89. Winiewski, V.; Verdán, M.H.; Oliveira, C.S.; Su, X.H.; Yuan, Z.P.; Li, Y.F. Two new naphthoquinone derivatives from Sinningia conspicua (Gesneriaceae). Nat. Prod. Res. 2023, 39, 88–93. [Google Scholar] [CrossRef]
  90. Kongkathip, N.; Luangkamin, S.; Kongkathip, B.; Sangma, C.; Grigg, R.; Kongsaeree, P.; Prabpai, S.; Pradidphol, N.; Pitaviriyagul, S.; Siripong, P. Synthesis of novel rhinacanthins and related anticancer naphthoquinone esters. J. Med. Chem. 2004, 47, 4427–4438. [Google Scholar] [CrossRef]
  91. Van Puyvelde, L.; El Hady, S.; De Kimpe, N.; Feneau-Dupont, J.; Declercq, J.P. Isagarin, a new type of tetracyclic naphthoquinone from the roots of Pentas longiflora. J. Nat. Prod. 1998, 61, 1020–1021. [Google Scholar] [CrossRef]
  92. Aguiar, R.M.; David, J.P.; David, J.M. Unusual naphthoquinones, catechin and triterpene from Byrsonima microphylla. Phytochemistry 2005, 66, 2388–2392. [Google Scholar] [CrossRef]
  93. Kumar, U.S.; Aparna, P.; Rao, R.J.; Rao, T.P.; Rao, J.M. 1-methyl anthraquinones and their biogenetic precursors from Stereospermum personatum. Phytochemistry 2003, 63, 925–929. [Google Scholar] [CrossRef]
  94. Sankaram, A.V.B.; Rao, A.S.; Shoolery, J.N. Zeylanone and Isozeylanone, two novel quinones from Plumbago zeylanica. Tetrahedron 1979, 35, 1777–1782. [Google Scholar] [CrossRef]
  95. Higa, M. A new binaphthoquinone from Diospyros maritima Blume. Chem. Pharm. Bull. 1988, 36, 3234. [Google Scholar] [CrossRef]
  96. Jassbi, A.R.; Singh, P.; Jain, S.; Tahara, S. Novel naphthoquinones from Heterophragma adenophyllum. Helv. Chim. Acta 2004, 87, 820–824. [Google Scholar] [CrossRef]
  97. Cai, P.; Kong, F.M.; Ruppen, M.E.; Glasier, G.; Carter, G.T. Hygrocins A and B, naphthoquinone macrolides from Streptomyces hygroscopicus. J. Nat. Prod. 2005, 68, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
  98. Costa, S.M.O.; Lemos, T.L.G.; Pessoa, O.D.L.; Assunção, J.C.C.; Braz-Filho, R. Constituintes químicos de Lippia es (Cham.) Verbenaceae. Rev. Bras. Farmacogn. 2002, 12 (Suppl. S1), 7. [Google Scholar] [CrossRef]
  99. Bryshten, I.; Paprotny, Ł.; Olszowy-Tomczyk, M.; Wianowska, D. Quantitative Study of Vitamin K in Plants by Pressurized Liquid Extraction and LC-MS/MS. Molecules 2024, 29, 4420. [Google Scholar] [CrossRef]
  100. Uc-Cachón, A.H.; Borges-Argáez, R.; Said-Fernández, S.; Vargas-Villarreal, J.; González-Salazar, F.; Méndez-González, M.; Cáceres-Farfán, M.; Molina-Salinas, G.M. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm. Pharmacol. Ther. 2014, 27, 114–120. [Google Scholar] [CrossRef]
  101. Liu, Y.H.; Lin, F.X.; Tan, Y.F.; Yang, J.Y.; Zhang, B.; Zhou, X.M.; Song, X.M. Three new phenanthrenequinone compounds from the roots of Dendrobium. Chin. J. Org. Chem. 2021, 41, 2112–2115. [Google Scholar] [CrossRef]
  102. Sarkar, P.; Ahmed, A.; Ray, J.K. Suzuki cross coupling followed by cross dehydrogenative coupling: An efficient one pot synthesis of Phenanthrenequinones and analogues. Tetrahedron Lett. 2020, 61, 151701. [Google Scholar] [CrossRef]
  103. Xuezhao, L.; Houwei, L.; Masatake, N. Trijuganone A and B: Two New Phenanthrenequinones from Roots of Salvia trijuga. Planta Med. 1990, 56, 87–88. [Google Scholar] [CrossRef]
  104. Zhao, Y.Y.; Cui, C.B.; Cai, B.; Han, B.; Sun, Q.S. A new phenanthraquinone from the stems of Bauhinia variegata L. J. Asian Nat. Prod. Res. 2005, 7, 835–838. [Google Scholar] [CrossRef]
  105. Bhaskar, M.U.; Rao, L.J.M.; Rao, N.S.P.; Rao, P.R.M. Ochrone A, a novel 9,10-dihydro-1,4-phenanthraquinone from Coelogyne ochracea. J. Nat. Prod. 1991, 54, 386. [Google Scholar] [CrossRef]
  106. Lin, L.-G.; Yang, X.-Z.; Tang, C.-P.; Ke, C.Q.; Zhang, J.B.; Ye, Y. Antibacterial stilbenoids from the roots of Stemona tuberosa. Phytochemistry 2007, 69, 457–463. [Google Scholar] [CrossRef]
  107. Itharat, A.; Plubrukarn, A.; Kongsaeree, P.; Bui, T.; Keawpradub, N.; Houghton, P.J. Dioscorealides and dioscoreanone, novel cytotoxic naphthofuranoxepins, and 1,4-phenanthraquinone from Dioscorea membranacea Pierre. Org. Lett. 2003, 5, 2879–2882. [Google Scholar] [CrossRef]
  108. Talapatra, B.; Mukhopadhyay, P.; Chaudhury, P.; Talapatra, S.K. Denbinobin, a new phenanthraquinone from Dendrobium nobile Lindl (Orchidaceae). Indian J. Chem. Sect. B 1982, 21, 386. [Google Scholar]
  109. Bae, E.Y.; Oh, H.; Oh, W.K.; Kim, M.S.; Kim, B.S.; Kim, B.Y.; Sohn, C.B.; Osada, H.; Ahn, J.S. A new VHR dual-specificity protein tyrosine phosphatase inhibitor from Dendrobium moniliforme. Planta Med. 2004, 70, 869–870. [Google Scholar] [CrossRef]
  110. Harvey, R.B.; Edrington, T.S.; Kubena, L.F.; Rottinghaus, G.E.; Turk, J.R.; Genovese, K.J.; Ziprin, R.L.; Nisbet, D.J. Toxicity of fumonisin from Fusarium verticillioides culture material and moniliformin from Fusarium fujikuroi culture material when fed singly and in combination to growing barrows. J. Food Prot. 2002, 65, 373–377. [Google Scholar] [CrossRef]
  111. Chen, D.N.; Wu, Y.P.; Chen, Y.J.; Liu, W.J.; Wang, J.X.; He, F.; Jiang, L. Two new stilbenoids from aerial parts of Flickingeria fimbriata. J. Asian Nat. Prod. Res. 2019, 21, 117–122. [Google Scholar] [CrossRef]
  112. Wu, T.S.; Jong, T.T.; Tien, H.J.; Kuoh, C.S.; Furukawa, H.; Lee, K.H. Annoquinone-A, an antimicrobial and cytotoxic principle from Annona montana. Phytochemistry 1987, 26, 1623–1625. [Google Scholar] [CrossRef]
  113. Tezuka, Y.; Kasimu, R.; Basnet, P.; Namba, T.; Kadota, S. Aldose reductase inhibitory constituents of the root of Salvia miltiorhiza Bunge. Chem. Pharm. Bull. 1997, 45, 1306–1311. [Google Scholar] [CrossRef]
  114. Ju, J.H.; Yang, J.S.; Li, J.; Xiao, P.G. Cypripediquinone A, a new phenanthraquinone from Cypripedium macranthum (Orchidaceae). Chin. Chem. Lett. 2000, 11, 37–38. [Google Scholar]
  115. Majumder, P.L.; Sen, R.C. Bulbophyllanthrone, a phenanthraquinone from Bulbophyllum odoratissimum. Phytochemistry 1991, 30, 2092. [Google Scholar] [CrossRef]
  116. Zhao, L.Y. Study on the Chemical Constituents of Salvia bowleyana Dunn. Master’s Thesis, Hubei University of Science and Technology, China, 2023. [Google Scholar]
  117. Liang, W.; Sun, J.C.; Guo, F.X.; Zhang, X.M.; Xu, B.; Chen, Y.; Li, X. Research progress on the synthesis of anthraquinones based on the shikimic acid/o-succinylbenzoic acid pathway and polyketide pathway. Chin. Herb. Med. 2020, 51, 1939–1950. [Google Scholar]
  118. Lu, J.; Guo, Y.S.; Shi, C. Research progress on the sources and pharmacological activities of anthraquinones in medicinal plants. Guiding J. Tradit. Chin. Med. Pharm. 2024, 30, 111–116. [Google Scholar] [CrossRef]
  119. He, X.Q. Re-Evaluation of the Quality of Rhubarb Chinese Medicine Formula Granules and Comparison of Laxative Effects with Rhubarb Chinese Medicine Decoction Pieces. Master’s Thesis, Zhejiang Chinese Medical University, Hangzhou, China, 2024. [Google Scholar] [CrossRef]
  120. Dong, X.; Fu, J.; Yin, X.; Cao, S.L.; Li, X.C.; Lin, L.F.; Huyiligeqi, N.J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef]
  121. Wang, A.; Wu, C.-H.; Biehl, E. Unambiguous synthesis and spectral characterization of 1,8-dihydroxy-4-methylanthraquinone. Arkivoc 2002, 2002, 80–84. [Google Scholar] [CrossRef]
  122. El-Beih, A.A.; Kawabata, T.; Koimaru, K.; Ohta, T.; Tsukamoto, S. Monodictyquinone A: A new antimicrobial anthraquinone from a sea urchin-derived fungus Monodictys sp. Chem. Pharm. Bull. 2007, 55, 1097–1098. [Google Scholar] [CrossRef]
  123. Hind, H.G. A coloring matter of Penicillium carmino-violaceum Biourge—The constitution of carviolin. Biochem. J. 1940, 34, 577. [Google Scholar] [CrossRef]
  124. Fujimoto, H.; Nakamura, E.; Okuyama, E.; Ishibashi, M. Six immunosuppressive features from an ascomycete, Zopfiella longicaudata, found in a screening study monitored by immunomodulatory activity. Chem. Pharm. Bull. 2004, 52, 1005–1008. [Google Scholar] [CrossRef]
  125. Jadulco, R.; Brauers, G.; Edrada, R.A.; Ebel, R.; Wray, V.; Sudarsono; Proksch, P. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J. Nat. Prod. 2002, 65, 730–733. [Google Scholar] [CrossRef]
  126. Wang, Y.D.; Dong, W.; Zhou, K.; Liu, G.Y.; Li, L.M.; Lou, J.; Hu, Q.F.; Yang, H.Y. A new anthraquinone compound from the branches of Cassia siamea Lam., a Dai ethnic medicine. Chin. Herb. Med. 2015, 46, 1727–1729. [Google Scholar]
  127. Hangsamai, N.; Photai, K.; Mahaamnart, T.; Kanokmedhakul, S.; Kanokmedhakul, K.; Senawong, T.; Pitchuanchom, S.; Nontakitticharoen, M. Four New Anthraquinones with Histone Deacetylase Inhibitory Activity from Ventilago denticulata Roots. Molecules 2022, 27, 1088. [Google Scholar] [CrossRef] [PubMed]
  128. Li, X.; Hu, X.L.; Pan, T.F.; Dong, L.; Ding, L.L.; Wang, Z.Z.; Song, R.; Wang, X.Z.; Wang, N.; Zhang, Y.; et al. Kanglexin, a new anthraquinone compound, attenuates lipid accumulation by activating the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Biomed. Pharmacother. 2021, 133, 110802. [Google Scholar] [CrossRef] [PubMed]
  129. Soonthornchareonnon, N.; Suwanborirux, K.; Bavovada, R.; Patarapanich, C.; Cassady, J.M. New cytotoxic 1-azaanthraquinones and 3-aminonaphthoquinone from the stem bark of Goniothalamus marcanii. J. Nat. Prod. 1999, 62, 1390–1394. [Google Scholar] [CrossRef] [PubMed]
  130. Malysheva, S.V.; Arroyo-Manzanares, N.; Cary, J.W.; Ehrlich, K.C.; Vanden Bussche, J.; Vanhaecke, L.; Bhatnagar, D.; Di Mavungu, J.D.; De Saeger, S. Identification of novel metabolites from Aspergillus flavus by high resolution and multiple stage mass spectrometry. Food Addit. Contam. Part A 2014, 31, 111–120. [Google Scholar] [CrossRef]
  131. Kamnaing, P.; Free, S.N.Y.F.; Nkengfack, A.E.; Folefoc, G.; Fomum, Z.T. An isoflavan—quinone and a flavonol from Millettia laurentii. Phytochemistry 1999, 51, 829–832. [Google Scholar] [CrossRef]
  132. Wabo, H.K.; Kouam, S.F.; Krohn, K.; Hussain, H.; Tala, M.F.; Tane, P.; van Ree, T.; Hu, Q.X.; Schulz, B. Prenylated anthraquinones and other constituents from the seeds of Vismia laurentii. Chem. Pharm. Bull. 2007, 55, 1640–1642. [Google Scholar] [CrossRef]
  133. Bilia, A.R.; Yusuf, A.W.; Bracà, A.; Keita, A.; Morelli, I. New prenylated anthraquinones and xanthones from Vismia guineensis. J. Nat. Prod. 2000, 63, 16–21. [Google Scholar] [CrossRef]
  134. Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Fun, H.K.; Kanjana-Opas, A. Bioactive prenylated xanthones and anthraquinones from Cratoxylum formosum ssp. pruniflorum. Tetrahedron 2006, 62, 8850–8859. [Google Scholar] [CrossRef]
  135. Mammo, W.; Dagne, E.; Casser, I.; Steglich, W. Unusual anthraquinone lactones from Araliorhamnus vaginata. Phytochemistry 1990, 29, 2637. [Google Scholar] [CrossRef]
  136. Noungoue, D.T.; Antheaume, C.; Chaabi, M.; Lenta Ndjakou, B.; Ngouela, S.; Lobstein, A.; Tsamo, E. Anthraquinones from the fruits of Vismia laurentii. Phytochemistry 2008, 69, 1024–1028. [Google Scholar] [CrossRef]
  137. Tchizhova, A.Y.; Anufriev, V.P.; Denisenko, V.A.; Novikov, V.L. Synthesis of (±)-ploiariquinones A and B. J. Nat. Prod. 1995, 58, 1772. [Google Scholar] [CrossRef]
  138. Bezabih, M.; Abegaz, B.M. 4′-Demethylknipholone from aerial parts of Bulbine capitata. Phytochemistry 1998, 48, 1071–1073. [Google Scholar] [CrossRef]
  139. Dagne, E.; Steglich, W. Knipholone: A unique anthraquinone derivative from Kniphofia foliosa. Phytochemistry 1984, 23, 1729. [Google Scholar] [CrossRef]
  140. Yenew, A.; Dagne, E.; Müller, M.; Steglich, W. An anthrone, an anthraquinone and two oxanthrones from Kniphofia foliosa. Phytochemistry 1994, 37, 525. [Google Scholar] [CrossRef]
  141. Abegaz, B.M.; Bezabih, M.; Msuta, T.; Brun, R.; Menche, D.; Muehlbacher, J.; Bringmann, G. Gaboroquinones A and B and 4′-O-Demethylknipholone-4′-O-β-D-glucopyranoside, phenylanthraquinones from the roots of Bulbine frutescens. J. Nat. Prod. 2002, 65, 1117–1121. [Google Scholar] [CrossRef]
  142. Mutanyatta, J.; Bezabih, M.; Abegaz, B.M.; Dreyer, M.; Brun, R.; Kocher, N.; Bringmann, G. The first 6′-O-sulfated phenylanthraquinones: Isolation from Bulbine frutescens, structural elucidation, enantiomeric purity, and partial synthesis. Tetrahedron 2005, 61, 8475–8484. [Google Scholar] [CrossRef]
  143. Clark, B.; Capon, R.J.; Stewart, M.; Lacey, E.; Tennant, S.; Gill, J.H. Blanchaquinone: A new anthraquinone from an Australian Streptomyces sp. J. Nat. Prod. 2004, 67, 1729–1731. [Google Scholar] [CrossRef]
  144. Tsuda, M.; Nemoto, A.; Komaki, H.; Tanaka, Y.; Yazawa, K.; Mikami, Y.; Kobayashi, J. Nocarasins A-C and Brasiliquinone D, new metabolites from the actinomycete Nocardia brasiliensis. J. Nat. Prod. 1999, 62, 1640–1642. [Google Scholar] [CrossRef]
  145. Seo, E.-K.; Kim, N.-C.; Wani, M.C.; Wall, M.E.; Navarro, H.A.; Burgess, J.P.; Kawanishi, K.; Kardono, L.B.S.; Riswan, S.; Rose, W.C.; et al. Cytotoxic prenylated xanthones and the unusual compounds anthraquinobenzophenones from Cratoxylum sumatranum. J. Nat. Prod. 2002, 65, 299–305. [Google Scholar] [CrossRef]
  146. Alemayehu, G.; Woldeyesus, B.; Abegaz, B.M. (+)-Floribundone 3 from the pods of Senna septentrionalis. Bull. Chem. Soc. Ethiop. 1997, 11, 25–29. [Google Scholar] [CrossRef]
  147. Zhang, C.; Ondeyka, J.G.; Zink, D.L.; Basilio, A.; Vicente, F.; Collado, J.; Platas, G.; Bills, G.; Huber, J.; Dorso, K.; et al. Isolation, structure, and antibacterial activity of phaeosphenone from a Phaeosphaeria sp. discovered by antisense strategy. J. Nat. Prod. 2008, 71, 1304–1307. [Google Scholar] [CrossRef] [PubMed]
  148. Wirz, A.; Simmen, U.; Heilmann, J.; Calis, I.; Meier, B.; Sticher, O. Bisanthraquinone glycosides of Hypericum perforatum with binding inhibition to CRH-1 receptors. Phytochemistry 2000, 55, 941–947. [Google Scholar] [CrossRef] [PubMed]
  149. Li, C.; Shi, J.-G.; Zhang, Y.-P.; Zhang, C.-Z. Constituents of Eremurus chinensis. J. Nat. Prod. 2000, 63, 653–656. [Google Scholar] [CrossRef] [PubMed]
  150. Jing, Y.; Yang, J.; Wang, Y.; Yang, X.S.; Mu, S.Z. Anthraquinone-benzisochromanquinone dimers from Berchemia polyphylla var. leioclada. Chin. Pharm. J. 2011, 46, 661–664. [Google Scholar]
  151. Takahashi, S.; Kitanaka, S.; Takido, M.; Sankawa, U.; Shibata, S. Phlegmacins and anhydrophlegmacinquinones: Dimeric hydroanthracenes from seedlings of Cassia torosa. Phytochemistry 1977, 16, 999–1002. [Google Scholar] [CrossRef]
  152. Alemayehu, G.; Abegaz, B.M. Bianthraquinones from the seeds of Senna multiglandulosa. Phytochemistry 1996, 41, 919. [Google Scholar] [CrossRef]
  153. Gill, M.; Morgan, P.M. Pigments of fungal. Part 73. Absolute stereochemistry of fungal metabolites: Icterinoidins A1 and B1, and atrovirins B1 and B2. Arkivoc 2004, 2004, 152–165. [Google Scholar] [CrossRef]
  154. Tsaffack, M.; Nguemeving, J.R.; Kuete, V.; Ndejouong Tchize Ble, S.; Mkounga, P.; Penlap Beng, V.; Hultin, P.G.; Tsamo, E.; Nkengfack, A.E. Two new antimicrobial dimeric compounds: Febrifuquinone, a vismione-anthraquinone coupled pigment and adamabianthrone, from two Psorospermum species. Chem. Pharm. Bull. 2009, 57, 1113–1118. [Google Scholar] [CrossRef]
  155. Kanokmedhakul, S.; Kanokmedhakul, K.; Phonkerd, N.; Soytong, K.; Kongsaeree, P.; Suksamrarn, A. Antimycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. Planta Med. 2002, 68, 834–836. [Google Scholar] [CrossRef]
  156. Kuroda, M.; Mimaki, Y.; Sakagami, H.; Sashida, Y. Bulbinelonesides A-E, phenylanthraquinone glycosides from the roots of Bulbinella floribunda. J. Nat. Prod. 2003, 66, 894–897. [Google Scholar] [CrossRef]
  157. Wu, T.-S.; Lin, D.-M.; Shi, L.-S.; Damu, A.G.; Kuo, P.-C.; Kuo, Y.-H. Cytotoxic anthraquinones from the stems of Rubia wallichiana Decne. Chem. Pharm. Bull. 2003, 51, 948–950. [Google Scholar] [CrossRef] [PubMed]
  158. Perman, D.; Lajis, N.H.; Othman, A.G.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H. Anthraquinones from Hedyotis herbacea. J. Nat. Prod. 1999, 62, 1430–1431. [Google Scholar] [CrossRef] [PubMed]
  159. Pawlus, A.D.; Su, B.-N.; Keller, W.J.; Kinghorn, A.D. An anthraquinone with potent quinone reductase-inducing activity and other constituents of the fruits of Morinda citrifolia (Noni). J. Nat. Prod. 2005, 68, 1720–1722. [Google Scholar] [CrossRef]
  160. El-Gamal, A.A.; Takeya, K.; Itokawa, H.; Falim, A.F.; Amer, M.M.; Saad, H.-E.A.; Awad, S.A. Anthraquinones from Galium sinaicum. Phytochemistry 1995, 40, 245. [Google Scholar] [CrossRef]
  161. Zhang, C.L.; Guan, H.; Xi, P.Z.; Deng, T.; Gao, J.M. Anthraquinones from the roots of Prismatomeris tetrandra. Nat. Prod. Commun. 2010, 5, 1251–1252. [Google Scholar] [CrossRef]
  162. Feng, Z.M.; Jiang, J.S.; Wang, Y.H.; Zhang, P.C. Anthraquinones from the roots of Prismatomeris tetrandra. Chem. Pharm. Bull. 2005, 53, 1330–1332. [Google Scholar] [CrossRef]
  163. Chen, X.Y.; Zhang, C.; Dong, Y.R.; Zang, Y.D.; Chen, J.Q.; Jin, H.T.; Zhang, D.M. Three new anthraquinoids from Radix Dalbergiae (Huanggen) and their neuroprotective effects on nerve cells. Acta Pharm. Sin. B 2023, 58, 3710–3714. [Google Scholar] [CrossRef]
  164. Deng, S.; West, B.J.; Jensen, C.J.; Basar, S.; Westendorf, J. Development and validation of an RP-HPLC method for the analysis of anthraquinones in noni fruits and leaves. Food Chem. 2009, 116, 505–508. [Google Scholar] [CrossRef]
  165. Akihisa, T.; Matsumoto, K.; Tokuda, H.; Yasukawa, K.; Seino, K.-i.; Nakamoto, K.; Kuninaga, H.; Suzuki, T.; Kimura, Y. Anti-inflammatory and potential cancer chemopreventive constituents of the fruits of Morinda citrifolia (Noni). J. Nat. Prod. 2007, 70, 754–757. [Google Scholar] [CrossRef]
  166. Komura, K.; Mizukawa, Y.; Minami, H.; Qin, G.W.; Xu, R.S. New anthraquinones from Eleutherine americana. Chem. Pharm. Bull. 1983, 31, 4206–4208. [Google Scholar] [CrossRef]
  167. Mahabusarakam, W.; Hemtasin, C.; Chakthong, S.; Voravuthikunchai, S.P.; Olawumi, I.B. Naphthoquinones, anthraquinones and naphthalene derivatives from the bulbs of Eleutherine americana. Planta Med. 2010, 76, 345–349. [Google Scholar] [CrossRef] [PubMed]
  168. Paudel, P.; Kim, D.H.; Jeon, J.; Park, S.E.; Seong, S.H.; Jung, H.A.; Choi, J.S. Neuroprotective Effect of Aurantio-Obtusin, a Putative Vasopressin V(1A) Receptor Antagonist, on Transient Forebrain Ischemia Mice Model. Int. J. Mol. Sci. 2021, 22, 3335. [Google Scholar] [CrossRef] [PubMed]
  169. Arsenault, G.P. Fungal metabolites II. Structure of bostrycoidin, a β-azaanthraquinone from Fusarium solani D2 purple. Tetrahedron Lett. 1965, 6, 4033. [Google Scholar] [CrossRef]
  170. Ismail, N.H.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H.; Lajis, N.H. Anthraquinones from Morinda elliptica. Phytochemistry 1997, 45, 1723–1725. [Google Scholar] [CrossRef]
  171. Kumar, U.S.; Tiwari, A.K.; Reddy, S.V.; Aparna, P.; Rao, R.J.; Ali, A.Z.; Rao, J.M. Free-radical-scavenging and xanthine oxidase inhibitory constituents from Stereospermum personatum. J. Nat. Prod. 2005, 68, 1615–1621. [Google Scholar] [CrossRef]
  172. Son, J.K.; Jung, S.J.; Jung, J.H.; Fang, Z.; Lee, C.S.; Seo, C.S.; Moon, D.C.; Min, B.S.; Kim, M.R.; Woo, M.H. Anticancer constituents from the roots of Rubia cordifolia L. Chem. Pharm. Bull. 2008, 56, 213–216. [Google Scholar] [CrossRef]
  173. Chan, H.-H.; Li, C.-Y.; Damu, A.G.; Wu, T.S. Anthraquinones from Ophiorrhiza hayatana Ohwi. Chem Pharm. Bull. 2005, 53, 1232–1235. [Google Scholar] [CrossRef]
  174. Yang, L.; Pei-Juan, X.; Ze-Nai, C.; Liu, G.-M. The anthraquinones of Rhynchotechum vestitum. Phytochemistry 1998, 47, 315–317. [Google Scholar] [CrossRef]
  175. Chiriboga, X.; Gilardoni, G.; Magnaghi, I.; Finzi, P.V.; Zanoni, G.; Vidari, G. New anthracene derivatives from Coussarea macrophylla. J. Nat. Prod. 2003, 66, 905–909. [Google Scholar] [CrossRef]
  176. Xiang, W.; Song, Q.S.; Zhang, H.J.; Guo, S.P. Antimicrobial anthraquinones from Morinda angustifolia. Fitoterapia 2008, 79, 501–504. [Google Scholar] [CrossRef]
  177. Ling, S.-K.; Komorita, A.; Tanaka, T.; Fujioka, T.; Mihashi, K.; Kouno, I. Iridoids and anthraquinones from the Malaysian medicinal plant, Saprosma scortechinii (Rubiaceae). Chem. Pharm. Bull. 2002, 50, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
  178. Qiu, B.-L.; Xu, L.-X.; Wei, X.-Y.; Kang, M.; Lin, L.-d. Anthraquinones from Hemiboea subcapitata. Redai Yaredai Zhiwu Xuebao (J. Trop. Subtrop. Bot.) 2014, 22, 507–510. [Google Scholar]
  179. Yoo, N.H.; Jang, D.S.; Lee, Y.M.; Jeong, I.H.; Cho, J.-H.; Kim, J.-H.; Kim, J.S. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharmacal. Res. 2010, 33, 209–214. [Google Scholar] [CrossRef]
  180. Núñez Montoya, S.C.; Agnese, A.M.; Cabrera, J.L. Anthraquinone derivatives from Heterophyllaea pustulata. J. Nat. Prod. 2006, 69, 801–803. [Google Scholar] [CrossRef]
  181. Lin, W.Y.; Peng, C.F.; Tsai, I.L.; Chen, J.J.; Cheng, M.J.; Chen, I.S. Antitubercular constituents from the roots of Engelhardia roxburghiana. Planta Med. 2005, 71, 171–175. [Google Scholar] [CrossRef]
  182. Nagaoka, S.-I.; Uno, H.; Huppert, D. Ultrafast excited-state intramolecular proton transfer of aloesaponarin I. J. Phys. Chem. B 2013, 117, 4347–4353. [Google Scholar] [CrossRef]
  183. Yang, Y.; Liu, Y.; Yang, D.; Li, H.; Jiang, K.; Sun, J.F. Photoinduced excited state intramolecular proton transfer and spectral behaviors of aloesaponarin 1. Spectrochim. Acta Part A 2015, 151, 814–820. [Google Scholar] [CrossRef]
  184. Hemlata, K.; Kalidhar, S.B. Alatinone, an anthraquinone from Cassia alata. Phytochemistry 1993, 32, 1616. [Google Scholar] [CrossRef]
  185. Kelly, T.R.; Ma, Z.; Xu, W. Revision of the structure of przewalskinone B. Tetrahedron Lett. 1992, 33, 7713. [Google Scholar] [CrossRef]
  186. Gruen, H.; Görner, H. Photoreduction of 2-methyl-1-nitro-9,10-anthraquinone in the presence of 1-phenylethanol. Photochem. Photobiol. Sci. 2008, 7, 1344–1352. [Google Scholar] [CrossRef]
  187. Chen, B.; Wang, D.Y.; Ye, Q.; Li, B.G.; Zhang, G.L. Anthraquinones from Gladiolus gandavensis. J. Asian Nat. Prod. Res. 2005, 7, 197–204. [Google Scholar] [CrossRef] [PubMed]
  188. Van Wagoner, R.M.; Mantle, P.G.; Wright, J.L.C. Biosynthesis of scorpinone, a 2-azaanthraquinone from Amorosia littoralis, a fungus from marine sediment. J. Nat. Prod. 2008, 71, 426–430. [Google Scholar] [CrossRef] [PubMed]
  189. Scoles, D.R.; Gandelman, M.; Paul, S.; Dexheimer, T.; Dansithong, W.; Figueroa, K.P.; Pflieger, L.T.; Redlin, S.; Kales, S.C.; Sun, H. A quantitative high-throughput screen identifies compounds that lower expression of the SCA2- and ALS-associated gene ATXN2. J. Biol. Chem. 2022, 298, 102228. [Google Scholar] [CrossRef]
  190. Goulart, M.O.F.; Sant’Anna, A.E.G.; de Oliveira, A.B.; De Oliveira, G.G.; Maia, J.G.S. Azafluorenones and azaanthraquinone from Guatteria dielsiana. Phytochemistry 1986, 25, 1691. [Google Scholar] [CrossRef]
  191. Mal, D.; Ray, S. First synthesis of 9,10-dimethoxy-2-methyl-1,4-anthraquinone: A naturally occurring unusual anthraquinone. Eur. J. Org. Chem. 2008, 2008, 3014–3020. [Google Scholar] [CrossRef]
  192. Qi, F.; Zhang, W.; Xue, Y.; Geng, C.; Jin, Z.G.; Li, J.B.; Guo, Q.; Huang, X.N.; Lu, X.F. Microbial production of the plant-derived fungicide physcion. Metab. Eng. 2022, 74, 130–138. [Google Scholar] [CrossRef]
  193. Sardashti-Birjandi, A.; Mollashahi, E.; Maghsoodlou, M.T.; Yazdani-Elah-Abadi, A. Green and catalyst-free synthesis of aminoanthraquinone derivatives in solvent-free conditions. Res. Chem. Intermed. 2021, 47, 3597–3608. [Google Scholar] [CrossRef]
  194. Kouam, S.F.; Khan, S.N.; Krohn, K.; Ngadjui, B.T.; Kapche, D.G.; Yapna, D.B.; Zareem, S.; Moustafa, A.M.; Choudhary, M.I. Alpha-glucosidase inhibitory anthranols, kenganthranols A-C, from the stem bark of Harungana madagascariensis. J. Nat. Prod. 2006, 69, 229–233. [Google Scholar] [CrossRef]
  195. Eyong, K.O.; Krohn, K.; Hussain, H.; Folefoc, G.N.; Nkengfack, A.E.; Schulz, B.; Hu, Q.X. Newbouldiaquinone and newbouldiamide: A new naphthoquinone-anthraquinone coupled pigment and a new ceramide from Newbouldia laevis. Chem. Pharm. Bull. 2005, 53, 616–619. [Google Scholar] [CrossRef]
  196. Eyong, K.O.; Folefoc, G.N.; Kuete, V.; Beng, V.P.; Krohn, K.; Hussain, H.; Nkengfack, A.E.; Saeftel, M.; Sarite, S.R.; Hoerauf, A. Newbouldiaquinone A: A naphthoquinone-anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial agent from Newbouldia laevis. Phytochemistry 2006, 67, 605–609. [Google Scholar] [CrossRef]
  197. Aguinaldo, A.M.; Ocampo, O.P.M.; Bowden, B.F.; Gray, A.I.; Waterman, P.G. Tectograndone, an anthraquinone-naphthoquinone pigment from the leaves of Tectona grandis. Phytochemistry 1993, 33, 933. [Google Scholar] [CrossRef]
  198. Alemayehu, G.; Abegaz, B.; Kraus, W. A 1,4-anthraquinone-dihydroanthracenone dimer from Senna sophera. Phytochemistry 1998, 48, 699–702. [Google Scholar] [CrossRef]
  199. Hou, Y.P.; Cao, S.G.; Brodie, P.J.; Callmander, M.W.; Ratovoson, F.; Rakotobe, E.A.; Rasamison, V.E.; Ratsimbason, M.; Alumasa, J.N.; Roepe, P.D.; et al. Antiproliferative and antimalarial anthraquinones of Scutia myrtina from the Madagascar forest. Bioorg. Med. Chem. 2009, 17, 2871–2876. [Google Scholar] [CrossRef]
  200. Zhang, L.; Hu, H.; Cai, W.; Chen, S.; Sheng, P.; Fu, X. CaCO3-complexed pH-responsive nanoparticles encapsulating mitoxantrone and celastrol enhance tumor chemoimmunotherapy. Int. J. Pharm. 2024, 667 Pt A, 124860. [Google Scholar] [CrossRef]
  201. Krenn, L.; Presser, A.; Pradhan, R.; Bahr, B.; Paper, D.H.; Mayer, K.K.; Kopp, B. Sulfemodin 8-O-β-D-glucoside, a new sulfated anthraquinone glycoside, and antioxidant phenolic compounds from Rheum emodi. J. Nat. Prod. 2003, 66, 1107–1109. [Google Scholar] [CrossRef]
  202. Xia, Z.X.; Tang, Z.Y.; An, R.; Chen, Y.; Zhang, Y.Z.; Wang, X.H. A new anthraquinone glycoside from Rheum officinale. Acta Pharm. Sin. B 2012, 47, 1183–1186. [Google Scholar] [CrossRef]
  203. Tomasin, R.; Ferreira, I.C.; Sawaya, A.C.H.F.; Mazzafera, P.; Pascoal, A.C.R.F.; Salvador, M.J.; Gomes-Marcondes, M.C.C. Honey and Aloe vera Solution Increases Survival and Modulates the Tumor Size In Vivo. Mol. Nutr. Food Res. 2024, 68, e2400378. [Google Scholar] [CrossRef]
  204. Zhang, C.; Wang, R.; Liu, B.; Tu, G. Structure elucidation of a sodium salified anthraquinone from the seeds of Cassia obtusifolia by NMR technique assisted with acid-alkali titration. Magn. Reson. Chem. 2011, 49, 529–532. [Google Scholar] [CrossRef]
  205. Qhotsokoane-Lusunzi, M.E.A.; Karuso, P. Secondary metabolites from Basotho medicinal plants. I Bulbine narcissifolia. J. Nat. Prod. 2001, 64, 1368–1372. [Google Scholar] [CrossRef]
  206. Mei, R.; Liang, H.; Wang, J.; Zeng, L.H.; Lu, Q.; Cheng, Y.X. New seco-anthraquinone glucosides from Rumex nepalensis. Planta Med. 2009, 75, 1162–1164. [Google Scholar] [CrossRef]
  207. Li, B.; Zhang, D.-M.; Luo, Y.-M.; Chen, X.-G. Three new and antitumor anthraquinone glycosides from Lasianthus acuminatissimus Merr. Chem. Pharm. Bull. 2006, 54, 297–300. [Google Scholar] [CrossRef] [PubMed]
  208. Huang, T.; Ming, J.; Zhong, J.; Zhong, Y.; Wu, H.; Liu, H.; Li, B. Three new anthraquinones, one new benzochromene and one new furfural glycoside from Lasianthus acuminatissimus. Nat. Prod. Res. 2019, 33, 1916–1923. [Google Scholar] [CrossRef] [PubMed]
  209. Calis, I.; Tasdemir, D.; Ireland, C.M.; Sticher, O. Lucidin type anthraquinone glycosides from Putoria calabrica. Chem. Pharm. Bull. 2002, 50, 701–702. [Google Scholar] [CrossRef]
  210. Lee, W.; Ku, S.-K.; Kim, T.H.; Bae, J.S. Emodin-6-O-β-D-glucoside inhibits HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem. Toxicol. 2013, 52, 97–104. [Google Scholar] [CrossRef]
  211. Chang, L.C.; Chávez, D.; Gills, J.J.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Rubiasins A-C, new anthracene derivatives from the roots and stems of Rubia cordifolia. Tetrahedron Lett. 2000, 41, 7157–7162. [Google Scholar] [CrossRef]
  212. Rossi, D.; Ahmed, K.M.; Gaggeri, R.; Della Volpe, S.; Maggi, L.; Mazzeo, G.; Longhi, G.; Abbate, S.; Corana, F.; Martino, E.; et al. (R)-(−)-Aloesaponol III 8-Methyl Ether from Eremurus persicus: A Novel Compound against Leishmaniosis. Molecules 2017, 22, 519. [Google Scholar] [CrossRef]
  213. Krenn, L.; Pradhan, R.; Presser, A.; Reznicek, G.; Kopp, B. Anthrone C-glucosides from Rheum emodi. Chem. Pharm. Bull. 2004, 52, 391–393. [Google Scholar] [CrossRef]
  214. Thurman, P.F.; Chai, W.; Rosankiewicz, J.R.; Rogers, H.J.; Lawson, A.M.; Draper, P. Possible intermediates in the biosynthesis of mycoside B by Mycobacterium microti. Eur. J. Biochem. 1993, 212, 705–711. [Google Scholar] [CrossRef]
  215. Rodríguez-Gamboa, T.; Victor, S.R.; Fernandes, J.B.; Fo, E.R.; Silva, M.d.G.d.; Vieira, P.C.; Pagnocca, F.C.; Bueno, O.C.; Hebling, M.J.A.; Castro, O.C. Anthrone and oxanthrone C,O-diglycosides from Picramnia teapensis. Phytochemistry 2000, 55, 837–841. [Google Scholar] [CrossRef]
  216. Diaz, F.; Chai, H.B.; Mi, Q.; Su, B.-N.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; et al. Anthrone and oxanthrone C-glycosides from Picramnia latifolia collected in Peru. J. Nat. Prod. 2004, 67, 352–356. [Google Scholar] [CrossRef]
  217. Flamini, G.; Catalano, S.; Caponi, C.; Panizzi, L.; Morelli, I. Three anthrones from Rubus ulmifolius. Phytochemistry 2002, 59, 873–876. [Google Scholar] [CrossRef] [PubMed]
  218. Habtemariam, S. Knipholone anthrone from Kniphofia foliosa induces a rapid onset of necrotic cell death in cancer cells. Fitoterapia 2010, 81, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
  219. Ndjakou Lenta, B.; Ngouela, S.; Fekam Boyom, F.; Tantangmo, F.; Tchouya, G.R.F.; Tsamo, E.; Gut, J.; Rosenthal, P.J.; Connolly, J.D. Anti-plasmodial activity of some constituents of the root bark of Harungana madagascariensis Lam. (Hypericaceae). Chem. Pharm. Bull. 2007, 55, 464–467. [Google Scholar] [CrossRef]
  220. Kouam, S.F.; Yapna, D.B.; Krohn, K.; Ngadjui, B.T.; Ngoupayo, J.; Choudhary, M.I.; Schulz, B. Antimicrobial prenylated anthracene derivatives from the leaves of Harungana madagascariensis. J. Nat. Prod. 2007, 70, 600–603. [Google Scholar] [CrossRef]
  221. Wanjohi, J.M.; Yenew, A.; MIDIWO, J.O.; Heydenreich, M.; Peter, M.G.; Dreyer, M.; Reichert, M.; Bringmann, G. Three dimeric anthracene derivatives from the fruits of Bulbine abyssinica. Tetrahedron 2005, 61, 2667–2674. [Google Scholar] [CrossRef]
  222. Fiedler, H.P.; Dieter, A.; Gulder, T.A.; Kajahn, I.; Hamm, A.; Brown, R.; Jones, A.L.; Goodfellow, M.; Müller, W.E.; Bringmann, G. Genoketides A1 and A2, new octaketides and biosynthetic intermediates of chrysophanol produced by Streptomyces sp. AK 671. J. Antibiot. 2008, 61, 464–473. [Google Scholar] [CrossRef]
  223. Elsworth, C.; Gill, M.; Saubern, S. Biosynthesis of tetrahydroanthraquinones in fungi. Phytochemistry 2000, 55, 23–27. [Google Scholar] [CrossRef]
  224. Kan, E.; Katsuyama, Y.; Maruyama, J.I.; Tamano, K.; Koyama, Y.; Ohnishi, Y. Efficient heterologous production of atrochrysone carboxylic acid-related polyketides in an Aspergillus oryzae host with enhanced malonyl-coenzyme A supply. J. Gen. Appl. Microbiol. 2020, 66, 195–199. [Google Scholar] [CrossRef]
  225. Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020, 25, 1324. [Google Scholar] [CrossRef]
  226. Botta, B.; Delle Monache, F.; Delle Monache, G.; Menichini, F. Psorolactones and other metabolites from Psorospermum glaberrimum. Tetrahedron 1988, 44, 7193–7198. [Google Scholar] [CrossRef]
  227. Chevalier, Q.; Gallé, J.B.; Wasser, N.; Mazan, V.; Villette, C.; Mutterer, J.; Elustondo, M.M.; Girard, N.; Elhabiri, M.; Schaller, H.; et al. Unravelling the puzzle of anthranoid metabolism in living plant cells using spectral imaging coupled to mass spectrometry. Metabolites 2021, 11, 571. [Google Scholar] [CrossRef] [PubMed]
  228. Mbwambo, Z.H.; Apers, S.; Moshi, M.J.; Kapingu, M.C.; Van Miert, S.; Claeys, M.; Brun, R.; Cos, P.; Pieters, L.; Vlietinck, A. Anthranoid compounds with antiprotozoal activity from Vismia orientalis. Planta Med. 2004, 70, 706–710. [Google Scholar] [CrossRef] [PubMed]
  229. Tiani, G.M.; Ahmed, I.; Krohn, K.; Green, I.R.; Nkengfack, A.E. Kenganthranol F, a new anthranol from Psorospermum aurantiacum. Nat. Prod. Commun. 2013, 8, 103–104. [Google Scholar] [CrossRef] [PubMed]
  230. Li, Y.; Li, X.; Lee, U.; Kang, J.S.; Choi, H.D.; Sona, B.W. A new radical scavenging anthracene glycoside, asperflavin ribofuranoside, and polyketides from a marine isolate of the fungus Microsporum. Chem. Pharm. Bull. 2006, 54, 882–883. [Google Scholar] [CrossRef]
  231. Lv, L.; Tian, X.Y.; Fang, W.S. Three new antioxidant C-glucosylanthrones from Aloe nobilis. J. Asian Nat. Prod. Res. 2010, 12, 443–447. [Google Scholar] [CrossRef]
  232. Solis, P.N.; Ravelo, A.G.; Gonzalez, A.G.; Gupta, M.P.; Phillipson, J.D. Bioactive anthraquinone glycosides from Picramnia antidesma spp. fessonia. Phytochemistry 1995, 38, 477–480. [Google Scholar] [CrossRef]
  233. Hernández-Medel, R.; Pereda-Miranda, R. Cytotoxic anthraquinone derivatives from Picramnia antidesma. Planta Med. 2002, 68, 556–558. [Google Scholar] [CrossRef]
  234. Dagne, E.; Bisrat, D.; Van Wyk, B.E.; Viljoen, A.; Hellwig, V.; Steglich, W. Anthrones from Aloe microstigma. Phytochemistry 1997, 44, 1271–1274. [Google Scholar] [CrossRef]
  235. Farah, M.H.; Andersson, R.; Samuelsson, G. Microdontin A and B: Two new aloin derivatives from Aloe microdonta. Planta Med. 1992, 58, 88–93. [Google Scholar] [CrossRef]
  236. Rho, T.; Kil, H.W.; Seo, Y.J.; Shin, K.J.; Wang, D.; Yoon, K.D. Isolation of six anthraquinone diglucosides from cascara sagrada bark by high-performance countercurrent chromatography. J. Sep. Sci. 2020, 43, 4036–4046. [Google Scholar] [CrossRef]
  237. Rodríguez-Gamboa, T.; Fernandes, J.B.; Fo, E.R.; da Silva, M.F.D.G.F.; Vieira, P.C.; Castro, O.C. Two anthrones and one oxanthrone from Picramnia teapensis. Phytochemistry 1999, 51, 583–586. [Google Scholar] [CrossRef]
  238. Yang, J.B.; Li, L.; Dai, Z.; Wu, Y.; Geng, X.C.; Li, B.; Ma, S.C.; Wang, A.G.; Su, Y.L. Polygonumnolides C1-C4; minor dianthrone glycosides from the roots of Polygonum multiflorum Thunb. J. Asian Nat. Prod. Res. 2016, 18, 813–822. [Google Scholar] [CrossRef] [PubMed]
  239. Rideout, J.; Sutherland, I. Pigments of marine animals. XV Bianthrones and related polyketides from Lamprometra palmata gyges and other species of crinoids. Aust. J. Chem. 1985, 38, 793–808. [Google Scholar] [CrossRef]
  240. Overy, D.P.; Berrue, F.; Correa, H.; Hanif, N.; Hay, K.; Lanteigne, M.; Mquilian, K.; Duffy, S.; Boland, P.; Jagannathan, R.; et al. Sea foam as a source of fungal inoculum for the isolation of biologically active natural products. Mycology 2014, 5, 130–144. [Google Scholar] [CrossRef]
  241. Cohen, P.A.; Towers, G.H.N. The anthraquinones of Heterodermia obscurata. Phytochemistry 1995, 40, 911–915. [Google Scholar] [CrossRef]
  242. Politi, M.; Sanogo, R.; Ndjoko, K.; Guilet, D.; Wolfender, J.L.; Hostettmann, K.; Morelli, I. HPLC-UV/PAD and HPLC-MS(n) analyses of leaf and root extracts of Vismia guineensis and ion and identification of two new bianthrones. Phytochem. Anal. 2010, 15, 364. [Google Scholar] [CrossRef]
  243. Form, I.C.; Bonus, M.; Gohlke, H.; Lin, W.; Daletos, G.; Proksch, P. Xanthone, benzophenone and bianthrone derivatives from the hypersaline lake-derived fungus Aspergillus wentii. Bioorg. Med. Chem. 2019, 27, 115005. [Google Scholar] [CrossRef]
  244. Meirelles, G.D.C.; Bridi, H.; Rates, S.M.K.; Poser, G.L.V. Southern Brazilian Hypericum species, promising sources of bioactive metabolites. Stud. Nat. Prod. Chem. 2018, 59, 491–507. [Google Scholar]
  245. Aly, A.H.; Debbab, A.; Clements, C.; Edrada-Ebel, R.A.; Orlikova, B.; Diederich, M.; Wray, V.; Lin, W.H.; Proksch, P. NF-κB inhibitors and antitrypanosomal metabolites from endophytic fungus Penicillium sp. isolated from Limonium tubiflorum. Bioorg. Med. Chem. 2011, 19, 414–421. [Google Scholar] [CrossRef]
  246. Yang, J.; Yan, Z.; Ren, J.; Su, Y. Polygonumnolides A1-B3, minor dianthrone derivatives from the roots of Polygonum multiflorum Thunb. Arch. Pharm. Res. 2018, 41, 617–624. [Google Scholar] [CrossRef]
  247. Yang, J.B.; Tian, J.Y.; Dai, Z.; Ye, F.; Ma, S.C.; Wang, A.G. α-Glucosidase inhibitors extracted from the roots of Polygonum multiflorum Thunb. Fitoterapia 2017, 117, 65–70. [Google Scholar] [CrossRef] [PubMed]
  248. Lenta, B.N.; Devkota, K.P.; Ngouela, S.; Boyom, F.F.; Naz, Q.; Choudhary, M.I.; Tsamo, E.; Rosenthal, P.J.; Sewald, N. Anti-plasmodial and cholinesterase inhibiting activities of some constituents of Psorospermum glaberrimum. Chem. Pharm. Bull. 2010, 56, 222–226. [Google Scholar] [CrossRef] [PubMed]
  249. Le, P.; Mai, F.; Guéritte, V.; Dumontet, M.; Van, T. Cytotoxicity of rhamnosylanthraquinones and rhamnosylanthrones from Rhamnus nepalensis. J. Nat. Prod. 2001, 64, 1162–1168. [Google Scholar] [CrossRef]
  250. Botta, B.; Dall’Olio, G.; Ferrari, F.; Vinciguerra, V.; Scurria, R.; Iacomacci, P.; Ferrari, F.; Delle Monache, G.; Misiti, D. Cell suspension cultures of Cassia didymobotrya: Mization of growth and secondary metabolite production by application of the orthogonal n method. J. Plant Physiol. 1989, 135, 290–294. [Google Scholar] [CrossRef]
  251. Nawong, B.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Kanjana-Opas, A.; Chantrapromma, K.; Fun, H.-K. Quinonoids from the barks of Cratoxylum formosum subsp. pruniflorum. Can. J. Chem. 2007, 85, 341–345. [Google Scholar] [CrossRef]
  252. Sibanda, S.; Nyanyira, C.; Nicoletti, M.; Galefi, C. Ochnabianthrone: A trans-9,9′-bianthrone from Ochna pulchra. Phytochemistry 1990, 29, 3974–3976. [Google Scholar] [CrossRef]
  253. Sasakl, K.N.N.; Yamauchi, K.; Kuwano, S. Isolation of a new aloe-emodin dianthrone diglucoside from senna and its potentiating effect on the purgative activity of sennoside A in mice. J. Pharm. Pharmacol. 1985, 37, 703–706. [Google Scholar] [CrossRef]
  254. Oshio, H.; Imai, S.; Fujioka, S.; Sugawara, T.; Miyamoto, M.; Tsukui, M. Investigation of Rhubarbs. III New purgative constituents, sennosides E and F. Chem. Pharm. Bull. 1974, 22, 823–831. [Google Scholar] [CrossRef]
  255. Lemli, J.; Bequeker, R.; Cuveele, J. Sennidin C, reidin B and reidin C, heterodianthrones of the fresh roots of rhubarb. Pharm. Weekbl. 1964, 99, 613–616. [Google Scholar]
  256. Gao, W.; Jin, L.; Liu, C.; Zhang, N.; Zhang, R.; Bednarikova, Z.; Gazova, Z.; Bhunia, A.; Siebert, H.C.; Dong, H. Inhibition behavior of sennoside A and sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int. J. Biol. Macromol. 2021, 178, 424–433. [Google Scholar] [CrossRef]
  257. Alemayehu, G.; Abegaz, B.; Snatzke, G.; Duddeck, H. Bianthrones from Senna longiracemosa. Phytochemistry 1993, 32, 1273–1277. [Google Scholar] [CrossRef]
  258. Macedo, E.M.S.d.; Wiggers, H.J.; Silva, M.G.V.; Braz-Filho, R.; Andricopulo, A.D.; Montanari, C.A. A new bianthron glycoside as itor of Trypanosoma cruzi glyceraldehyde 3-phosphate dehydrogenase activity. J. Braz. Chem. 2009, 20, 947–953. [Google Scholar] [CrossRef]
  259. Xiang, W.; Long, Z.; Zeng, J.; Zhu, X.; Yuan, M.; Wu, J.; Wu, Y.; Liu, L. Mechanism of Radix Rhei et rhizome intervention in cerebral infarction: A research based on chemoinformatics and systematic pharmacology. Evid.-Based Complement. Alternat. Med. 2021, 2021, 6789835. [Google Scholar] [CrossRef]
  260. Sehgal, V.N.; Verma, P.; Khurana, A. Anthralin/dithranol in dermatology. Int. J. Dermatol. 2014, 53, e449-60. [Google Scholar] [CrossRef]
  261. Zhang, Y.B.; Wang, Y.R.; Wang, Z.Y.; Ma, C.K.; Shi, Y.J. Optimization of the extraction process for rutin from corn silk by alkali extraction and acid precipitation. Chem. Biol. Eng. 2021, 38, 27–31. [Google Scholar]
  262. Zhang, L.M.; Tian, B.; Mao, H.; Su, Y.Q.; Lv, D. Optimization of the extraction process for anthraquinones from Cassia obtusifolia. Biochem. Eng. J. 2024, 10, 93–96+108. [Google Scholar]
  263. Cao, L.L.; Ruan, C.Q.; Gao, J.L.; Li, X.; Zhao, M.; Li, Q. Study on the extraction process of anthraquinones from Rubia cordifolia rhizomes. Liaoning Chem. Ind. 2024, 53, 501–505+529. [Google Scholar] [CrossRef]
  264. Du, Z.X. Determination of plumbagin content in fresh and dry stems of Plumbago zeylanica. Anhui Agric. Sci. 2009, 37, 16363–16364. [Google Scholar] [CrossRef]
  265. Li, M.J.; Deng, Q.G.; Andong, Z.Y. Overview of separation and purification processes for active ingredients in Chinese medicine. J. Qiqihar Univ. 2006, 2, 7–10. [Google Scholar]
  266. Dong, J.X.; Jia, A.L.; Dong, X.L.; Qiu, Z.D. Study on the extraction process of anthraquinones from Polygonum multiflorum. J. Changchun Univ. Chin. Med. 2012, 28, 150–151. [Google Scholar] [CrossRef]
  267. Zhu, K.; Yu, Y.; Dong, X.L.; Qiu, Y.; Zhang, X.Y.; Qiu, Z.D. Study on the extraction process of anthraquinones from Rheum officinale by CO2 supercritical fluid extraction. J. Jilin Chin. Med. 2013, 33, 1261–1263. [Google Scholar] [CrossRef]
  268. Zhao, J.L.; Kang, Y.; Sun, H.; Li, X.Q. Determination of hydroquinone and phenol in cosmetics by solid-phase extraction-high performance liquid chromatography. Chin. J. Health Lab. Sci. 2019, 29, 16–18. [Google Scholar]
  269. Chen, D.M. Key Technologies for Quantitative and Confirmatory Analysis of Veterinary Drug Residues in Animal-Derived Foods. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2010. [Google Scholar]
  270. Ong, E.S.; Len, S.M. Evaluation of pressurized liquid extraction and pressurized hot water extraction for tanshinone I and IIA in Salvia miltiorrhiza using LC and LC-ESI-MS. J. Chromatogr. Sci. 2004, 42, 211–216. [Google Scholar] [CrossRef] [PubMed]
  271. Wang, P. Isolation and Identification of Polyphenols and Anthraquinones from Smilax scobinicaulis. Master’s Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2013. [Google Scholar] [CrossRef]
  272. He, Y.; Zhang, Y.L.; Zhang, G.R. Extraction, separation and structure identification of browning products from pomegranate peel. Sci. Technol. Food Ind. 2008, 4, 133–136. [Google Scholar] [CrossRef]
  273. Huang, J.; Yu, L.; Peng, X.S.; Zheng, R.; Xu, Y.; Ni, L.J. Determination and mass spectrometric confirmation of lawsone in cosmetics by high performance liquid chromatography. Chin. J. Health Lab. Sci. 2022, 32, 1182–1186. [Google Scholar]
  274. Tian, G.; Zhang, T.Y.; Zhang, Y.B.; Ito, Y. Separation of tanshinones from Salvia miltiorrhiza Bunge by multidimensional counter-current chromatography. J. Chromatogr. A 2002, 945, 281–285. [Google Scholar] [CrossRef]
  275. Lu, C.G. Study on the Extraction Process of Effective Components from Aloe by Supercritical CO2. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2007. [Google Scholar]
  276. Yang, N.; Zhou, C.J.; Wen, R. Research progress in extraction and separation technologies of Chinese herbal medicines. J. Baotou Med. Coll. 2015, 31, 143–145. [Google Scholar] [CrossRef]
  277. Lu, Z.K. Component Analysis and Biological Activity Study of Green Walnut Peel Pigment. Master’s Thesis, Shihezi University, Shihezi, China, 2022. [Google Scholar] [CrossRef]
  278. Zhang, Z.J. Study on the Synthesis Methods of Resveratrol Compounds and Their Derivatives. Master’s Thesis, Hunan University, Shihezi, China, 2008. [Google Scholar]
  279. Qiu, B.L. Synthesis and Property Study of Emodin Derivatives. Master’s Thesis, Fuzhou University, Shihezi, China, 2010. [Google Scholar]
  280. Wang, Y.; Chen, J.W.; Li, F.; Bian, H.T. Acute phototoxicity mechanism and QSAR study of anthraquinones to Daphnia magna. In Proceedings of the 5th National Conference on Environmental Chemistry, Dalian, China, 10 May 2009. [Google Scholar]
  281. Shen, J.; Zhang, M.Y.; Guo, Z.T.; Han, S.H.; Li, H.T.; Zhou, Z.Y.; Peng, M.Y. Immunomodulatory and therapeutic effects of embelin on systemic lupus erythematosus mice. J. Army Med. Univ. 2022, 44, 363–370. [Google Scholar] [CrossRef]
  282. Siegelin, M.D.; Gaiser, T.; Siegelin, Y. The XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochem. Int. 2009, 55, 423–430. [Google Scholar] [CrossRef]
  283. Chen, Y.Y.; Li, J.; Hu, J.D.; Zheng, J.; Zheng, Z.H.; Zhu, L.F.; Chen, X.J.; Lin, Z.X. Study on the reversal effect of emodin on multidrug resistance in HL-60/ADR resistant cells. J. Exp. Hematol. 2013, 21, 1413–1422. [Google Scholar]
  284. Chen, S.-C.; Chen, Q.-W.; Ko, C.-Y. Chrysophanol induces cell death and inhibits invasiveness through alteration of calcium levels in HepG2 human liver cancer cells. Chin. J. Integr. Med. 2024, 31, 434–440. [Google Scholar] [CrossRef] [PubMed]
  285. Kraemer, S.; Crauwels, P.; Bohn, R.; Radzimski, C.; Szaszak, M.; Klinger, M.; Rupp, J.; van Zandbergen, G. AP-1 transcription factor serves as a molecular switch between Chlamydia pneumoniae replication and persistence. Infect. Immun. 2015, 83, 2651–2660. [Google Scholar] [CrossRef] [PubMed]
  286. Avci, E.; Arikoglu, H.; Kaya, D.E. Investigation of juglone effects on metastasis and angiogenesis in pancreatic cancer cells. Gene 2016, 588, 74–78. [Google Scholar] [CrossRef]
  287. Zhu, F.; Wu, G.; He, Y.Q.; Li, Z.Y.; Peng, G.; Ren, J.H. Effects of plumbagin on proliferation of hepatoma cell 2 and expression of vascular endothelial growth factor. Chin. Herbal Med. 2010, 41, 775–778. [Google Scholar]
  288. Yang, J.G.; Wang, H.Y.; Gao, X.S.; Li, X.H. Effects of aloe-emodin on the biological behaviors of cervical cancer HeLa cells. Hebei Med. J. 2018, 40, 814–818. [Google Scholar]
  289. Itharat, A.; Plubrukan, A.; Kaewpradub, N.; Chuchom, T.; Ratanasuwan, P.; Houghton, P.J. Selective cytotoxicity and antioxidant effects of compounds from Dioscorea membranacea rhizomes. Nat. Prod. Commun. 2007, 2, 643–648. [Google Scholar] [CrossRef]
  290. Thangaraj, S.; Tsao, W.-S.; Luo, Y.-W.; Lee, Y.-J.; Chang, C.-F.; Lin, C.-C.; Uang, B.-J.; Yu, C.-C.; Guh, J.-H.; Teng, C.-M. Total synthesis of moniliformediquinone and calanquinone A as potent inhibitors for breast cancer. Tetrahedron 2011, 67, 6166–6172. [Google Scholar] [CrossRef]
  291. Zhang, X.W.; Cheng, M.; Wang, X.J.; Ji, Y.L.; Zhou, C.S. Inhibitory effects of phenanthrenequinone from Dendrobium nobile on the proliferation and metastasis of human ovarian cancer cells. Pharmacol. Clin. Chin. Mat. Med. 2016, 32, 72–75+19. [Google Scholar] [CrossRef]
  292. Yang, N.; Li, C.; Li, H.L.; Liu, M.; Cai, X.J.; Cao, F.J.; Feng, Y.B.; Li, M.L.; Wang, X.B. Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells. Front. Pharmacol. 2019, 10, 709. [Google Scholar] [CrossRef]
  293. Li, H.; Wang, X.; Liu, Y.; Pan, D.F.; Wang, Y.; Yang, N.; Xiang, L.C.; Cai, X.J.; Feng, Y.B. Hepatoprotection and hepatotoxicity of Polygonum multiflorum, a Chinese medicinal herb: Context of the paradoxical effect. Food Chem. Toxicol. 2017, 108, 407–418. [Google Scholar] [CrossRef]
  294. Xu, H. Idebenone Protects Against Oxidative Stress-Induced Neuronal Cell Apoptosis by Regulating the CD38-SIRT3-P53 Pathway. Master’s Thesis, Jilin University, Ürümqi, China, 2023. [Google Scholar]
  295. Kumar, S.; Gautam, S.; Sharma, A. Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013, 755, 30–41. [Google Scholar] [CrossRef] [PubMed]
  296. Liu, T. Study on the Antioxidant and Antibacterial Activities and Antibacterial Mechanism of Juglone. Master’s Thesis, Shanxi Normal University, Ürümqi, China, 2018. [Google Scholar]
  297. Hou, Y.S. Analysis of Naphthoquinones in Arnebia euchroma and Their Antioxidant Ntitumor Activities In Vitro. Master’s Thesis, Xinjiang Medical University, Ürümqi, China, 2020. [Google Scholar] [CrossRef]
  298. Chen, J.; Yin, Z.; Yu, N.; Ou, S.S.; Wang, X.; Li, H.P.; Zhu, H.L. Tanshinone alleviates UVA-induced melanogenesis in melanocytes via the Nrf2-regulated antioxidant defense signaling pathway. Curr. Mol. Med. 2024, 24, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
  299. Fang, M.; Huang, D.R.; Zhang, J.W.; Liao, W.J.; Wu, F.; Liu, Y.W. Tanshinone IIA inhibits oxidative stress and exerts anti-hepatocellular carcinoma effects by regulating the PI3K/Akt and Nrf2/HO-1 signaling pathways. China J. Chin. Mater. Med. 2024, 49, 6724–6734. [Google Scholar] [CrossRef]
  300. Mellado, M.; Madrid, A.; Peña-Cortés, H.; López, R.; Jara, C.; Espinoza, L. Antioxidant activity of anthraquinones isolated from leaves of Muehlenbeckia hastulata (J.E.Sm.) Johnst. (Polygonaceae). J. Chil. Chem. Soc. 2013, 58, 1767–1770. [Google Scholar] [CrossRef]
  301. Liu, M.Y.; Pan, X.L.; Li, X.B.; Wu, B. Study on the antioxidant activity of metal complexes of aloe-emodin. J. Sichuan Univ. Med. Sci. Ed. 2021, 52, 241–247. [Google Scholar] [CrossRef]
  302. Hu, T.; Feng, D.; Teng, L.; Zhou, G.F.; Liu, S. Extraction of naphthoquinones from the leaves of Juglans mandshurica and their antioxidant activities in vitro. Food Ind. 2022, 43, 29–32. [Google Scholar]
  303. Pan, J. Extraction of Total Anthraquinones from Rubia cordifolia and Preliminary Study on Their Antioxidant and Anti-Inflammatory Activities. Master’s Thesis, Guangzhou University of Chinese Medicine, Guangzhou, China, 2017. [Google Scholar] [CrossRef]
  304. Liu, M.X.; Yang, S.Q.; Xia, X.K.; Tan, W.J.; Xiang, M.X. Optimization of extraction process and anti-inflammatory study of naphthoquinones from Arnebia euchroma. J. Wuhan Inst. Technol. 2023, 45, 401–406. [Google Scholar] [CrossRef]
  305. Wang, Q. Study on the Necrosis-Targeting Property of Mono-Anthraquinones and Their Application in the Evaluation of Myocardial Activity. Master’s Thesis, Nanjing University of Chinese Medicine, Nanjing, China, 2016. [Google Scholar]
  306. Hu, X.H.; Meng, K.; Wang, Z.; Di, M.J. Research progress on the antitumor activity of anthraquinones. Chin. J. Med. Guid. 2023, 25, 1223–1229. [Google Scholar]
  307. Lu, Z.K.; Wu, Q.Z.; Zhang, J.; Mao, X.Y. Antibacterial effect and mechanism of juglone green walnut peel against Escherichia coli. Food Sci. 2023, 44, 65–73. [Google Scholar]
  308. Yang, H.; Lee, P.J.; Jeong, E.J.; Kim, H.P.; Kim, Y.C. Selective apoptosis in hepatic stellate cells ates the antifibrotic effect of phenanthrenes from Dendrobium nobile. Phytother. Res. 2012, 26, 980. [Google Scholar] [CrossRef]
  309. Tang, D.X.; Tan, Z.H.; Liang, Y.Y.; Cheng, L.; Huang, L. Preliminary study on the cathartic effect and anism of anthraquinones from Rheum officinale. Lishizhen Med. Mater. Med. Res. 2007, 6, 1314. [Google Scholar]
  310. Chen, Y.Y.; Cao, Y.J.; Tang, Y.P.; Yue, S.J.; Duan, J.A. Comparative pharmacodynamic, pharmacokinetic and tissue distribution of Dahuang-Gancao decoction in normal and experimental constipation mice. Chin. J. Nat. Med. 2019, 17, 871–880. [Google Scholar] [CrossRef] [PubMed]
  311. Zhang, Z.Y.; Yang, L.; Huang, X.Y.; Wang, M.X.; Ma, Z.C.; Tang, X.L.; Wang, Y.G.; Gao, Y. Regulatory effects of THSG and anthraquinones from Polygonum multiflorum on CYP3A4 mediated by human pregnane X receptor. China J. Chin. Mater. Med. 2017, 42, 4827–4833. [Google Scholar] [CrossRef]
  312. Hu, X.Q.; Geng, Z.Y.; Li, Q.L.; Fang, H.L.; Zhang, X.Q. Experimental study on different doses of processed Polygonum multiflorum and the degree of liver injury in rats. Shaanxi J. Tradit. Chin. Med. 2007, 10, 1420–1421. [Google Scholar]
  313. Mao, Z.H.; Liu, Q.; Wang, X.; Wen, H.R. Study on the hepatotoxicity of anthraquinones from Rheum officinale. In Proceedings of the 6th National Annual Conference on Pharmacotoxicology, Chongqing, China; 2016. [Google Scholar]
  314. Wen, H.R.; Wang, Y.N.; Yang, Y.; Zhao, T.T.; Ma, S.C.; Wang, Q. Risk assessment of gene mutations induced by emodin-type monoanthrones. Chin. J. Pharmacovigil. 2020, 17, 455–460. [Google Scholar] [CrossRef]
  315. Li, C.L.; Ma, J.; Li, H.J. Research progress on the absorption and metabolism of anthraquinones. Pharm. Biotechnol. 2012, 19, 557–560. [Google Scholar] [CrossRef]
  316. Huang, H.; Li, X.Y. Research progress of melanosis coli. Yunnan Med. J. 2008, 29, 595–597. [Google Scholar]
  317. Steer, H.W.; Colin-Jones, D.G. Melanosis coli: Studies of the toxic effects of irritant purgatives. J. Pathol. 1975, 115, 199–205. [Google Scholar] [CrossRef]
  318. Cheng, Y. Study on the Potential Toxic Effects of Metabolic Products and Monomer Components of Anthraquinones from Rheum officinale on Human Colon Cells. Master’s Thesis, Northwestern University, Xi’an, China, 2021. [Google Scholar] [CrossRef]
  319. Lan, J.; Wen, H.R.; Huang, Z.Y.; Wang, Q.; Ma, S.C. Study on the cytotoxicity of anthraquinone monomer components from Polygonum multiflorum to HK-2 cells. Chin. J. Pharmacovigil. 2023, 20, 616–622+628. [Google Scholar] [CrossRef]
  320. Chang, M.H.; Huang, F.J.; Chan, W.H. Emodin induces embryonic toxicity in mouse blastocysts through apoptosis. Toxicology 2012, 299, 25–32. [Google Scholar] [CrossRef]
  321. Yao, K.Z.; Kang, Q.M.; Liu, W.B.; Chen, D.N.; Wang, L.F.; Li, S. Chronic exposure to tire rubber-derived contaminant 6PPD-quinone impairs sperm quality and induces the damage of reproductive capacity in male mice. J. Hazard. Mater. 2024, 470, 134165. [Google Scholar] [CrossRef] [PubMed]
Figure 1. The number of references based on quinones.
Figure 1. The number of references based on quinones.
Toxics 13 00559 g001
Figure 2. Classification of the skeletal structures of quinone compounds.
Figure 2. Classification of the skeletal structures of quinone compounds.
Toxics 13 00559 g002
Figure 3. Synthetic pathways of quinone compounds.
Figure 3. Synthetic pathways of quinone compounds.
Toxics 13 00559 g003
Figure 4. Extraction and separation methods for quinone compounds.
Figure 4. Extraction and separation methods for quinone compounds.
Toxics 13 00559 g004
Figure 5. Flow chart of the separation of anthraquinone compounds from pomegranate peels.
Figure 5. Flow chart of the separation of anthraquinone compounds from pomegranate peels.
Toxics 13 00559 g005
Table 6. Names and molecular formulas of dianthrone compounds.
Table 6. Names and molecular formulas of dianthrone compounds.
No.NameResourceFormulaTypeRef.
481polygonumnolide C1Pleuropterus multiflorus (Thunb.) NakaiC36H32O13type I[238]
482polygonumnolide C2Pleuropterus multiflorus (Thunb.) NakaiC36H32O13type I[238]
483polygonumnolide C3Pleuropterus multiflorus (Thunb.) NakaiC36H32O13type I[238]
484polygonumnolide C4Pleuropterus multiflorus (Thunb.) NakaiC36H32O13type I[238]
485trans-emodin dianthronesPleuropterus multiflorus (Thunb.) NakaiC30H22O8type I[238]
486cis-emodin dianthronesPleuropterus multiflorus (Thunb.) NakaiC30H22O8type I[238]
487(+)-crinemodin-rhodoptilometrin
dianthrone
Himerometra magnipinna AH ClarkC35H32O8type I[239]
4887,7′-dichlorohypericinHeterodermia obscurata (Nyl.) Trevis.C30H14Cl2O8type I[240]
489nephrolaevigatin ANephroma laevigatum Ach.C30H20Cl2O8type I[241]
490nephrolaevigatin BNephroma laevigatum Ach.C30H20ClO8type I[241]
491bioanthrone 1Vismia guineensis (L.) ChoisyC50H54O8type I[242]
492flavoobscurin BHeterodermia obscurata (Nyl.) Trevis.C30H19Cl4O8type I[241]
4938,8′-dihydroxy-1,1′,3,3′-tetramethoxy-6,6′-dimethyl-10,10′-dianthroneAspergillus wentii WehmerC34H30O8type I[243]
494hypericinHypericum monogynum L.C30H16O8type I[244]
495pseudohypericinHypericum monogynum L.C30H16O9type I[244]
496neobulgarone ELimonium tubiflorum (Delile) KuntzeC32H24Cl2O8type I[245]
497polygonumnolide A1Pleuropterus multiflorus (Thunb.) NakaiC37H34O13type II[246]
498polygonumnolide A2Pleuropterus multiflorus (Thunb.) NakaiC37H34O13type II[246]
499polygonumnolide A3Pleuropterus multiflorus (Thunb.) NakaiC37H34O13type II[246]
500polygonumnolide A4Pleuropterus multiflorus (Thunb.) NakaiC37H34O13type II[246]
501polygonumnolide B1Pleuropterus multiflorus (Thunb.) NakaiC43H44O18type II[246]
502polygonumnolide B2Pleuropterus multiflorus (Thunb.) NakaiC43H44O18type II[246]
503polygonumnolide B3Pleuropterus multiflorus (Thunb.) NakaiC43H44O18type II[246]
504polygonumnolide EPleuropterus multiflorus (Thunb.) NakaiC37H34O13type II[247]
505adamadianthronePsorospermum febrifugum SpachC45H46O8type II[154]
506bioanthrone 2Vismia guineensis (L.) ChoisyC30H20O11type II[242]
507glaberianthronePsorospermum glaberrimum Hochr.C45H46O8type II[248]
508prinoidin-emodin dianthronesRhamnus napalensis (Wall.) LawsonC40H37O14type II[249]
509(S)-2-hydroxybutyl-4,4′,5,5′,7-pentahydroxy-2′-methoxy-2,7′-dimethyl-10,10′-dioxo-9,9′,10,10′-tetrahydro-[9,9′-bianthracene]-3-carboxylateAspergillus wentii WehmerC36H32O11type II[249]
510(S)-2-hydroxybutyl 4,4′,5,7-tetrahydroxy-5′,7′-dimethoxy-2,2′-dimethyl-10,10′-dioxo-9,9′,10,10′-tetrahydro-[9,9′-bianthracene]-3-carboxylateAspergillus wentii WehmerC37H34O11type II[249]
5112,4′,5-trihydroxy-4,5′,7′-trimethoxy-2′,7-dimethyl-[9,9′-bianthracene]-10,10′(9H,9′H)-dioneAspergillus wentii WehmerC33H28O8type II[249]
512dianthrone A1Psorospermum febrifugum SpachC50H54O8type III[154]
513bioanthrone 3Vismia guineensisC30H20O12type III[242]
514dianthrone A2aPsorospermum glaberrimum Hochr.C45H46O8type III[242]
515dianthrone A2bPsorospermum glaberrimum Hochr.C40H38O8type III[248]
516prinoidin dianthrones rhamnepalinsRhamnus napalensis (Wall.) M.A.LawsonC50H51O20type III[249]
5178,8′-dihydroxy-1,1′,3,3′-tetramethoxy-6,6′-dimethyl-10,10′-dianthroneAspergillus wentii WehmerC34H30O8type III[243]
518physcion-10,10′-bianthroneCassia didymobotrya
Fresen.
C32H28O8type III[250]
519dianthrone JCratoxylum formosum subsp. pruniflorum (Kurz) GogeleinC42H42O8type III[251]
520(−)-trans-2,2′-Digeranyloxy-7,7′-dimethyl-4,4′,5,5′-tetrahydroxy-9,9′-dianthroneOchna pulchra Hook.C50H54O8type III[252]
521trans aloe-emodin dianthrone diglucosideCassia angustifolia VahlC42H42O18type IV[253]
522sennoside BSenna alexandrina Milll.C42H38O20type V[254]
523(−)-ochnadianthroneOchna pulchra Hook.C50H54O8type V[255]
524sennidin CRheum palmatum L.C30H20O9type VI[255]
525sennoside ASenna alexandrina Milll.C42H40O19type VI[254]
526sennoside DSenna alexandrina Milll.C48H44O25type VI[256]
527sennoside ESenna alexandrina Milll.C48H44O25type VI[254]
528sennoside FSenna alexandrina Milll.C48H44O25type VI[254]
529chrysophanol dianthroneHeterodermia obscurata (Nyl.) Trevis.C30H21O6type VII[240]
530chrysophanol-l0,l0′-dianthroneCassia didymobotrya Fresen.C30H22O6type VII[250]
531chrysophanol-isophyscion dianthroneSenna longiracemosa (Vatke) LockC31H25O7type VII[257]
532isophyscion dianthroneSenna longiracemosa (Vatke) LockC32H28O8type VII[257]
533martianine 1Senna martiana (Benth.) H. S. Irwin & BarnebyC43H44O16type VII[258]
534palmidin BRheum palmatum L.C30H22O7type VII[258]
535palmidin CRheum palmatum L.C30H22O7type VIII[259]
536neobulgarone GLimonium tubiflorum (Delile) KuntzeC32H24Cl2O9other[245]
537chrysophanol-physcion-l0,l0′-dianthroneCassia didymobotrya Fresen.C31H25O7other[250]
5381,8,1′,8′-tetrahydroxy-10,10′-dianthroneHypericum Tourn. ex L.C28H18O6other[260]
539palmidin ARheum palmatum L.C30H22O8other[259]
540rendin ARheum palmatum L.C30H20O9other[255]
541rendin BRheum palmatum L.C30H20O8other[255]
542rendin CRheum palmatum L.C31H22O9other[255]
Table 7. Anti-proliferative effects of quinone compounds on cells.
Table 7. Anti-proliferative effects of quinone compounds on cells.
No.NameCell LineIC50
15embelinPC-33.7 μmol/L
LNCaP5.7 μmol/L
HeLa5–7 μmol/L
64jugloneBxPC-321.05 μmol/L
68plumbaginHepG2(27.08 ± 0.40) μmol/L
HL-600.8 μmol/L
197dioscoreanoneMCF-720 μmol/L
198denbinobinK5621.84 μmol/L
GSK51821.6 μmol/L
219tanshinone IIAA54942.45 μmol
BGC-82361.46 μmol/L
Hep-29.6 μmol/L
226chrysophanolHepG230 μmol/L
MCF-725 μmol/L
A54918 μmol/L
227emodinHL-60/ADR5.79 μmol/L
SMMC-772121.6 μmol/L
HL-6020 μmol/L
L02135 μmol/L
521aloe-emodinHeLa58.3 μmol/L
HepG210 μmol/L
HCT1168.7 μmol/L
Table 8. Antioxidant activity of quinone compounds.
Table 8. Antioxidant activity of quinone compounds.
No.NameDPPHABTS
68plumbaginIC50 = 50 μmol/L
64jugloneIC50 = 0.498 mg/mLIC50 = 0.189 mg/mL
142alkanninIC50 = 40 μg/mL
217tanshinone IIC50 = 0.07 μmol/L
227emodinEC50 = 147.87 mg/L
IC50 = 112.32 mg/mL
385physcionIC50 = 56.05 mg/mL
521aloe-emodinEC50 = 6.03 mg/L
Table 9. Carcinogenic quinone compounds and their classification.
Table 9. Carcinogenic quinone compounds and their classification.
No.NameClassification
225dantron(chrysazin;1,8-dihydroxyanthraquinone)2B
3281-hydroxyanthraquinone2B
3361-amino-2,4-dibromoanthraquinone2B
3372-methyl-1-nitroanthraquinone2B
397mitoxantrone2B
59tris(aziridinyl)-para-benzoquinone (triaziquone)3
60aziridyl benzoquinone3
3711-amino-2-methylanthraquinone3
3862-aminoanthraquinone3
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Z.; Yao, R.; Guo, H.; Jing, W.; Guo, X.; Liu, X.; Pan, Y.; Cao, P.; Zhang, L.; Yang, J.; et al. Research Progress on Chemical Compositions, Pharmacological Activities, and Toxicities of Quinone Compounds in Traditional Chinese Medicines. Toxics 2025, 13, 559. https://doi.org/10.3390/toxics13070559

AMA Style

Li Z, Yao R, Guo H, Jing W, Guo X, Liu X, Pan Y, Cao P, Zhang L, Yang J, et al. Research Progress on Chemical Compositions, Pharmacological Activities, and Toxicities of Quinone Compounds in Traditional Chinese Medicines. Toxics. 2025; 13(7):559. https://doi.org/10.3390/toxics13070559

Chicago/Turabian Style

Li, Zhe, Rui Yao, Hong Guo, Wenguang Jing, Xiaohan Guo, Xiaoqiu Liu, Yingni Pan, Pei Cao, Lei Zhang, Jianbo Yang, and et al. 2025. "Research Progress on Chemical Compositions, Pharmacological Activities, and Toxicities of Quinone Compounds in Traditional Chinese Medicines" Toxics 13, no. 7: 559. https://doi.org/10.3390/toxics13070559

APA Style

Li, Z., Yao, R., Guo, H., Jing, W., Guo, X., Liu, X., Pan, Y., Cao, P., Zhang, L., Yang, J., Cheng, X., & Wei, F. (2025). Research Progress on Chemical Compositions, Pharmacological Activities, and Toxicities of Quinone Compounds in Traditional Chinese Medicines. Toxics, 13(7), 559. https://doi.org/10.3390/toxics13070559

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop