Omega-3 Fatty Acid Intake and Oxylipin Production in Response to Short-Term Ambient Air Pollution Exposure in Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Study Subjects
2.2. Exposure Assessment
2.3. Plasma Lipid Extraction and Purification
2.4. Liquid Chromatography–Tandem Mass Spectrometry
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Ambient Air Pollution Measurements
3.3. Oxylipin Measurements
3.4. Overview of the Associations Between Exposure to Air Pollution and Oxylipins


3.5. Associations Between Exposure to Air Pollution and Altered Pro-Inflammatory Oxylipins
3.6. Associations Between Exposure to Air Pollution and Altered Pro-Resolving Oxylipins
3.7. Oxylipins, Biological Pathways, and Circulating Inflammatory Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AA | arachidonic acid |
| ALA | α-Linolenic acid |
| CRP | C-reactive protein |
| COX | cyclooxygenase |
| CYP | cytochrome p450 |
| DGLA | dihomo-γ-linoleic acid |
| DHA | docosahexaenoic acid |
| DiHETrE | dihydroxyeicosa-trienoic acid |
| DiHOME | dihydroxyoctadecenoic acid |
| DPA | docosapentaenoic acid |
| EPA | eicosapentaenoic acid |
| EpOME | epoxyoctadecenoic acid |
| HDHA | hydroxydocosahexaenoic acid |
| HEPE | hydrooxyeicosapentaenoic acid |
| HETE | hydroxyeicosatetraenoic acid |
| HETrE | hydroxyeicosatrienoic acid |
| HHTrE | hydroxyheptadecatrienoic acid |
| HODE | hydroxyoctadecadienoic acid |
| HOTrE | hydroxyoctadecatrienoic acid |
| IL | interleukin |
| LA | linoleic acid |
| LOX | lipoxygenase |
| MRM | Multiple Reaction Monitoring |
| n-3 FA | omega-3 polyunsaturated fatty acid |
| n-6 FA | omega-6 polyunsaturated fatty acids |
| OxoODE | oxooctadecadienoic acid |
| PPAR | peroxisome proliferator-activated receptors |
| sEH | soluble epoxide hydrolase |
| sICAM1 | soluble intercellular adhesion molecule-1 |
| TNFα | tumor necrosis factor alpha |
| TXB2 | thromboxane B2 |
References
- Kim, C.S.; Alexis, N.E.; Rappold, A.G.; Kehrl, H.; Hazucha, M.J.; Lay, J.C.; Schmitt, M.T.; Case, M.; Devlin, R.B.; Peden, D.B.; et al. Lung function and inflammatory responses in healthy young adults exposed to 0.06 ppm ozone for 6.6 hours. Am. J. Respir. Crit. Care Med. 2011, 183, 1215–1221. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Kelly, F.J. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 2003, 60, 612–616. [Google Scholar] [CrossRef]
- Carlsten, C.; Salvi, S.; Wong, G.W.K.; Chung, K.F. Personal strategies to minimise effects of air pollution on respiratory health: Advice for providers, patients and the public. Eur. Respir. J. 2020, 55, 1902056. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Brauer, M.; Bhatnagar, A.; Bhatt, D.L.; Brook, J.R.; Huang, W.; Munzel, T.; Newby, D.; Siegel, J.; Brook, R.D.; et al. Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e411–e431. [Google Scholar] [CrossRef]
- Arjomandi, M.; Balmes, J.R.; Frampton, M.W.; Bromberg, P.; Rich, D.Q.; Stark, P.; Alexis, N.E.; Costantini, M.; Hollenbeck-Pringle, D.; Dagincourt, N.; et al. Respiratory Responses to Ozone Exposure. MOSES (The Multicenter Ozone Study in Older Subjects). Am. J. Respir. Crit. Care Med. 2018, 197, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Balmes, J.R.; Arjomandi, M.; Bromberg, P.A.; Costantini, M.G.; Dagincourt, N.; Hazucha, M.J.; Hollenbeck-Pringle, D.; Rich, D.Q.; Stark, P.; Frampton, M.W. Ozone effects on blood biomarkers of systemic inflammation, oxidative stress, endothelial function, and thrombosis: The Multicenter Ozone Study in oldEr Subjects (MOSES). PLoS ONE 2019, 14, e0222601. [Google Scholar] [CrossRef] [PubMed]
- Frampton, M.W.; Balmes, J.R.; Bromberg, P.A.; Stark, P.; Arjomandi, M.; Hazucha, M.J.; Rich, D.Q.; Hollenbeck-Pringle, D.; Dagincourt, N.; Alexis, N.; et al. Multicenter Ozone Study in oldEr Subjects (MOSES): Part 1. Effects of Exposure to Low Concentrations of Ozone on Respiratory and Cardiovascular Outcomes. Res. Rep. Health Eff. Inst. 2017, 192 Pt 1, 1–107. [Google Scholar]
- Rich, D.Q.; Frampton, M.W.; Balmes, J.R.; Bromberg, P.A.; Arjomandi, M.; Hazucha, M.J.; Thurston, S.W.; Alexis, N.E.; Ganz, P.; Zareba, W.; et al. Multicenter Ozone Study in oldEr Subjects (MOSES): Part 2. Effects of Personal and Ambient Concentrations of Ozone and Other Pollutants on Cardiovascular and Pulmonary Function. Res. Rep. Health Eff. Inst. 2020, 192 Pt 2, 1–90. [Google Scholar]
- Tong, H.; Zhang, S.; Shen, W.; Chen, H.; Salazar, C.; Schneider, A.; Rappold, A.G.; Diaz-Sanchez, D.; Devlin, R.B.; Samet, J.M. Lung Function and Short-Term Ambient Air Pollution Exposure: Differential Impacts of Omega-3 and Omega-6 Fatty Acids. Ann. Am. Thorac. Soc. 2022, 19, 583–593. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 2015, 15, 511–523. [Google Scholar] [CrossRef]
- Martens, D.S.; Gouveia, S.; Madhloum, N.; Janssen, B.G.; Plusquin, M.; Vanpoucke, C.; Lefebvre, W.; Forsberg, B.; Nording, M.; Nawrot, T.S. Neonatal Cord Blood Oxylipins and Exposure to Particulate Matter in the Early-Life Environment: An ENVIRONAGE Birth Cohort Study. Environ. Health Perspect. 2017, 125, 691–698. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.H.; Morisseau, C.; Zhang, M.; Dong, H.J.; Zhu, Q.M.; Huo, X.K.; Sun, C.P.; Hammock, B.D.; Ma, X.C. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase attenuated particulate matter 2.5 exposure mediated lung injury. J. Hazard. Mater. 2023, 458, 131890. [Google Scholar] [CrossRef]
- Liang, N.; Emami, S.; Patten, K.T.; Valenzuela, A.E.; Wallis, C.D.; Wexler, A.S.; Bein, K.J.; Lein, P.J.; Taha, A.Y. Chronic exposure to traffic-related air pollution reduces lipid mediators of linoleic acid and soluble epoxide hydrolase in serum of female rats. Environ. Toxicol. Pharmacol. 2022, 93, 103875. [Google Scholar] [CrossRef]
- Wang, T.; Han, Y.; Li, H.; Wang, Y.; Xue, T.; Chen, X.; Chen, W.; Fan, Y.; Qiu, X.; Gong, J.; et al. Changes in bioactive lipid mediators in response to short-term exposure to ambient air particulate matter: A targeted lipidomic analysis of oxylipin signaling pathways. Environ. Int. 2021, 147, 106314. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Browne, R.W.; Blair, R.H.; Bonner, M.R.; Tian, M.; Niu, Z.; Deng, F.; Farhat, Z.; Mu, L. Changes in arachidonic acid (AA)- and linoleic acid (LA)-derived hydroxy metabolites and their interplay with inflammatory biomarkers in response to drastic changes in air pollution exposure. Environ. Res. 2021, 200, 111401. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ramanathan, G.; Zhu, Y.; Yin, F.; Rea, N.D.; Lu, X.; Tseng, C.H.; Faull, K.F.; Yoon, A.J.; Jerrett, M.; et al. Pro-Oxidative and Proinflammatory Effects After Traveling From Los Angeles to Beijing: A Biomarker-Based Natural Experiment. Circulation 2019, 140, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Gouveia-Figueira, S.; Karimpour, M.; Bosson, J.A.; Blomberg, A.; Unosson, J.; Sehlstedt, M.; Pourazar, J.; Sandstrom, T.; Behndig, A.F.; Nording, M.L. Mass spectrometry profiling reveals altered plasma levels of monohydroxy fatty acids and related lipids in healthy humans after controlled exposure to biodiesel exhaust. Anal. Chim. Acta 2018, 1018, 62–69. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Shen, W.; Salazar, C.; Schneider, A.; Wyatt, L.H.; Rappold, A.G.; Diaz-Sanchez, D.; Devlin, R.B.; Samet, J.M.; et al. Omega-3 fatty acids attenuate cardiovascular effects of short-term exposure to ambient air pollution. Part. Fibre Toxicol. 2022, 19, 12. [Google Scholar] [CrossRef]
- Shen, W.; Weaver, A.M.; Salazar, C.; Samet, J.M.; Diaz-Sanchez, D.; Tong, H. Validation of a Dietary Questionnaire to Screen Omega-3 Fatty Acids Levels in Healthy Adults. Nutrients 2019, 11, 1470. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Shen, W.; Salazar, C.; Schneider, A.; Wyatt, L.; Rappold, A.G.; Diaz-Sanchez, D.; Devlin, R.B.; Samet, J.M.; et al. The influence of dietary intake of omega-3 polyunsaturated fatty acids on the association between short-term exposure to ambient nitrogen dioxide and respiratory and cardiovascular outcomes among healthy adults. Environ. Health 2021, 20, 123. [Google Scholar] [CrossRef]
- Polinski, K.J.; Armstrong, M.; Manke, J.; Seifert, J.; Crume, T.; Yang, F.; Clare-Salzler, M.; Holers, V.M.; Reisdorph, N.; Norris, J.M. Collection and Storage of Human Plasma for Measurement of Oxylipins. Metabolites 2021, 11, 137. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Kapoor, R.; Huang, Y.S. Gamma linolenic acid: An antiinflammatory omega-6 fatty acid. Curr. Pharm. Biotechnol. 2006, 7, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Ziboh, V.A.; Miller, C.C.; Cho, Y. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: Generation of antiinflammatory and antiproliferative metabolites123. Am. J. Clin. Nutr. 2000, 71, 361S–366S. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, A.-M.; Nieminen, P. Dihomo-γ-Linolenic Acid (20:3n-6)—Metabolism, Derivatives, and Potential Significance in Chronic Inflammation. Int. J. Mol. Sci. 2023, 24, 2116. [Google Scholar] [CrossRef]
- Barham, J.B.; Edens, M.B.; Fonteh, A.N.; Johnson, M.M.; Easter, L.; Chilton, F.H. Addition of Eicosapentaenoic Acid to γ-Linolenic Acid–Supplemented Diets Prevents Serum Arachidonic Acid Accumulation in Humans. J. Nutr. 2000, 130, 1925–1931. [Google Scholar] [CrossRef]
- Powell, W.S.; Rokach, J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim. Biophys. Acta 2015, 1851, 340–355. [Google Scholar] [CrossRef]
- Jurado-Fasoli, L.; Osuna-Prieto, F.J.; Yang, W.; Kohler, I.; Di, X.; Rensen, P.C.N.; Castillo, M.J.; Martinez-Tellez, B.; Amaro-Gahete, F.J. High omega-6/omega-3 fatty acid and oxylipin ratio in plasma is linked to an adverse cardiometabolic profile in middle-aged adults. J. Nutr. Biochem. 2023, 117, 109331. [Google Scholar] [CrossRef]
- Sonnweber, T.; Pizzini, A.; Nairz, M.; Weiss, G.; Tancevski, I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int. J. Mol. Sci. 2018, 19, 3285. [Google Scholar] [CrossRef]
- Takano, T.; Fiore, S.; Maddox, J.F.; Brady, H.R.; Petasis, N.A.; Serhan, C.N. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. J. Exp. Med. 1997, 185, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- Kayama, Y.; Minamino, T.; Toko, H.; Sakamoto, M.; Shimizu, I.; Takahashi, H.; Okada, S.; Tateno, K.; Moriya, J.; Yokoyama, M.; et al. Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J. Exp. Med. 2009, 206, 1565–1574. [Google Scholar] [CrossRef]
- Conrad, D.J. The arachidonate 12/15 lipoxygenases. A review of tissue expression and biologic function. Clin. Rev. Allergy Immunol. 1999, 17, 71–89. [Google Scholar] [CrossRef]
- Bolick, D.T.; Orr, A.W.; Whetzel, A.; Srinivasan, S.; Hatley, M.E.; Schwartz, M.A.; Hedrick, C.C. 12/15-lipoxygenase regulates intercellular adhesion molecule-1 expression and monocyte adhesion to endothelium through activation of RhoA and nuclear factor-kappaB. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2301–2307. [Google Scholar] [CrossRef]
- Wen, Y.; Gu, J.; Chakrabarti, S.K.; Aylor, K.; Marshall, J.; Takahashi, Y.; Yoshimoto, T.; Nadler, J.L. The role of 12/15-lipoxygenase in the expression of interleukin-6 and tumor necrosis factor-alpha in macrophages. Endocrinology 2007, 148, 1313–1322. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Vangaveti, V.; Baune, B.T.; Kennedy, R.L. Hydroxyoctadecadienoic acids: Novel regulators of macrophage differentiation and atherogenesis. Ther. Adv. Endocrinol. Metab. 2010, 1, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C.B.; McReynolds, C.B.; Wan, D.; Singh, N.; Goetzman, H.; Caldwell, C.C.; Supp, D.M.; Hammock, B.D. sEH-derived metabolites of linoleic acid drive pathologic inflammation while impairing key innate immune cell function in burn injury. Proc. Natl. Acad. Sci. USA 2022, 119, e2120691119. [Google Scholar] [CrossRef]
- Hildreth, K.; Kodani, S.D.; Hammock, B.D.; Zhao, L. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: A review of recent studies. J. Nutr. Biochem. 2020, 86, 108484. [Google Scholar] [CrossRef]
- Lundstrom, S.L.; Levanen, B.; Nording, M.; Klepczynska-Nystrom, A.; Skold, M.; Haeggstrom, J.Z.; Grunewald, J.; Svartengren, M.; Hammock, B.D.; Larsson, B.M.; et al. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure. PLoS ONE 2011, 6, e23864. [Google Scholar] [CrossRef]
- Upadhyay, S.; Rahman, M.; Rinaldi, S.; Koelmel, J.; Lin, E.Z.; Mahesh, P.A.; Beckers, J.; Johanson, G.; Pollitt, K.J.G.; Palmberg, L.; et al. Assessment of wood smoke induced pulmonary toxicity in normal- and chronic bronchitis-like bronchial and alveolar lung mucosa models at air–liquid interface. Respir. Res. 2024, 25, 49. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.A.; Hamilton, M.C.; Edin, M.L.; Lih, F.B.; Eccles-Miller, J.A.; Tharayil, N.; Leonard, E.; Baldwin, W.S. Increased Perfluorooctanesulfonate (PFOS) Toxicity and Accumulation Is Associated with Perturbed Prostaglandin Metabolism and Increased Organic Anion Transport Protein (OATP) Expression. Toxics 2024, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Friberg, M.; Behndig, A.F.; Bosson, J.A.; Muala, A.; Barath, S.; Dove, R.; Glencross, D.; Kelly, F.J.; Blomberg, A.; Mudway, I.S.; et al. Human exposure to diesel exhaust induces CYP1A1 expression and AhR activation without a coordinated antioxidant response. Part. Fibre Toxicol. 2023, 20, 47. [Google Scholar] [CrossRef] [PubMed]




| Characteristics | All (n = 15) | Low n-3 Group (n = 7) | High n-3 Group (n = 8) | p |
|---|---|---|---|---|
| Age (years) | 37 ± 10 | 31 ± 7 | 42 ± 9 | 0.03 |
| BMI (kg/m2) | 24.5 ± 3.1 | 24.0 ± 2.5 | 24.9 ± 3.7 | 0.56 |
| Sex | 0.99 | |||
| Female | 9 (60.0) | 4 (57.1) | 5 (62.5) | |
| Male | 6 (40.0) | 3 (42.9) | 3 (37.5) | |
| Race | 0.99 | |||
| Caucasian | 11 (73.3) | 5 (71.4) | 6 (75.0) | |
| African American | 4 (26.7) | 2 (28.6) | 2 (25.0) | |
| Marital status | 0.99 | |||
| Single | 9 (60.0) | 6 (85.7) | 3 (37.5) | |
| Married | 4 (26.7) | 0 (0) | 4 (50.0) | |
| Separated/divorced | 2 (13.3) | 1 (14.3) | 1 (12.5) | |
| Education | 0.99 | |||
| Graduate degree | 5 (33.3) | 2 (28.6) | 3 (37.5) | |
| College degree | 8 (53.3) | 4 (57.1) | 4 (50.0) | |
| High school/trade school | 2 (13.3) | 1 (14.3) | 1 (12.5) | |
| Smoking history | ||||
| Nonsmoker | 15 (100) | 7 (100) | 8 (100) | |
| SBP (mmHg) | 110.8 ± 11.6 | 116.6 ± 7.5 | 105.8 ± 12.7 | 0.06 |
| DBP (mmHg) | 69.5 ± 8.9 | 71.3 ± 9.8 | 68.0 ± 8.4 | 0.38 |
| Omega-3 index (%) | 5.4 ± 2.1 | 3.8 ± 1.1 | 6.8 ± 1.6 | 0.004 |
| Exposure | Mean ± SD | Range | IQR |
|---|---|---|---|
| PM2.5 (µg/m3) | 10.2 ± 4.1 | 1.8–68.0 | 4.7 |
| O3 (ppb) | 40.8 ± 11.1 | 10.0–71.0 | 17.0 |
| NO2 (ppb) | 5.3 ± 3.8 | 0.8–24.2 | 3.8 |
| Temperature (°C) | 16.5 ± 8.9 | −8.6–31.1 | 15.2 |
| Relative humidity (%) | 70.2 ± 15.6 | 30.0–100.0 | 22.2 |
| Oxylipin (pg/mL) | Precursor Fatty Acid | Pathway | All | Low n-3 Group (n = 34) | High n-3 Group (n = 38) | p Value |
|---|---|---|---|---|---|---|
| 12-HETE | AA | LOX | 384.0 ± 351.0 | 458.0 ± 459.0 | 318.0 ± 196.0 | 0.091 |
| 14-HDHA & 11-HDoHE | DHA | LOX | 17.5 ± 15.1 | 11.3 ± 13.1 | 23.1 ± 14.8 | <0.001 * |
| 12-HEPE | EPA | LOX | 32.0 ± 13.6 | 37.4 ± 8.4 | 27.2 ± 15.5 | 0.001 * |
| 15-HETE | AA | LOX | 182.0 ± 92.0 | 208.0 ± 115.0 | 158.0 ± 58.0 | 0.021 * |
| 13-HOTrE | ALA | LOX | 36.5 ± 20.9 | 31.6 ± 20.3 | 40.9 ± 20.7 | 0.059 |
| 15-HETrE | DGLA | LOX | 21.8 ± 11.4 | 22.3 ± 12.9 | 21.3 ± 10.1 | 0.714 |
| 17-HDHA | DHA | LOX | 10.1 ± 9.8 | 6.0 ± 7.2 | 13.8 ± 10.3 | <0.001 * |
| 18-HEPE | EPA | LOX | 32.5 ± 12.0 | 35.4 ± 0.0 | 30.0 ± 16.3 | 0.058 |
| 13-HODE | LA | LOX | 54.2 ± 112.9 | 57.6 ± 116.4 | 51.1 ± 111.2 | 0.809 |
| 13-OxoODE | LA | LOX | 36.5 ± 20.9 | 36.3 ± 22.4 | 36.6 ± 19.7 | 0.952 |
| 12-HHTrE | AA | COX | 32.7 ± 18.3 | 33.7 ± 18.6 | 31.8 ± 18.3 | 0.664 |
| TXB2 | AA | COX | 37.2 ± 23.8 | 39.6 ± 21.8 | 35.1 ± 25.5 | 0.426 |
| 12(13)-EpOME | LA | CYP | 33.3 ± 18.1 | 35.4 ± 19.0 | 31.5 ± 17.4 | 0.366 |
| 9(10)-EpOME | LA | CYP | 28.2 ± 13.5 | 25.5 ± 14.6 | 30.6 ± 12.2 | 0.111 |
| 11,12-DiHETrE | AA | EH | 190.0 ± 82.0 | 203.0 ± 106.0 | 179.0 ± 52.0 | 0.219 |
| 14,15-DiHETrE | AA | EH | 36.5 ± 20.9 | 42.4 ± 22.2 | 31.2 ± 18.4 | 0.022 * |
| 5,6-DiHETrE | AA | EH | 30.3 ± 15.0 | 27.0 ± 12.7 | 33.3 ± 16.4 | 0.075 |
| 9,10-DiHOME | LA | EH | 6484.0 ± 7614.0 | 5622.0 ± 5016.0 | 7255.0 ± 9355.0 | 0.367 |
| 9-HODE | LA | NA | 6036.0 ± 5313.0 | 5796.0 ± 5343.0 | 6251.0 ± 5349.0 | 0.720 |
| 9-OxoODE | LA | NA | 30.9 ± 10.7 | 28.4 ± 12.8 | 33.1 ± 8.0 | 0.063 |
| Precursors | Oxylipins | Key Function | PM2.5 | O3 | NO2 | |||
|---|---|---|---|---|---|---|---|---|
| Low n-3 | High n-3 | Low n-3 | High n-3 | Low n-3 | High n-3 | |||
| AA | 12-HHTrE | Pro-resolution | → | ↑lag4 | → | → | → | → |
| 12-HETE | Pro-inflammation | → | ↓lag4 | → | ↓lag4 | → | ↓lag0, lag4, lag04 | |
| 15-HETE | Pro-inflammation | → | ↓lag4 | → | ↓lag4 | → | → | |
| 5,6-DiHETrE | Pro-inflammation | → | ↓lag0, lag2 | → | → | → | → | |
| 11,12-DiHETrE | Pro-inflammation | → | ↓lag4 | → | → | → | ↓lag0, lag04 | |
| 14,15-DiHETrE | Pro-inflammation | → | ↓lag4 | → | → | → | → | |
| TXB2 | Pro-inflammation | → | → | → | → | → | ↓lag0 | |
| DGLA | 15-HETrE | Anti-inflammation | ↑lag1, lag04 | → | → | → | → | → |
| LA | 9-HODE | Pro-inflammation | → | ↓lag3, lag4 | ↓lag2 | → | → | → |
| 13-HODE | Pro-resolution | ↓lag1 | ↑lag2–4, lag04 | → | → | → | → | |
| 9-OxoODE | Pro-resolution | → | → | → | ↓lag1 | ↑lag04 | → | |
| 13-OxoODE | Pro-resolution | → | → | → | ↓lag0–1, lag04 | → | → | |
| 9,10-DiHOME | Pro-resolution | → | ↓lag4 | ↓lag2 | → | → | ↑lag0 | |
| 9(10)-EpOME | Pro-resolution | → | → | → | ↓lag1–2, lag04 | → | → | |
| 12(13)-EpOME | Pro-resolution | → | → | → | → | ↓lag04 | ↑lag1 | |
| ALA | 13-HOTrE | Pro-resolution | → | → | → | → | → | → |
| DHA | 14-HDHA and 11-HDoHE | Pro-resolution | → | → | → | ↑lag2 | → | → |
| 17-HDHA | Pro-resolution | ↑lag0–1, lag04 | → | → | ↑lag04 | ↑lag0–1, lag04 | ↑lag1, lag3, lag04 | |
| EPA | 12-HEPE | Pro-resolution | → | ↑lag2 | → | ↓lag2 | → | → |
| 18-HEPE | Pro-resolution | → | ↑lag2 | → | → | → | → | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhang, S.; Pan, X.; Schneider, A.; Diaz-Sanchez, D.; Samet, J.; Tong, H. Omega-3 Fatty Acid Intake and Oxylipin Production in Response to Short-Term Ambient Air Pollution Exposure in Healthy Adults. Toxics 2025, 13, 1063. https://doi.org/10.3390/toxics13121063
Chen H, Zhang S, Pan X, Schneider A, Diaz-Sanchez D, Samet J, Tong H. Omega-3 Fatty Acid Intake and Oxylipin Production in Response to Short-Term Ambient Air Pollution Exposure in Healthy Adults. Toxics. 2025; 13(12):1063. https://doi.org/10.3390/toxics13121063
Chicago/Turabian StyleChen, Hao, Siqi Zhang, Xiannen Pan, Alexandra Schneider, David Diaz-Sanchez, James Samet, and Haiyan Tong. 2025. "Omega-3 Fatty Acid Intake and Oxylipin Production in Response to Short-Term Ambient Air Pollution Exposure in Healthy Adults" Toxics 13, no. 12: 1063. https://doi.org/10.3390/toxics13121063
APA StyleChen, H., Zhang, S., Pan, X., Schneider, A., Diaz-Sanchez, D., Samet, J., & Tong, H. (2025). Omega-3 Fatty Acid Intake and Oxylipin Production in Response to Short-Term Ambient Air Pollution Exposure in Healthy Adults. Toxics, 13(12), 1063. https://doi.org/10.3390/toxics13121063

