Relationship between Seed Morphological Traits and Ash and Mineral Distribution along the Kernel Using Debranning in Durum Wheats from Different Geographic Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Trials
2.2. Sample Debranning and Milling
2.3. Phenotypic Evaluation
2.3.1. Grain Yield and Yield Related Trait Evaluation
2.3.2. Ash Content and Mineral Determination on Wholemeal, Semolina, and Debranned Flours
2.4. Statistical Analysis
3. Results and Discussions
3.1. Effect of G, E and G × E on Yield, Ash Content, and Seed Morphological Traits
3.2. Effect of Debranning on Ash and Mineral Content
3.3. Relationship among Kernel Traits, Ash, and Mineral Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- De Vita, P.; Mastrangelo, A.M.; Matteu, L.; Mazzucotelli, E.; Virzi, N.; Palumbo, M.; Lo Storto, M.; Rizza, F.; Cattivelli, L. Genetic improvement effects of yield stability in durum wheat genotypes grown in Italy. Field Crops Res. 2010, 119, 68–77. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Mastrangelo, A.M.; Trono, D.; Borrelli, G.M.; De Vita, P.; Fares, C.; Beleggia, R.; Platani, C.; Papa, R. The colours of durum wheat: A review. Crop Pasture Sci. 2014, 65, 1–15. [Google Scholar] [CrossRef]
- Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum wheat breeding in the Mediterranean region: current status and future prospects. Agronomy 2020, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Abdipour, M.; Ebrahimi, M.; Izadi-Darbandi, A.; Mastrangelo, A.M.; Najafian, G.; Arshad, Y.; Mirniyam, G. Association between grain size and shape and quality traits, and path analysis of thousand grain weight in Iranian bread wheat landraces from different geographic regions. Not. Bot. Horti Agrobot. 2016, 44, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Marshall, D.R.; Mares, D.J.; Moss, H.J.; Ellison, F.W. Effect of grain shape and size on milling yields in wheat. II. Experimental studies. Aust. J. Agric. Res. 1986, 37, 331–342. [Google Scholar] [CrossRef]
- Russo, M.A.; Ficco, D.B.M.; Laidò, G.; Marone, D.; Papa, R.; Blanco, A.; Gadaleta, A.; De Vita, P.; Mastrangelo, A.M. A dense durum wheat 3 T. dicoccum linkage map based on SNP markers for the study of seed morphology. Mol. Breed. 2014, 34, 1579–1597. [Google Scholar]
- Symons, S.J.; Fulcher, R.G. Determination of wheat kernel morphological variation by digital analysis. I. Variation in eastern Canadian milling quality wheat. J. Cereal Sci. 1988, 8, 211–218. [Google Scholar] [CrossRef]
- Troccoli, A.; Di Fonzo, N. Relationship between kernel size features and test weight in Triticum durum. Cereal Chem. 1999, 76, 45–49. [Google Scholar] [CrossRef]
- Choy, A.L.; Walker, C.K.; Panozzo, J.F. Investigation of wheat milling yield based on grain hardness parameters. Cereal Chem. 2015, 92, 544–550. [Google Scholar] [CrossRef]
- Sissons, M.J.; Osborne, B.G.; Hare, R.A.; Sissons, S.A.; Jackson, R. Application of the single-kernel characterization system to durum wheat testing and quality prediction. Cereal Chem. 2000, 77, 4–10. [Google Scholar] [CrossRef]
- Novaro, P.; Colucci, F.; Venora, G.; D’Egidio, M.G. Image analysis of whole grains: A noninvasive method to predict semolina yield in durum wheat. Cereal Chem. 2001, 78, 217–221. [Google Scholar] [CrossRef]
- Haraszi, R.; Sissons, M.; Juhász, A.; Kadkol, G.; Tamás, L.; Anderssen, R.S. Using rheological phenotype phases to predict rheological features of wheat hardness and milling potential of durum wheat. Cereal Chem. 2016, 93, 369–376. [Google Scholar] [CrossRef]
- Chaurand, M.; Lempereur, I.; Roulland, T.M.; Autran, J.C.; Abecassis, J. Genetic and agronomic effects on semolina milling value of durum wheat. Crop Sci. 1999, 39, 790–795. [Google Scholar] [CrossRef]
- Matsuo, R.R.; Dexter, J.E. Relationship between some durum wheat characteristics and semolina milling properties. Can. J. Plant Sci. 1980, 60, 49–53. [Google Scholar] [CrossRef]
- Troccoli, A.; Borrelli, G.M.; De Vita, P.; Fares, C.; Di Fonzo, N. Durum wheat quality: A multidisciplinary concept. J. Cereal Sci. 2000, 32, 99–113. [Google Scholar] [CrossRef]
- Cubadda, R. Evaluation of durum wheat, semolina and pasta in Europe. In Durum Wheat: Chemistry and Technology; Fabriani, G., Lintas, C., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 1988; pp. 217–228. [Google Scholar]
- Dexter, J.E.; Matsuo, R.R. Effect of semolina extraction rate on semolina characteristics and spaghetti quality. Cereal Chem. 1978, 55, 841–852. [Google Scholar]
- Fares, C.; Troccoli, A.; Di Fonzo, N. Use of friction debranning to evaluate ash distribution in Italian durum wheat cultivars. Cereal Chem. 1996, 73, 232–234. [Google Scholar]
- Hinton, J.J.C. The distribution of the ash in wheat kernel. Cereal Chem. 1959, 36, 19–31. [Google Scholar]
- Borrelli, G.M.; De Leonardis, A.M.; Platani, C.; Troccoli, A. Distribution along durum wheat kernel of the components involved in semolina colour. J. Cereal Sci. 2008, 48, 494–502. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Borrelli, G.M.; Miedico, O.; Giovanniello, V.; Tarallo, M.; Pompa, C.; De Vita, P.; Chiaravalle, A.E. Effects of grain debranning on bioactive compounds, antioxidant capacity and essential and toxic trace elements in purple durum wheats. LWT Food Sci. Technol. 2020, 118, 108734. [Google Scholar] [CrossRef]
- Peterson, C.J.; Johnson, V.A.; Mattern, P.J. Influence of cultivar and environment on mineral and protein concentrations of wheat flour, bran, and grain. Cereal Chem. 1986, 63, 183–186. [Google Scholar]
- Ficco, D.B.M.; Riefolo, C.; De Simone, V.; Di Gesù, A.M.; Beleggia, R.; Platani, C.; Cattivelli, L.; De Vita, P. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Res. 2009, 111, 235–242. [Google Scholar] [CrossRef]
- Baasandorj, T.; Ohm, J.B.; Manthey, F.; Simsek, S. Effect of kernel size and mill type on protein, milling yield, and baking quality of hard red spring wheat. Cereal Chem. 2015, 92, 81–87. [Google Scholar] [CrossRef]
- Posner, E.S.; Hibbs, A.N. Wheat: The raw material. In Wheat Flour Milling, 2nd ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2005; pp. 1–46. [Google Scholar]
- UNI ISO 2171 (Ente Nazionale Italiano di Normazione, Italia). Determination of Ash in Cereals Intended for Food Use; Ente Nazionale Italiano di Normazione: Milano, Italy, 2010. (In Italian) [Google Scholar]
- Beleggia, R.; Fragasso, M.; Miglietta, F.; Cattivelli, L.; Menga, V.; Nigro, F.; Pecchioni, N.; Fares, C. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations. Food Chem. 2018, 242, 53–61. [Google Scholar] [CrossRef]
- Iannucci, A.; Codianni, P. Phenotypic Parent selection within a Khorasan wheat collection and genetic variation in advanced breeding lines derived by hybridization with durum wheat. Front. Plant Sci. 2019, 10, 1460. [Google Scholar] [CrossRef] [PubMed]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef]
- Mefleh, M.; Conte, P.; Fadda, C.; Giunta, F.; Piga, A.; Hassounc, G.; Motzoa, R. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. J. Sci. Food Agric. 2019, 99, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Rharrabti, Y.; Garcia del Moral, L.F.; Villegas, D.; Royo, C. Durum wheat quality in Mediterranean environments III. Stability and comparative methods in analysing GxE interaction. Field Crops Res. 2003, 80, 141–146. [Google Scholar] [CrossRef]
- Gegas, V.C.; Nazari, A.; Griffiths, S.; Simmonds, J.; Fish, L.; Orford, S.; Sayers, L.; Doonan, J.H.; Snapea, J.W. A genetic framework for grain size and shape variation in wheat. Plant Cell 2010, 22, 1046–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetlar, M.R.; Rankin, G.T.; Lyman, J.F.; France, W.G. Investigation of the proximate chemical composition of the separate bran layers of wheat. Cereal Chem. 1947, 24, 111–122. [Google Scholar]
- Sovrani, V.; Blandino, M.; Scarpino, V.; Reyneri, A.; Coïsson, J.D.; Travaglia, F.; Locatelli, M.; Bordiga, M.; Montella, R.; Arlorio, M. Bioactive compound content, antioxidant activity, deoxynivalenol and heavy metal contamination of pearled wheat fractions. Food Chem. 2012, 135, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Giordano, D.; Blandino, M. Arsenic, lead and cadmium distribution in the pearled fractions of different winter wheat cultivars (Triticum aestivum L.). J. Cereal Sci. 2018, 80, 94–101. [Google Scholar] [CrossRef]
- Singh, N.; Singh, H.; Bakshi, M.S. Determining the distribution of ash in wheat using debranning and conductivity. Food Chem. 1998, 62, 169–172. [Google Scholar] [CrossRef]
- Cubadda, F.; Aureli, F.; Raggi, A.; Carcea, M. Effect of milling, pasta making and cooking on minerals in durum wheat. J. Cereal Sci. 2009, 49, 92–97. [Google Scholar] [CrossRef]
- De Brier, N.; Gomand, S.V.; Donner, E.; Paterson, D.; Delcour, J.A.; Lombi, E.; Smolders, E. Distribution of minerals in wheat grains (Triticum aestivum L.) and in roller milling fractions affected by pearling. J. Agric. Food Chem. 2015, 63, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- De Vita, P.; Li Destri Nicosia, O.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Europ. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
Genotype (G) | Environment (E) | Length (mm) | Width (mm) | Thickness (mm) | Area (mm2) | TKW (g) | TW (kg/hL) | GY (t/ha) | Ash (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cappelli | Palermo | 7.55 ± 0.01 | 3.36 ± 0.01 | 3.05 ± 0.04 | 16.46 ± 0.03 | 48.23 ± 0.01 | 80.50 ± 1.27 | 3.63 ± 0.13 | 2.30 ± 0.04 | ||||||||
Agrigento | 7.32 ± 0.01 | 3.37 ± 0.01 | 3.09 ± 0.01 | 16.44 ± 0.01 | 50.33 ± 0.01 | 80.25 ± 1.27 | 3.32 ± 0.66 | 2.00 ± 0.10 | |||||||||
Foggia | 7.33 ± 0.01 | 3.49 ± 0.02 | 3.16 ± 0.01 | 17.35 ± 0.01 | 54.00 ± 0.28 | 79.40 ± 0.78 | 2.98 ± 0.27 | 2.10 ± 0.01 | |||||||||
Mean Cappelli | 7.40 | 3.41 | 3.10 | 16.75 | 50.85 | 80.05 | 3.31 | 2.13 | |||||||||
Russello | Palermo | 7.01 ± 0.06 | 3.20 ± 0.01 | 2.94 ± 0.01 | 16.24 ± 1.28 | 40.63 ± 0.04 | 81.16 ± 1.05 | 3.08 ± 0.25 | 2.09 ± 0.01 | ||||||||
Agrigento | 7.19 ± 0.03 | 3.24 ± 0.02 | 2.99 ± 0.01 | 15.96 ± 0.71 | 42.44 ± 0.62 | 80.73 ± 1.31 | 3.21 ± 0.60 | 2.13 ± 0.05 | |||||||||
Foggia | 7.04 ± 0.09 | 3.22 ± 0.04 | 2.96 ± 0.01 | 16.19 ± 1.34 | 43.69 ± 0.26 | 76.98 ± 0.39 | 2.78 ± 0.09 | 2.03 ± 0.01 | |||||||||
Mean Russello | 7.08 | 3.22 | 2.96 | 16.13 | 42.25 | 79.62 | 3.02 | 2.08 | |||||||||
Timilia | Palermo | 6.88 ± 0.11 | 3.14 ± 0.06 | 2.90 ± 0.01 | 16.54 ± 0.30 | 37.48 ± 0.04 | 79.85 ± 0.92 | 3.42 ± 0.08 | 2.21 ± 0.03 | ||||||||
Agrigento | 6.79 ± 0.01 | 3.20 ± 0.01 | 2.91 ± 0.01 | 14.26 ± 0.01 | 39.97 ± 0.03 | 76.95 ± 1.27 | 2.98 ± 0.08 | 2.01 ± 0.06 | |||||||||
Foggia | 6.69 ± 0.01 | 3.18 ± 0.01 | 2.85 ± 0.01 | 16.54 ± 0.71 | 40.46 ± 0.06 | 77.45 ± 0.21 | 2.72 ± 0.24 | 1.90 ± 0.14 | |||||||||
Mean Timilia | 6.79 | 3.17 | 2.89 | 15.78 | 39.30 | 78.08 | 3.04 | 2.04 | |||||||||
Perciasacchi | Palermo | 7.47 ± 0.06 | 3.23 ± 0.01 | 3.12 ± 0.03 | 19.27 ± 0.54 | 62.55 ± 0.06 | 78.75 ± 0.42 | 3.15 ± 0.57 | 2.03 ± 0.01 | ||||||||
Agrigento | 7.03 ± 0.01 | 3.27 ± 0.03 | 3.10 ± 0.01 | 19.33 ± 0.18 | 64.38 ± 0.18 | 77.93 ± 0.25 | 2.27 ± 0.39 | 2.05 ± 0.01 | |||||||||
Foggia | 7.04 ± 0.04 | 3.21 ± 0.01 | 3.12 ± 0.01 | 17.74 ± 0.14 | 63.07 ± 0.04 | 79.53 ± 0.67 | 2.53 ± 0.21 | 2.03 ± 0.04 | |||||||||
Mean Perciasacchi | 7.18 | 3.24 | 3.11 | 18.78 | 63.33 | 78.74 | 2.65 | 2.04 | |||||||||
Mean Palermo | 7.22 | 3.23 | 3.00 | 17.13 | 47.22 | 80.07 | 3.32 | 2.16 | |||||||||
Mean Agrigento | 7.08 | 3.27 | 3.02 | 16.50 | 49.28 | 78.97 | 2.95 | 2.05 | |||||||||
Mean Foggia | 7.02 | 3.28 | 3.02 | 16.96 | 50.31 | 78.34 | 2.75 | 2.02 | |||||||||
Analysis of variance | F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
G | 163.3 | *** | 89.9 | *** | 342.2 | *** | 26.5 | *** | 14343.9 | *** | 5.6 | * | 3.4 | ns | 3.5 | * | |
E | 36.4 | *** | 6.0 | * | 5.9 | * | 2.1 | ns | 406.2 | *** | 7.3 | ** | 5.2 | * | 13.5 | *** | |
G × E | 15.1 | *** | 5.0 | * | 14.0 | *** | 3.9 | * | 61.4 | *** | 4.5 | * | 0.8 | ns | 5.6 | ** |
GY | TW | TKW | Length | Width | Thickness | Area | Ash-WM | Ash-DK1 | Ash-DK2 | Ash-DK3 | Ash-DK4 | Ash-DK5 | Ash-DK6 | Ash-S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | 1.00 | ||||||||||||||
TW | 0.58 | 1.00 | |||||||||||||
TKW | −0.45 | −0.04 | 1.00 | ||||||||||||
Length | 0.47 | 0.49 | 0.47 | 1.00 | |||||||||||
Width | 0.18 | 0.25 | 0.36 | 0.67 | 1.00 | ||||||||||
Thickness | −0.13 | 0.24 | 0.87 | 0.74 | 0.69 | 1.00 | |||||||||
Area | −0.39 | 0.01 | 0.85 | 0.37 | 0.17 | 0.66 | 1.00 | ||||||||
Ash-WM | 0.64 | 0.58 | −0.14 | 0.47 | 0.21 | 0.1 | −0.06 | 1.00 | |||||||
Ash-DK1 | 0.68 | 0.3 | −0.89 | −0.23 | −0.31 | −0.74 | −0.69 | 0.5 | 1.00 | ||||||
Ash-DK2 | 0.64 | 0.33 | −0.86 | −0.27 | −0.38 | −0.74 | −0.63 | 0.54 | 0.98 | 1.00 | |||||
Ash-DK3 | 0.57 | 0.19 | −0.86 | −0.35 | −0.52 | −0.83 | −0.58 | 0.41 | 0.96 | 0.97 | 1.00 | ||||
Ash-DK4 | 0.49 | 0.16 | −0.88 | −0.40 | −0.55 | −0.84 | −0.65 | 0.4 | 0.93 | 0.95 | 0.97 | 1.00 | |||
Ash-DK5 | 0.52 | 0.24 | −0.87 | −0.37 | −0.56 | −0.85 | −0.63 | 0.34 | 0.94 | 0.94 | 0.97 | 0.98 | 1.00 | ||
Ash-DK6 | 0.43 | 0.13 | −0.86 | −0.47 | −0.53 | −0.84 | −0.59 | 0.38 | 0.92 | 0.94 | 0.95 | 0.97 | 0.93 | 1.00 | |
Ash-S | −0.12 | 0.34 | 0.71 | 0.64 | 0.25 | 0.67 | 0.64 | 0.37 | −0.49 | −0.42 | −0.47 | −0.44 | −0.43 | −0.50 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficco, D.B.M.; Beleggia, R.; Pecorella, I.; Giovanniello, V.; Frenda, A.S.; Vita, P.D. Relationship between Seed Morphological Traits and Ash and Mineral Distribution along the Kernel Using Debranning in Durum Wheats from Different Geographic Sites. Foods 2020, 9, 1523. https://doi.org/10.3390/foods9111523
Ficco DBM, Beleggia R, Pecorella I, Giovanniello V, Frenda AS, Vita PD. Relationship between Seed Morphological Traits and Ash and Mineral Distribution along the Kernel Using Debranning in Durum Wheats from Different Geographic Sites. Foods. 2020; 9(11):1523. https://doi.org/10.3390/foods9111523
Chicago/Turabian StyleFicco, Donatella B.M., Romina Beleggia, Ivano Pecorella, Valentina Giovanniello, Alfonso S. Frenda, and Pasquale De Vita. 2020. "Relationship between Seed Morphological Traits and Ash and Mineral Distribution along the Kernel Using Debranning in Durum Wheats from Different Geographic Sites" Foods 9, no. 11: 1523. https://doi.org/10.3390/foods9111523
APA StyleFicco, D. B. M., Beleggia, R., Pecorella, I., Giovanniello, V., Frenda, A. S., & Vita, P. D. (2020). Relationship between Seed Morphological Traits and Ash and Mineral Distribution along the Kernel Using Debranning in Durum Wheats from Different Geographic Sites. Foods, 9(11), 1523. https://doi.org/10.3390/foods9111523