Omega-3 Fatty Acid Fortification of Plant-Based Beverages to Enhance Their Nutritional Profile
Abstract
:1. Introduction
2. Nutrition Profile of Plant-Based Beverages
Type of Beverages * | Calcium (mg/kg) | Iron (mg/kg) | Magnesium (mg/kg) | Zinc (mg/kg) | Vitamin B12 (µg/100 g) | Vitamin D (µg/100 g) | References |
---|---|---|---|---|---|---|---|
Cow milk (n = 2) | 1121 (1090–1150) | nd | 100 (100) | 3.42 (3.37–3.48) | 0.2 | nd | [6,20] |
Soy milk (n = 7) | 842 (80–1670) | 5.93 (3.29–9.86) | 200 (130–270) | 3.4 (2.4–4.43) | 0.1 (0.0–0.3) | 0.4 (0.0–1.0) | [6,20,22,23] |
Oat milk (n = 4) | 499 (20–1330) | 0.83 (0.0–1.94) | 42 (20–70) | 0.28 (0.0–0.53) | 0.1 (0.0–0.3) | 0.3 (0.0–1.1) | [6,20] |
Rice milk (n = 5) | 544 (50–1040) | 1.42 (0.0–2.42) | 68 (30–100) | 0.53 (0.4–0.73) | nd | nd | [6,20,23] |
Almond milk (n = 4) | 656 (50–1250) | 1.21 (0.72–2.22) | 95 (60–170) | 1.33 (0.62–2.74) | 0.2 (0.0–0.6) | 0.4 (0.0–1.2) | [6,20,21,23] |
Cashew milk (n = 2) | 64 (60–70) | 2.95 (1.86–4.04) | 158 (110–210) | 3.04 (1.8–4.28) | nd | nd | [6] |
Coconut milk (n = 3) | 471 (30–1330) | 0.62 (0.31–0.86) | 59 (30–90) | 0.36 (0.24–4.23) | 0.03 (0.0–0.1) | 0.2 (0.0–0.5) | [6,20,23] |
Hemp milk (n = 1) | 45 | 2.08 | 76 | 1.49 | nd | 0.2 | [6] |
3. Fatty Acid Profile of Plant-Based Beverages
4. Fortification of Plant-Based Beverages to Overcome Nutrient Deficiencies
5. Fortification of Omega-3 Fatty Acids in Plant-Based Beverages and Health Benefits
6. The Challenges and Recommendations for the Fortification of Omega-3 Fatty Acids in Plant-Based Beverages
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Aydar, E.F.; Mertdinç, Z.; Demircan, E.; Çetinkaya, S.K.; Özçelik, B. Kidney bean (Phaseolus vulgaris L.) milk substitute as a novel plant-based drink: Fatty acid profile, antioxidant activity, in-vitro phenolic bio-accessibility and sensory characteristics. Innov. Food Sci. Emerg. Technol. 2023, 83, 103254. [Google Scholar] [CrossRef]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for plant-based diets: Challenges and innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An overview on nutritional aspects of plant-based beverages used as substitutes for cow’s milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Kalavathi, M.; Madhavi, D.; Sireesha, G. Standardization of Vegan Yoghurt from Coconut and Soya Bean Milk Enriched with Watermelon Juice. J. Postharvest Technol. 2024, 12, 57–63. [Google Scholar]
- Walther, B.; Guggisberg, D.; Badertscher, R.; Egger, L.; Portmann, R.; Dubois, S.; Haldimann, M.; Kopf-Bolanz, K.; Rhyn, P.; Zoller, O.; et al. Comparison of nutritional composition between plant-based drinks and cow’s milk. Front. Nutr. 2022, 9, 988707. [Google Scholar] [CrossRef] [PubMed]
- Acquah, J.B.; Amissah, J.G.N.; Affrifah, N.S.; Wooster, T.J.; Danquah, A.O. Consumer perceptions of plant-based beverages: The Ghanaian consumer’s perspective. Future Foods 2023, 7, 100229. [Google Scholar] [CrossRef]
- Wolf, C.A.; Malone, T.; McFadden, B.R. Beverage milk consumption patterns in the United States: Who is substituting from dairy to Plant-based beverages? J. Dairy Sci. 2020, 103, 11209–11217. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- Chouraqui, J.-P. Risk Assessment of Micronutrients Deficiency in Vegetarian or Vegan Children: Not So Obvious. Nutrients 2023, 15, 2129. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Desai, S.S.; Mane, V.K.; Enman, J.; Rova, U.; Christakopoulos, P.; Matsakas, L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci. Technol. 2022, 120, 140–153. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Grieger, J.A.; Etherton, T.D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F.J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J.M. Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods 2020, 9, 288. [Google Scholar] [CrossRef] [PubMed]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Martínez-Padilla, E.; Li, K.; Frandsen, H.B.; Joehnke, M.S.; Vargas-Bello-Pérez, E.; Petersen, I.L. In vitro protein digestibility and fatty acid profile of commercial plant-based milk alternatives. Foods 2020, 9, 1784. [Google Scholar] [CrossRef]
- Jeske, S. Evaluation and Improvement of Technological and Nutritional Properties of Plant-Based Milk Substitutes. PhD Thesis, University College Cork, Cork, Ireland, 2018. [Google Scholar]
- Scholz-Ahrens, K.E.; Ahrens, F.; Barth, C.A. Nutritional and health attributes of milk and milk imitations. Eur. J. Nutr. 2020, 59, 19–34. [Google Scholar] [CrossRef]
- Decloedt, A.I.; Van Landschoot, A.; Watson, H.; Vanderputten, D.; Vanhaecke, L. Plant-Based Beverages as Good Sources of Free and Glycosidic Plant Sterols. Nutrients 2018, 10, 21. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Weaver, C.M.; Plawecki, K.L. Dietary calcium: Adequacy of a vegetarian diet. Am. J. Clin. Nutr. 1994, 59, 1238S–1241S. [Google Scholar] [CrossRef]
- Hughes, G.J.; Ryan, D.J.; Mukherjea, R.; Schasteen, C.S. Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: Criteria for evaluation. J. Agric. Food Chem. 2011, 59, 12707–12712. [Google Scholar] [CrossRef] [PubMed]
- Vanga, S.K.; Raghavan, V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef]
- Manna, P.; Kalita, J. Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: A review. Nutrition 2016, 32, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Summo, C.; Palasciano, M.; De Angelis, D.; Paradiso, V.M.; Caponio, F.; Pasqualone, A. Evaluation of the chemical and nutritional characteristics of almonds (Prunus dulcis (Mill). D.A. Webb) as influenced by harvest time and cultivar. J. Sci. Food Agric. 2018, 98, 5647–5655. [Google Scholar] [CrossRef]
- Peñalvo, J.L.; Castilho, M.C.; Silveira, M.I.N.; Matallana, M.C.; Torija, M.E. Fatty acid profile of traditional soymilk. Eur. Food Res. Technol. 2004, 219, 251–253. [Google Scholar] [CrossRef]
- Nevin, K.G.; Rajamohan, T. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clin. Biochem. 2004, 37, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, K.; Kouřimská, L.; Pazderů, K.; Capouchová, I.; Božik, M. Lipid content and fatty acid profile of various European and Canadian hulled and naked oat genotypes. J. Cereal Sci. 2022, 108, 103580. [Google Scholar] [CrossRef]
- Tong, L.-T.; Gao, X.; Lin, L.; Liu, Y.; Zhong, K.; Liu, L.; Zhou, X.; Wang, L.; Zhou, S. Effects of semidry flour milling on the quality attributes of rice flour and rice noodles in China. J. Cereal Sci. 2015, 62, 45–49. [Google Scholar] [CrossRef]
- Beşir, A.; Awad, N.; Mortaş, M. A Plant-Based Milk Type: Hemp Seed Milk. Akad. Gıda 2019, 20, 170–181. [Google Scholar] [CrossRef]
- Gonzalez-Soto, M.; A Abdelmagid, S.; Ma, D.W.; El-Sohemy, A.; Mutch, D.M. Soy consumption, but not dairy consumption, is inversely associated with fatty acid desaturase activity in young adults. Nutrients 2021, 13, 2817. [Google Scholar] [CrossRef]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.M.; Abasheva, D.; Martínez-González, M.Á.; Ruiz-Estigarribia, L.; Martín-Calvo, N.; Sánchez-Villegas, A.; Toledo, E. Coffee Consumption and the Risk of Depression in a Middle-Aged Cohort: The SUN Project. Nutrients 2018, 10, 1333. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Parrott, S.J.; Raj, S.; Cullum-Dugan, D.; Lucus, D. How prevalent is vitamin B (12) deficiency among vegetarians? Nutr. Rev. 2013, 71, 110–117. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Perspective: Identifying ultra-processed plant-based milk alternatives in the USDA branded food products database. Adv. Nutr. 2021, 12, 2068–2075. [Google Scholar] [CrossRef]
- Appleby, P.N.; Key, T.J. The long-term health of vegetarians and vegans. Proc. Nutr. Soc. 2016, 75, 287–293. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.S. Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef]
- Hernandez, E.M. Issues in fortification and analysis of omega-3 fatty acids in foods. Lipid Technol. 2014, 26, 103–106. [Google Scholar] [CrossRef]
- Wilson-Barnes, S.; Gymnopoulos, L.P.; Dimitropoulos, K.; Solachidis, V.; Rouskas, K.; Russell, D.; Oikonomidis, Y.; Hadjidimitriou, S.; Botana, J.M.; Brkic, B.; et al. PeRsOnalised nutriTion for hEalthy livINg: The PROTEIN project. Nutr. Bull. 2021, 46, 77–87. [Google Scholar] [CrossRef]
- Facts, P. Global Market for EPA/DHA Omega-3 Products; Packaged Facts: Rockville, MD, USA, 2012. [Google Scholar]
- Mir, S.M.; Kanjilal, S.; Ahmed, S.U. Omega-3 fatty acids in inflammatory diseases. In Omega-3 Fatty Acids: Keys to Nutritional Health; Springer: Cham, Switzerland, 2016; pp. 141–155. [Google Scholar]
- Klensporf, D.; Jeleń, H.H. Effect of heat treatment on the flavor of oat flakes. J. Cereal Sci. 2008, 48, 656–661. [Google Scholar] [CrossRef]
- El-Dakar, A.; Zakarya, S.; Esraa, A. Evaluation of Micro-Particulate Diets used in Marine Hatcheries for Seabream Larvae Reared with the Probiotic Bacterium Sp, under the Prevalent Conditions in Egypt. World J. Aquac. Res. Development 2020, 2, 1009. [Google Scholar]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.-S. Advances in lipid extraction methods—A review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.A.; Prall, B.C. The challenges of incorporation of omega-3 fatty acids into ration components and their prevalence in garrison feeding. Mil. Med. 2014, 179 (Suppl. S11), 162–167. [Google Scholar] [CrossRef] [PubMed]
- Kolanowski, W.; Berger, S. Possibilities of fish oil application for food products enrichment with omega-3 PUFA. Int. J. Food Sci. Nutr. 1999, 50, 39–49. [Google Scholar] [CrossRef]
- Fialkow, J. Omega-3 fatty acid formulations in cardiovascular disease: Dietary supplements are not substitutes for prescription products. Am. J. Cardiovasc. Drugs 2016, 16, 229–239. [Google Scholar] [CrossRef]
- Rogero, M.M.; Leão, M.d.C.; Santana, T.M.; Pimentel, M.V.d.M.; Carlini, G.C.; da Silveira, T.F.; Gonçalves, R.C.; Castro, I.A. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic. Biol. Med. 2020, 156, 190–199. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Muylaert, K.; Eeckhout, M.; Ruyssen, T.; Foubert, I. Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum. J. Agric. Food Chem. 2011, 59, 11063–11069. [Google Scholar] [CrossRef]
Type of Beverages * | Energy (kcal/100 mL) | Carbohydrate (g/100 mL) | Protein (g/100 mL) | Fat (g/100 mL) | Dietary Fiber (g/100 mL) | References |
---|---|---|---|---|---|---|
Cow’s milk (n = 1) | 64.00 | 4.65 | 3.28 | 3.66 | - | [15] |
Soy milk (n = 34) | 31.00–69.00 | 0.10–12.41 | 0.99–4.49 | 0.51–3.17 | 0.50–1.33 | [15,16,17,18] |
Oat milk (n = 7) | 36.00–53.00 | 1.00–8.90 | 0.40–1.86 | 0.37–2.69 | 1.00–4.40 | [4,16,17,18] |
Rice milk (n = 11) | 18.00–66.00 | 2.57–12.84 | 0.10–0.97 | 0.00–1.95 | 0.00–1.09 | [18,19] |
Almond milk (n = 12) | 12.00–68.00 | 0.10–4.50 | 0.31–4.36 | 1.10–5.51 | 0.20–2.16 | [4,16,17,18,19] |
Cashew milk (n = 8) | 23.00–79.00 | 2.60–5.73 | 0.42–2.20 | 1.04–5.29 | 0.20–1.18 | [4,15,19] |
Coconut milk (n = 8) | 20.00–183.00 | 0.51–9.41 | 0.10–2.00 | 0.90–19.00 | - | [4,16,17,18,19] |
Hemp milk (n = 3) | 19.00–40.00 | 0.10–2.50 | 0.10–1.00 | 1.25–2.90 | - | [16,17,18] |
Type of Beverages | Total Omega-3 Fatty Acids (g/240 mL) | Total Omega-3 Fatty Acids (g/100 g) | References |
---|---|---|---|
Cow’s milk | 0.2 | 0.43 g/100 g | [16,30,32] |
Soy milk | 0.2 | 7.40 g/100 g | [16,30,31] |
Oat milk | 0.1 | 1.71 g/100 g | [16,30] |
Rice milk | <0.01 | Not detected | [16] |
Almond milk | 0.05 | 0.14 g/100 g | [16,30] |
Cashew milk | 0.02 | Negligible | [16] |
Coconut milk | 0.01 | Not detected | [16] |
Hemp milk | 1.0 | 16.50 g/100 g | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, A.; Kamran, F.; Choudhury, M.; Li, L.; Rahman, M.S.; Hussain, M.A. Omega-3 Fatty Acid Fortification of Plant-Based Beverages to Enhance Their Nutritional Profile. Foods 2025, 14, 1602. https://doi.org/10.3390/foods14091602
Pandey A, Kamran F, Choudhury M, Li L, Rahman MS, Hussain MA. Omega-3 Fatty Acid Fortification of Plant-Based Beverages to Enhance Their Nutritional Profile. Foods. 2025; 14(9):1602. https://doi.org/10.3390/foods14091602
Chicago/Turabian StylePandey, Ashish, Fozia Kamran, Manisha Choudhury, Li Li, Mohammad Shafiur Rahman, and Malik Altaf Hussain. 2025. "Omega-3 Fatty Acid Fortification of Plant-Based Beverages to Enhance Their Nutritional Profile" Foods 14, no. 9: 1602. https://doi.org/10.3390/foods14091602
APA StylePandey, A., Kamran, F., Choudhury, M., Li, L., Rahman, M. S., & Hussain, M. A. (2025). Omega-3 Fatty Acid Fortification of Plant-Based Beverages to Enhance Their Nutritional Profile. Foods, 14(9), 1602. https://doi.org/10.3390/foods14091602