Lacticaseibacillus rhamnosus Fermentation Ameliorates Physicochemical Properties, Physiological Activity, and Volatile and Non-Volatile Compounds of Mango Juice: Preliminary Results at Laboratory Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Strains and Cultivation
2.3. Mango Juice Fermentation
2.4. Viable Cell Counts and pH Value
2.5. Physicochemical Properties
2.5.1. Total Sugars Contents and Titratable Acidity Measurement
2.5.2. Total Polyphenolics and Flavonoids Content Measurement
2.6. Physiological Activity
2.6.1. ABTS Free Radical Clearance Rate
2.6.2. DPPH Free Radical Clearance Rate
2.6.3. Inhibition Rate of Lipase
2.6.4. Inhibition Rate of α-Glucosidase
2.7. Volatile Compounds Analysis
2.8. Non-Volatile Compounds Analysis
2.9. Statistical Analyses
3. Results and Discussion
3.1. Alterations in Active Bacterial and pH Value
3.2. Alterations in Physicochemical Properties
3.3. L. rhamnosus FJG1530 Fermentation Improved the Physiological Activity of Mango Juice
3.3.1. The Antioxidant Capacity of Mango Juice Was Enhanced by L. rhamnosus FJG1530 Fermentation
3.3.2. The Glycolipid Metabolism Regulation of Mango Juice Was Enhanced by L. rhamnosus FJG1530 Fermentation
3.4. L. rhamnosus FJG1530 Fermentation Influenced the Volatile Compounds in Mango Juice
3.5. L. rhamnosus FJG1530 Fermentation Also Changed the Non-Volatile Compounds in Mango Juice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Geng, Y.; Lin, S.; Wang, L.; Peng, Y.; Xu, Y.; Jing, W.; Wei, J.; He, Z.; Liu, X. Online SFE-SFC-MS/MS analysis of pyraclostrobin and chiral mefentrifluconazole residues in mango and mango juice. Food Chem. 2025, 464, 141731. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Krenek, K.A.; Fang, C.; Minamoto, Y.; Markel, M.E.; Suchodolski, J.S.; Talcott, S.T.; Mertens-Talcott, S.U. Polyphenolic derivatives from mango (Mangifera Indica L.) modulate fecal microbiome, short-chain fatty acids production and the HDAC1/AMPK/LC3 axis in rats with DSS-induced colitis. J. Funct. Foods 2018, 48, 243–251. [Google Scholar] [CrossRef]
- Gomes Natal, D.I.; de Castro Moreira, M.E.; Soares Milião, M.; dos Anjos Benjamin, L.; de Souza Dantas, M.I.; Machado Rocha Ribeiro, S.; Stampini Duarte Martino, H. Ubá mango juices intake decreases adiposity and inflammation in high-fat diet-induced obese Wistar rats. Nutrition 2016, 32, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Camus-Ela, M.; Zhang, L.; Wang, Y.; Rennie, G.H.; Wang, J.; Raghavan, V. A comprehensive review on mango allergy: Clinical relevance, causative allergens, cross-reactivity, influence of processing techniques, and management strategies. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13304. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Zhu, Y.; Zhou, Y.; Luo, Q. Effect of fermentation with single and co-culture of lactic acid bacteria on Chinese Elaeagnus angustifolia juice: Evaluation of bioactive compounds and volatile profiles. Food Biosci. 2024, 61, 104986. [Google Scholar] [CrossRef]
- Qin, Y.; Luo, Y.; Qiu, S.; Zhang, Q.; Yang, L. Secondary metabolite profiles and bioactivities of red raspberry juice during fermentation with Wickerhamomyces anomalus. Lebensm.-Wiss. Technol. 2024, 191, 115706. [Google Scholar] [CrossRef]
- Li, X.; Chan, L.J.; Yu, B.; Curran, P.; Liu, S.Q. Fermentation of three varieties of mango juices with a mixture of Saccharomyces cerevisiae and Williopsis saturnus var. mrakii. Int. J. Food Microbiol. 2012, 158, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Chen, M.; Cui, S.; Tang, X.; Zhang, Q.; Zhao, J.; Mao, B.; Zhang, H. Effects of Lacticaseibacillus casei fermentation on the bioactive compounds, volatile and non-volatile compounds, and physiological properties of barley beverage. Food Biosci. 2023, 53, 102695. [Google Scholar] [CrossRef]
- Shi, F.; Wang, L.; Li, S. Enhancement in the physicochemical properties, antioxidant activity, volatile compounds, and non-volatile compounds of watermelon juices through Lactobacillus plantarum JHT78 fermentation. Food Chem. 2023, 420, 136146. [Google Scholar] [CrossRef]
- Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds. J. Agric. Food Chem. 2002, 50, 5107–5114. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Feng, L.; Deng, Y.; Chen, L.; Li, Y.; Lin, L.; Liang, M.; Jia, X.; Wang, F.; Zhang, X. Change of phytochemicals and bioactive substances in Lactobacillus fermented Citrus juice during the fermentation process. Lebensm.-Wiss. Technol. 2023, 180, 114715. [Google Scholar] [CrossRef]
- Liu, S.; Peng, Y.-J.; He, W.-W.; Song, X.-X.; He, Y.-X.; Hu, X.-Y.; Bian, S.-G.; Li, Y.-H.; Yin, J.-Y.; Nie, S.-P.; et al. Metabolomics-based mechanistic insights into antioxidant enhancement in mango juice fermented by various lactic acid bacteria. Food Chem. 2025, 466, 142078. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.-B.; Lei, Y.-T.; Li, Q.-Z.; Li, Y.-C.; Deng, Y.; Liu, D.-Y. Effect of Lactobacillus plantarum and Lactobacillus acidophilus fermentation on antioxidant activity and metabolomic profiles of loquat juice. Lebensm.-Wiss. Technol. 2022, 171, 114104. [Google Scholar] [CrossRef]
- Genovese, S.; Epifano, F.; Palumbo, L.; Collevecchio, C.; Cardellini, F.; Bastianini, M.; Spogli, R.; Fiorito, S. A novel and efficient concentration of pomegranate juice with enhanced antioxidant activity. Food Chem. 2022, 387, 132901. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Chen, L.; He, X.; Cao, J.; Jiang, W. Soluble polysaccharides decrease inhibitory activity of banana condensed tannins against porcine pancreatic lipase. Food Chem. 2023, 418, 136013. [Google Scholar] [CrossRef] [PubMed]
- Bie, S.; Zhao, S.; Cai, S.; Yi, J.; Zhou, L. The profiles of free, esterified and insoluble-bound phenolics in peach juice after high pressure homogenization and evaluation of their antioxidant capacities, cytoprotective effect, and inhibitory effects on α-glucosidase and dipeptidyl peptidase-IV. Food Chem. X 2024, 21, 101092. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, F.; Cai, W.; Peng, B.; Zhang, P.; Shan, C. Effect of fermentation by lactic acid bacteria on the phenolic composition, antioxidant activity, and flavor substances of jujube–wolfberry composite juice. Lebensm.-Wiss. Technol. 2023, 184, 114884. [Google Scholar] [CrossRef]
- Xie, H.; Gao, P.; Lu, Z.-M.; Wang, F.-Z.; Chai, L.-J.; Shi, J.-S.; Zhang, H.-L.; Geng, Y.; Zhang, X.-J.; Xu, Z.-H. Changes in physicochemical characteristics and metabolites in the fermentation of goji juice by Lactiplantibacillus plantarum. Food Biosci. 2023, 54, 102881. [Google Scholar] [CrossRef]
- An, X.; Li, T.; Hu, J.; Li, Y.; Liu, H.; Fang, H.; Wei, X. Evaluation of physicochemical characteristics, bioactivity, flavor profile and key metabolites in the fermentation of goji juice by Lacticaseibacillus rhamnosus. Food Chem. X 2024, 23, 101755. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Ozogul, F.; Bartkiene, E.; Rocha, J.M. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit. Rev. Food Sci. Nutr. 2023, 63, 4819–4841. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Chen, M.; Cui, S.; Tang, X.; Zhang, Q.; Zhao, J.; Mao, B.; Zhang, H. Dynamics changes in physicochemical properties, volatile metabolites, non-volatile metabolites, and physiological functions of barley juice during Bifidobacterium infantis fermentation. Food Chem. 2023, 407, 135201. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, J.; Li, Y.; Xie, Y.; Cui, M.; Hu, Y.; Yin, R.; Ma, X.; Niu, J.; Cheng, W.; et al. Enhancing physicochemical properties, organic acids, antioxidant capacity, amino acids and volatile compounds for ‘Summer Black’ grape juice by lactic acid bacteria fermentation. Lebensm.-Wiss. Technol. 2024, 209, 116791. [Google Scholar] [CrossRef]
- Oguntoye, M.A.; Ezekiel, O.O.; Oridupa, O.A. Viability of Lactobacillus rhamnosus GG in provitamin A cassava hydrolysate during fermentation, storage, in vitro and in vivo gastrointestinal conditions. Food Biosci. 2021, 40, 100845. [Google Scholar] [CrossRef]
- Lebaka, V.R.; Wee, Y.J.; Ye, W.; Korivi, M. Nutritional Composition and Bioactive Compounds in Three Different Parts of Mango Fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Tang, R.; Qiu, H.; Song, A. Widely targeted metabolomics-based analysis of the impact of L. plantarum and L. paracasei fermentation on rosa roxburghii Tratt juice. Int. J. Food Microbiol. 2024, 417, 110686. [Google Scholar] [CrossRef] [PubMed]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, N.; Wu, Q.; Fang, D.; Rahman, F.-U.; Hao, H.; Zhang, Y. Antioxidant activities of sea buckthorn polysaccharides and their potential application in cosmetic industry. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100023. [Google Scholar] [CrossRef]
- Lan, T.; Wang, J.; Bao, S.; Zhao, Q.; Sun, X.; Fang, Y.; Ma, T.; Liu, S. Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Res. Int. 2023, 168, 112784. [Google Scholar] [CrossRef]
- Santos Filho, A.L.D.; Freitas, H.V.; Rodrigues, S.; Abreu, V.K.G.; Lemos, T.d.O.; Gomes, W.F.; Narain, N.; Pereira, A.L.F. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. Lebensm.-Wiss. Technol. 2019, 99, 371–378. [Google Scholar] [CrossRef]
- Li, R.; Xue, Z.; Jia, Y.; Wang, Y.; Li, S.; Zhou, J.; Liu, J.; Zhang, M.; He, C.; Chen, H. Polysaccharides from mulberry (Morus alba L.) leaf prevents obesity by inhibiting pancreatic lipase in high-fat diet induced mice. Int. J. Biol. Macromol. 2021, 192, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Zhou, X.; Huo, D.; Chen, J.; Weng, L.; Li, B.; Wu, Z.; Zhang, X.; Li, L. Optimization for the extraction of polysaccharides from Huidouba and their in vitro α-glucosidase inhibition mechanism. Food Biosci. 2022, 49, 101910. [Google Scholar] [CrossRef]
- Zheng, Q.; Jia, R.-B.; Luo, D.; Lin, L.; Chen, C.; Zhao, M. The effect of extraction solution pH level on the physicochemical properties and α-glucosidase inhibitory potential of Fucus vesiculosus polysaccharide. Lebensm.-Wiss. Technol. 2022, 169, 114028. [Google Scholar] [CrossRef]
- Yang, S.; Hou, M.; Tan, W.; Chen, Y.; Li, H.; Song, J.; Wang, X.; Ren, J.; Gao, Z. Lactic acid bacteria sequential fermentation improves viable counts and quality of fermented apple juice via generating two logarithmic phases. Food Chem. 2025, 464, 141635. [Google Scholar] [CrossRef] [PubMed]
- Tekin, A.; Kanmaz, H.; Kaya, B.; Sulejmani, E.; Hayaloğlu, A.A. Effect of fermentation conditions on the chemical composition, peptides, texture and volatile compounds of Turkish bag sausage (Torba sucuk). Food Chem. Adv. 2025, 6, 100873. [Google Scholar] [CrossRef]
- Qin, D.; Wang, Q.; Jiang, X.; Ni, E.; Fang, K.; Li, H.; Wang, Q.; Pan, C.; Li, B.; Wu, H. Identification of key volatile and odor-active compounds in 10 main fragrance types of Fenghuang Dancong tea using HS-SPME/GC-MS combined with multivariate analysis. Food Res. Int. 2023, 173, 113356. [Google Scholar] [CrossRef] [PubMed]
- Naseem, Z.; Mir, S.A.; Wani, S.M.; Rouf, M.A.; Bashir, I.; Zehra, A. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition 2023, 115, 112154. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Zhan, P.; Wang, P.; Tian, H. Characterization of the key aroma compounds in four varieties of pomegranate juice by gas chromatography-mass spectrometry, gas chromatography-olfactometry, odor activity value, aroma recombination, and omission tests. Food Sci. Hum. Wellness 2023, 12, 151–160. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Li, B.; Jiang, G.; Zhu, J.; Peng, Y.; Ding, Z. Exploring the effects of Lactobacillus acidophilus GIM1.208 on browning and flavor quality of Paojiao based on nontargeted metabolomics and GC-MS. Lebensm.-Wiss. Technol. 2023, 187, 115324. [Google Scholar] [CrossRef]
- Li, T.; Deng, M.; Li, S.; Lei, Y.; Li, D.; Li, K. Revealing differences in flavor compounds during plum wine fermentation using single and mixed yeast strains through metabolomic analysis. Food Chem. X 2024, 25, 102100. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Guo, W.; Xiao, Z.; Deng, J.; Shi, F. Lacticaseibacillus rhamnosus Fermentation Ameliorates Physicochemical Properties, Physiological Activity, and Volatile and Non-Volatile Compounds of Mango Juice: Preliminary Results at Laboratory Scale. Foods 2025, 14, 609. https://doi.org/10.3390/foods14040609
Fan J, Guo W, Xiao Z, Deng J, Shi F. Lacticaseibacillus rhamnosus Fermentation Ameliorates Physicochemical Properties, Physiological Activity, and Volatile and Non-Volatile Compounds of Mango Juice: Preliminary Results at Laboratory Scale. Foods. 2025; 14(4):609. https://doi.org/10.3390/foods14040609
Chicago/Turabian StyleFan, Jinlin, Weiling Guo, Zheng Xiao, Jiacong Deng, and Feifei Shi. 2025. "Lacticaseibacillus rhamnosus Fermentation Ameliorates Physicochemical Properties, Physiological Activity, and Volatile and Non-Volatile Compounds of Mango Juice: Preliminary Results at Laboratory Scale" Foods 14, no. 4: 609. https://doi.org/10.3390/foods14040609
APA StyleFan, J., Guo, W., Xiao, Z., Deng, J., & Shi, F. (2025). Lacticaseibacillus rhamnosus Fermentation Ameliorates Physicochemical Properties, Physiological Activity, and Volatile and Non-Volatile Compounds of Mango Juice: Preliminary Results at Laboratory Scale. Foods, 14(4), 609. https://doi.org/10.3390/foods14040609