Comprehensive Evaluation of Physicochemical Parameters in Retail Chicken Meat
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Laboratory Analyses
2.3. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Meat Quality Traits
3.3. Intramuscular Fatty Acid Profile
3.4. Volatile Organic Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT: Food and Agriculture Organization Corporate Statistical Database. Available online: http://www.fao.org/faostat/ (accessed on 12 November 2025).
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef]
- Jaisli, I.; Brunori, G. Is there a future for livestock in a sustainable food system? Efficiency, sufficiency, and consistency strategies in the food-resource nexus. J. Agric. Food Res. 2024, 18, 101496. [Google Scholar] [CrossRef]
- Petracci, M. Current meat quality challenges for the poultry industry—A review. Anim. Sci. Pap. Rep. 2022, 40, 253–261. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Annual Report on Food Consumption in Spain 2023; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2023. (In Spanish) [Google Scholar]
- Mercasa. Food in Spain 2024: Production, Industry, Distribution and Consumption, 27th ed.; Mercasa: Madrid, Spain, 2024. (In Spanish) [Google Scholar]
- Clar, E. Tradition counts. The boom in the Spanish broiler chicken and pork sectors, 1955–2020. Rural Hist. 2024, 35, 233–254. [Google Scholar] [CrossRef]
- Fernández Cabanás, V.M.; González Redondo, P. Other breeds forming the basis of Andalusian poultry farming. In Las Razas Ganaderas de Andalucía. Patrimonio Ganadero Andaluz; Rodero, S.E., Rodero, F.A., Eds.; Junta de Andalucía, Consejería de Agricultura y Pesca: Sevilla, Spain, 2007; Volume II, pp. 445–471. (In Spanish) [Google Scholar]
- European Union. Commission Regulation (EC) No 543/2008 of 16 June 2008 laying down detailed rules for the application of Council Regulation (EC) No 1234/2007 as regards the marketing standards for poultry meat. Off. J. Eur. Union 2008, L 157, 46–87. [Google Scholar]
- Averós, X.; Estevez, I. Meta-analysis of the effects of intensive rearing environments on the performance and welfare of broiler chickens. Poult. Sci. 2018, 97, 3767–3785. [Google Scholar] [CrossRef] [PubMed]
- Blokhuis, H.J.; Keeling, L.J.; Gavinelli, A.; Serratosa, J. Animal welfare’s impact on the food chain. Trends Food Sci. Technol. 2008, 19, S79–S87. [Google Scholar] [CrossRef]
- Bist, R.B.; Bist, K.; Poudel, S.; Subedi, D.; Yang, X.; Paneru, B.; Mani, S.; Wang, D.; Chai, L. Sustainable poultry farming practices: A critical review of current strategies and future prospects. Poult. Sci. 2024, 103, 104295. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Ellies-Oury, M.P.; Lherm, M.; Pineau, C.; Deblitz, C.; Farmer, L.J. Current situation and future prospects for beef production in Europe: A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1017–1035. [Google Scholar] [CrossRef]
- Marchewka, J.; Sztandarski, P.; Solka, M.; Louton, H.; Rath, K.; Vogt, L.; Rauch, E.; Ruijter, D.; de Jong, I.C.; Horbańczuk, J.O. Linking key husbandry factors to the intrinsic quality of broiler meat. Poult. Sci. 2023, 102, 102384. [Google Scholar] [CrossRef] [PubMed]
- Borgogno, M.; Favotto, S.; Corazzin, M.; Cardello, A.V.; Piasentier, E. The role of product familiarity and consumer involvement on liking and perceptions of fresh meat. Food Qual. Pref. 2015, 44, 139–147. [Google Scholar] [CrossRef]
- Tan, F.J.; Li, D.C.; Kaewkot, C.; Wu, H.I.; Świąder, K.; Yu, H.C.; Chen, C.F.; Chumngoen, W. Application of principal component analysis with instrumental analysis and sensory evaluation for assessment of chicken breast meat juiciness. Br. Poult. Sci. 2022, 63, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Baéza, E.; Guillier, L.; Petracci, M. Production factors affecting poultry carcass and meat quality attributes. Animal 2022, 16, 100331. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Flavour chemistry of chicken meat: A review. Asian-Australas. J. Anim. Sci. 2013, 26, 732–742. [Google Scholar] [CrossRef]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Effect of organic production system on broiler carcass and meat quality. Meat Sci. 2002, 60, 219–225. [Google Scholar] [CrossRef]
- Fanatico, A.C.; Pillai, P.B.; Cavitt, L.C.; Owens, C.M.; Emmert, J.L. Evaluation of slower-growing broiler genotypes grown with and without outdoor access: Meat quality. Poult. Sci. 2005, 84, 1785–1790. [Google Scholar] [CrossRef]
- Da Silva, D.C.F.; de Arruda, A.M.V.; Gonçalves, A.A. Quality characteristics of broiler chicken meat from free-range and industrial poultry system for the consumers. J. Food Sci. Technol. 2017, 54, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Husak, R.L.; Sebranek, J.G.; Bregendahl, K. A survey of commercially available broilers marketed as organic, free-range, and conventional broilers for cooked meat yields, meat composition, and relative value. Poult. Sci. 2008, 87, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.N.; Nute, G.R.; Baker, A.; Hughes, S.I.; Warriss, P.D. Aspects of meat and eating quality of broiler chickens reared under standard, maize-fed, free-range or organic systems. Br. Poult. Sci. 2008, 49, 118–124. [Google Scholar] [CrossRef]
- Smith, D.P.; Northcutt, J.K.; Steinberg, E.L. Meat quality and sensory attributes of a conventional and a Label Rouge-type broiler strain obtained at retail. Poult. Sci. 2012, 91, 1489–1495. [Google Scholar] [CrossRef]
- Alimarket Gran Consumo. Poultry Sector Report 2023; Publicaciones Alimarket, S.A.: Madrid, Spain, 2023. (In Spanish) [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Hamm, R. Biochemistry of meat hydration. Adv. Food Res. 1961, 10, 355–463. [Google Scholar]
- Hamm, R. Functional properties of the myofibrillar system and their measurements. In Muscle as Food; Bechtel, P.J., Ed.; Academic Press: Orlando, FL, USA, 1986; pp. 135–199. [Google Scholar]
- Xia, X.; Kong, B.; Liu, J.; Diao, X.; Liu, Q. Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus dorsi muscle. Meat Sci. 2012, 90, 356–360. [Google Scholar]
- Hsieh, C.W.; Lai, C.H.; Ho, W.J.; Huang, S.C.; Ko, W.C. Effect of thawing and cold storage on frozen chicken thigh meat quality by high-voltage electrostatic field. J. Food Sci. 2010, 75, M193–M197. [Google Scholar] [CrossRef]
- Cavitt, L.C.; Youm, G.W.; Meullenet, J.F.; Owens, C.M.; Xiong, R. Prediction of poultry meat tenderness using razor blade shear, Allo-Kramer shear, and sarcomere length. J. Food Sci. 2004, 69, SNQ11–SNQ15. [Google Scholar] [CrossRef]
- Xiong, R.; Cavitt, L.C.; Meullenet, J.F.; Owens, C.M. Comparison of Allo-Kramer, Warner-Bratzler, and razor blade shears for predicting sensory tenderness of broiler breast meat. J. Texture Stud. 2006, 37, 179–199. [Google Scholar] [CrossRef]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Serrano, A.; Cofrades, S.; Jiménez-Colmenero, F. Characteristics of restructured beef steak with different proportions of walnut during frozen storage. Meat Sci. 2006, 72, 108–115. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.-T.; Cao, J.-X.; Chen, Y.-J.; Sun, Y.-Y.; Zeng, X.-Q.; Pan, D.-D.; Ou, C.-R.; Gan, N. Study on lipolysis-oxidation and volatile flavour compounds of dry-cured goose with different curing salt content during production. Food Chem. 2016, 190, 33–40. [Google Scholar]
- Aldai, N.; Osoro, K.; Barron, L.J.R.; Nájera, A.I. Gas–liquid chromatographic method for analysing complex mixtures of fatty acids including conjugated linoleic acids and long-chain PUFA. J. Chromatogr. A 2006, 1110, 133–139. [Google Scholar] [CrossRef]
- Gutiérrez-Peña, R.; García-Infante, M.; Delgado-Pertíñez, M.; Guzmán, J.L.; Zarazaga, L.A.; Simal, S.; Horcada, A. Organoleptic and nutritional traits of lambs from Spanish Mediterranean Islands raised under a traditional production system. Foods 2022, 11, 1312. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Cartoni Mancinelli, A.; Vaudo, G.; Cavallo, M.; Castellini, C.; Mattioli, S. Indexing of fatty acids in poultry meat for its characterization in healthy human nutrition. Nutrients 2022, 14, 3110. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Avilés-Ramírez, C.; Vioque Amor, M.; Polvillo Polo, O.; Horcada, A.; Gómez-Cortés, P.; de la Fuente, M.A.; Núñez-Sánchez, N.; Martínez Marín, A.L. Influence of dietary algae meal on lipid oxidation and volatile profile of lamb meat. Foods 2022, 11, 2193. [Google Scholar] [CrossRef]
- Soriano Santos, J. Chemical composition and nutritional content of raw poultry meat. In Handbook of Poultry Science and Technology: Primary Processing; Hui, Y.H., Guerrero Legarreta, I., Eds.; Wiley: Hoboken, NJ, USA, 2009; pp. 471–490. [Google Scholar]
- Stadig, L.M.; Rodenburg, T.B.; Reubens, B.; Aerts, J.; Duquenne, B.; Tuyttens, F.A. Effects of free-range access on production parameters and meat quality, composition and taste in slow-growing broiler chickens. Poult. Sci. 2016, 95, 2971–2978. [Google Scholar] [CrossRef] [PubMed]
- Meluzzi, A.; Sirri, F.; Castellini, C.; Roncarati, A.; Melotti, P.; Franchini, A. Influence of genotype and feeding on chemical composition of organic chicken meat. Ital. J. Anim. Sci. 2009, 8 (Suppl. 2), 766–768. [Google Scholar] [CrossRef]
- Sirri, F.; Castellini, C.; Bianchi, M.; Petracci, M.; Meluzzi, A.; Franchini, A. Effect of fast-, medium- and slow-growing strains on meat quality of chickens reared under the organic farming method. Animals 2011, 5, 312–319. [Google Scholar] [CrossRef]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Meat quality of three chicken genotypes reared according to the organic system. Ital. J. Food Sci. 2002, 14, 411–412. [Google Scholar]
- Dalle Zotte, A.; Gleeson, E.; Franco, D.; Cullere, M.; Lorenzo, J.M. Proximate composition, amino acid profile, and oxidative stability of slow-growing indigenous chickens compared with commercial broiler chickens. Foods 2020, 9, 546. [Google Scholar] [CrossRef]
- Duclos, M.J.; Berri, C.; Le Bihan-Duval, E. Muscle growth and meat quality. J. Appl. Poult. Res. 2007, 16, 107–112. [Google Scholar] [CrossRef]
- Petracci, M.; Soglia, F.; Berri, C. Muscle metabolism and meat quality abnormalities. In Poultry Quality Evaluation; Petracci, M., Berri, C., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 51–75. [Google Scholar]
- Albrecht, A.; Hebel, M.; Mittler, M.; Hurck, C.; Kustwan, K.; Heitkönig, B.; Bitschinski, D.; Kreyenschmidt, J. Influence of different production systems on the quality and shelf life of poultry meat: A case study in the German sector. J. Food Qual. 2019, 2019, 3718057. [Google Scholar] [CrossRef]
- Özbek, M.; Petek, M.; Ardıçlı, S. Physical quality characteristics of breast and leg meat of slow-and fast-growing broilers raised in different housing systems. Arch. Anim. Breed. 2020, 63, 337–344. [Google Scholar] [CrossRef]
- Fanatico, A.C.; Pillai, P.B.; Emmert, J.L.; Owens, C.M. Meat quality of slow- and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poult. Sci. 2007, 86, 2245–2255. [Google Scholar] [CrossRef]
- Fotou, E.; Moulasioti, V.; Papadopoulos, G.A.; Kyriakou, D.; Boti, M.-E.; Moussis, V.; Papadami, M.; Tellis, C.; Patsias, A.; Sarrigeorgiou, I.; et al. Effect of farming system type on broilers’ antioxidant status, performance, and carcass traits: An industrial-scale production study. Sustainability 2024, 16, 4782. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, W.; Tan, H.Z.; Xu, G.F.; Zhang, X.B.; Wei, S.; Wang, X.Q. Effects of outdoor access on growth performance, carcass composition, and meat characteristics of broiler chickens. Poult. Sci. 2013, 92, 435–443. [Google Scholar] [CrossRef]
- Cömert, M.; Şayan, Y.; Kırkpınar, F.; Bayraktar, Ö.H.; Mert, S. Comparison of carcass characteristics, meat quality, and blood parameters of slow- and fast-grown female broiler chickens raised in organic or conventional production system. Asian-Australas. J. Anim. Sci. 2016, 29, 987–995. [Google Scholar] [CrossRef]
- Debut, M.; Berri, C.; Arnould, C.; Guemené, D.; Santé-Lhoutellier, V.; Sellier, N.; Baéza, E.; Jehl, N.; Jégo, Y.; Beaumont, C.; et al. Behavioural and physiological responses of three chicken breeds to pre-slaughter shackling and acute heat stress. Br. Poult. Sci. 2005, 46, 527–535. [Google Scholar] [CrossRef]
- Abdullah, A.Y.; Muwalla, M.M.; Maharmeh, H.O.; Matarneh, S.K.; Ishmais, M.A.A. Effects of strain on performance, and age at slaughter and duration of post-chilling aging on meat quality traits of broiler. Asian-Australas. J. Anim. Sci. 2010, 23, 1645–1656. [Google Scholar] [CrossRef]
- Allen, C.D.; Russell, S.M.; Fletcher, D.L. The relationship of broiler breast meat color and pH to shelf-life and odor development. Poult. Sci. 1997, 76, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, T.; Narinç, D.; Önenç, A.; Ilaslan Çürek, D. Effects of season, genotype and rearing system on meat quality of broilers in semi-intensive systems. Trop. Anim. Health Prod. 2021, 53, 352. [Google Scholar] [CrossRef]
- Chodová, D.; Tůmová, E.; Ketta, M.; Skřivanová, V. Breast meat quality in males and females of fast-, medium- and slow-growing chickens fed diets of two protein levels. Poult. Sci. 2021, 100, 100997. [Google Scholar] [CrossRef]
- Funaro, A.; Cardenia, V.; Petracci, M.; Rimini, S.; Rodriguez-Estrada, M.T.; Cavani, C. Comparison of meat quality characteristics and oxidative stability between conventional and free-range chickens. Poult. Sci. 2014, 93, 1511–1522. [Google Scholar] [CrossRef]
- Mikulski, D.; Celej, J.; Jankowski, J.; Majewska, T.; Mikulska, M. Growth performance, carcass traits and meat quality of slower-growing and fast-growing chickens raised with and without outdoor access. Asian-Australas. J. Anim. Sci. 2011, 24, 1407–1416. [Google Scholar] [CrossRef]
- Souza, X.R.; Faria, P.B.; Bressan, M.C. Proximate composition and meat quality of broilers reared under different production systems. Braz. J. Poult. Sci. 2011, 13, 15–20. [Google Scholar] [CrossRef]
- Bowker, B.; Zhuang, H. Relationship between water-holding capacity and protein denaturation in broiler breast meat. Poult. Sci. 2015, 94, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Alberti, P.; Panea, B. Consumer segmentation based on food-related lifestyles and perception of chicken breast. Int. J. Poult. Sci. 2015, 14, 262. [Google Scholar] [CrossRef]
- Smith, D.P.; Lyon, C.E.; Lyon, B.G. The effect of age, dietary carbohydrate source, and feed withdrawal on broiler breast fillet color. Poult. Sci. 2002, 81, 1584–1588. [Google Scholar] [CrossRef]
- Campo, M.D.M.; Mur, L. Carcass color in broilers when replacing wheat with corn in the diet. Foods 2025, 14, 2558. [Google Scholar] [CrossRef]
- Debut, M.; Berri, C.; Baéza, E.; Sellier, N.; Arnould, C.; Guemene, D.; Jehl, N.; Boutten, B.; Jego, Y.; Beaumont, C.; et al. Variation of chicken technological meat quality in relation to genotype and preslaughter stress. Poult. Sci. 2003, 82, 1829–1838. [Google Scholar] [CrossRef]
- Witte, V.C.; Krause, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Giampietro-Ganeco, A.; Mello, J.L.M.; Souza, R.A.; Ferrari, F.B.; Machado, B.M.; Souza, P.A.; Borba, H. Effect of freezing on the quality of meat from broilers raised in different rearing systems. Anim. Prod. Sci. 2017, 58, 2358–2368. [Google Scholar] [CrossRef]
- O’Neill, L.M.; Galvin, K.; Morrissey, P.A.; Buckley, D.J. Comparison of effects of dietary olive oil, tallow and vitamin E on the quality of broiler meat and meat products. Br. Poult. Sci. 1998, 39, 365–371. [Google Scholar] [CrossRef]
- Gálvez, F.; Domínguez, R.; Maggiolino, A.; Pateiro, M.; Carballo, J.; De Palo, P.; Barba, F.J.; Lorenzo, J.M. Meat quality of commercial chickens reared in different systems. Ann. Anim. Sci. 2020, 20, 263–285. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles, hypocholesterolemic, atherogenic, and thrombogenic indices of broiler meat. Lipids Health Dis. 2017, 16, 40. [Google Scholar] [CrossRef]
- Giampietro-Ganeco, A.; Boiago, M.M.; Mello, J.L.; Souza, R.A.D.; Ferrari, F.B.; Souza, P.A.D.; Borba, H. Lipid assessment, cholesterol and fatty acid profile of meat from broilers raised in four different rearing systems. An. Acad. Bras. Cienc. 2020, 92 (Suppl. 1), e20190649. [Google Scholar] [CrossRef]
- Jahan, K.; Paterson, A. Lipid composition of retailed organic, free-range and conventional chicken breasts. Int. J. Food Sci. Technol. 2007, 42, 251–262. [Google Scholar] [CrossRef]
- Boschetti, E.; Bordoni, A.; Meluzzi, A.; Castellini, C.; Dal Bosco, A.; Sirri, F. Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity. Animal 2016, 10, 700–708. [Google Scholar] [CrossRef]
- Cortinas, L.; Barroeta, A.; Villaverde, C.; Galobart, J.; Guardiola, F.; Baucells, M.D. Influence of the dietary polyunsaturation level on chicken meat quality: Lipid oxidation. Poult. Sci. 2005, 84, 48–55. [Google Scholar] [CrossRef]
- Skřivan, M.; Marounek, M.; Englmaierová, M.; Čermák, L.; Vlčková, J.; Skřivanová, E. Effect of dietary fat type on intestinal digestibility of fatty acids, fatty acid profiles of breast meat and abdominal fat, and mRNA expression of lipid-related genes in broiler chickens. PLoS ONE 2018, 13, e0196035. [Google Scholar] [CrossRef] [PubMed]
- Zelenka, J.; Schneiderová, D.; Mrkvicová, E.; Doležal, P. The effect of dietary linseed oils with different fatty acid patterns on the content of fatty acids in chicken meat. Vet. Med. (Praha) 2008, 53, 77–85. [Google Scholar] [CrossRef]
- Cherian, G. Essential fatty acids and early life programming in meat-type birds. Worlds Poult. Sci. J. 2011, 67, 599–614. [Google Scholar] [CrossRef]
- El-Zenary, A.S.; Boney, J.W.; Harvatine, K.J. Direct comparison of 18-carbon n-3 and n-6 fatty acids at equal levels in an oil blend on tissue enrichment of long-chain polyunsaturated fatty acid in broiler chickens. J. Nutr. 2023, 153, 2929–2938. [Google Scholar] [CrossRef]
- Grey, T.C.; Shrimpton, D.H. Volatile components of raw chicken breast muscle. Br. Poult. Sci. 1967, 8, 23–33. [Google Scholar] [CrossRef]
- Qi, J.; Wang, H.H.; Zhou, G.H.; Xu, X.L.; Li, X.; Bai, Y.; Yu, X.B. Evaluation of the taste-active and volatile compounds in stewed meat from the Chinese yellow-feather chicken breed. Int. J. Food Prop. 2017, 20 (Suppl. 3), S2579–S2595. [Google Scholar] [CrossRef]
- Xu, C.; Yin, Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13391. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jung, S.; Kim, H.J.; Yong, H.I.; Nam, K.C.; Jo, C. Taste-active compound levels in Korean native chicken meat: The effects of bird age and the cooking process. Poult. Sci. 2015, 94, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Xiao, Q.; Xie, J.; Cheng, J.; Sun, B.; Du, W.; Wang, Y.; Wang, T. Aroma compounds in chicken broths of Beijing Youji and commercial broilers. J. Agric. Food Chem. 2018, 66, 10242–10251. [Google Scholar] [CrossRef] [PubMed]
- Cartoni Mancinelli, A.; Silletti, E.; Mattioli, S.; Dal Bosco, A.; Sebastiani, B.; Menchetti, L.; Koot, A.; van Ruth, S.; Castellini, C. Fatty acid profile, oxidative status, and content of volatile organic compounds in raw and cooked meat of different chicken strains. Poult. Sci. 2021, 100, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Sohail, A.; Al-Dalali, S.; Wang, J.; Xie, J.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma compounds identified in cooked meat: A review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef]
- Minor, L.J.; Pearson, A.M.; Dawson, L.E.; Schweigert, B.S. Chicken flavor: The identification of some chemical components and the importance of sulfur compounds in the cooked volatile fraction. J. Food Sci. 1965, 30, 686–696. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Marçal, J.O.; Oliveira, G.P.; Rubim, F.M.; Correa, L.F.; dos Santos, D.B.; Assis, L.G.A.; Geraldo, A.; Faria, P.B.; Lima, L.M.Z. The volatile compound profile in the meat of chickens raised in a free-range system varies with sexual maturity. Food Chem. Adv. 2022, 1, 100098. [Google Scholar] [CrossRef]

| Parameter | NC | C | SEM | p |
|---|---|---|---|---|
| Moisture (%) | 75.99 | 74.65 | 0.178 | <0.001 |
| Ash (%) | 1.41 | 1.46 | 0.042 | 0.506 |
| Crude fat (%) | 1.67 | 1.06 | 0.134 | 0.083 |
| Crude protein (%) | 20.62 | 22.37 | 0.259 | <0.01 |
| Energy value (kcal/100 g) | 97.54 | 99.00 | 1.364 | 0.642 |
| Parameters | NC | C | SEM | p |
|---|---|---|---|---|
| pH | 5.76 | 5.89 | 0.035 | 0.052 |
| Water holding capacity | ||||
| Thawing loss (%) | 6.59 | 3.22 | 0.379 | <0.001 |
| Cooking loss (%) | 24.64 | 14.09 | 1.751 | <0.01 |
| Drip loss (%) | 2.22 | 1.72 | 0.150 | 0.095 |
| Expressible moisture (%) | 21.96 | 20.23 | 1.026 | 0.409 |
| Oxidative stability | ||||
| TBARS (mg MDA/kg) | 0.100 | 0.122 | 0.008 | 0.187 |
| Shear measurements | ||||
| RBF (N) | 10.49 | 10.36 | 0.253 | 0.821 |
| RBE (N·mm) | 134.35 | 133.29 | 3.151 | 0.888 |
| CIELab color space indexes | ||||
| L* | 52.59 | 48.48 | 0.689 | <0.05 |
| a* | 1.64 | 0.84 | 0.164 | 0.058 |
| b* | 4.22 | 18.66 | 1.241 | <0.001 |
| Hue angle | 66.59 | 87.63 | 2.238 | <0.001 |
| Chroma | 4.62 | 18.71 | 1.213 | <0.001 |
| Parameters | NC | C | SEM | p |
|---|---|---|---|---|
| C8:0 | 0.024 | 0.031 | 0.002 | 0.208 |
| C10:0 | 0.030 | 0.036 | 0.002 | 0.465 |
| C11:0 | 0.024 | 0.028 | 0.002 | 0.501 |
| C12:0 | 0.127 | 0.151 | 0.007 | 0.085 |
| C13:0 | 0.040 | 0.040 | 0.002 | 0.920 |
| C14:0 | 0.767 | 0.582 | 0.047 | 0.050 |
| cis-9 C14:1 | 0.166 | 0.128 | 0.007 | <0.01 |
| C15:0 | 0.160 | 0.131 | 0.006 | <0.05 |
| cis-9 C15:1 | 0.040 | 0.051 | 0.003 | 0.161 |
| C16:0 | 24.198 | 23.921 | 0.221 | 0.608 |
| cis-9 C16:1 | 4.033 | 3.431 | 0.126 | <0.05 |
| C17:0 | 0.295 | 0.235 | 0.009 | <0.01 |
| cis-9 C17:1 | 0.112 | 0.083 | 0.005 | <0.05 |
| C18:0 | 9.918 | 10.684 | 0.180 | 0.069 |
| cis-9 C18:1 | 34.889 | 30.175 | 0.513 | <0.001 |
| trans-9 C18:1 | 0.156 | 0.114 | 0.008 | 0.058 |
| trans-11 C18:1 1 | 0.213 | 0.158 | 0.008 | <0.001 |
| cis-9, cis-12 C18:2 | 16.702 | 19.462 | 0.356 | <0.01 |
| trans-9, trans-12 C18:2 | 0.070 | 0.067 | 0.005 | 0.766 |
| cis-9, trans-11 C18:2 | 0.014 | 0.014 | 0.001 | 0.751 |
| cis-10, trans-12 C18:2 | 0.010 | 0.012 | 0.001 | 0.298 |
| C18:3 n-3 | 1.158 | 0.816 | 0.059 | <0.05 |
| C18:3 n-6 | 0.198 | 0.219 | 0.007 | 0.168 |
| C20:0 | 0.146 | 0.125 | 0.005 | <0.05 |
| cis-11 C20:1 | 0.501 | 0.347 | 0.019 | <0.001 |
| C20:2 n-6 | 0.553 | 0.523 | 0.025 | 0.682 |
| C20:3 n-6 | 0.774 | 0.984 | 0.044 | 0.074 |
| C20:3 n-3 | 0.122 | 0.114 | 0.006 | 0.599 |
| C20:4 n-6 (ARA) | 2.520 | 4.375 | 0.195 | <0.001 |
| C20:5 n-3 (EPA) | 0.303 | 0.358 | 0.009 | <0.05 |
| C21:0 | 0.222 | 0.242 | 0.012 | 0.506 |
| C22:0 | 0.037 | 0.061 | 0.004 | <0.01 |
| cis-13 C22:1 | 0.136 | 0.161 | 0.007 | 0.072 |
| C22:2 n-6 | 0.071 | 0.054 | 0.006 | 0.209 |
| C22:5 n-3 (DPA) | 0.641 | 1.028 | 0.063 | <0.05 |
| C22:6 n-3 (DHA) | 0.413 | 0.796 | 0.046 | <0.001 |
| C23:0 | 0.080 | 0.101 | 0.006 | 0.120 |
| C24:0 | 0.070 | 0.089 | 0.005 | <0.05 |
| cis-15 C24:1 | 0.072 | 0.073 | 0.006 | 0.933 |
| Total SFAs | 36.139 | 36.459 | 0.273 | 0.604 |
| Total MUFAs | 40.317 | 34.721 | 0.609 | <0.001 |
| Total PUFAs | 23.549 | 28.821 | 0.597 | <0.001 |
| Total UFAs | 63.861 | 63.541 | 0.273 | 0.604 |
| Total n-3 | 2.636 | 3.111 | 0.106 | 0.100 |
| Total n-6 | 20.885 | 25.686 | 0.534 | <0.001 |
| C18:0 Δ-9 desaturation index 2 | 0.778 | 0.739 | 0.006 | <0.05 |
| ARA/(LA + ARA) | 0.133 | 0.180 | 0.007 | <0.001 |
| DHA/(ALA + DHA) | 0.271 | 0.499 | 0.026 | <0.001 |
| Parameters | NC | C | SEM | p |
|---|---|---|---|---|
| PUFAs/SFAs | 0.66 | 0.79 | 0.018 | <0.05 |
| n-6/n-3 | 8.10 | 8.60 | 0.240 | 0.375 |
| LA/ALA | 15.35 | 27.74 | 1.579 | <0.001 |
| EPA + DHA | 0.72 | 1.15 | 0.051 | <0.001 |
| Unsaturation index | 99.18 | 110.58 | 2.147 | <0.001 |
| Nutrition value index | 1.86 | 1.71 | 0.023 | <0.05 |
| Index of atherogenicity | 0.43 | 0.42 | 0.006 | 0.288 |
| Index of thrombogenicity | 0.91 | 0.89 | 0.013 | 0.584 |
| Hypo- to hypercholesterolemic FAs | 2.34 | 2.40 | 0.033 | 0.438 |
| Health-promoting index | 2.35 | 2.42 | 0.035 | 0.391 |
| Meat lipid quality | 1.99 | 3.17 | 0.141 | <0.001 |
| Healthy fatty index 1 | 1.76 | 1.99 | 0.026 | <0.001 |
| Healthy fatty index 2 | 2.91 | 3.14 | 0.037 | <0.05 |
| VOCs | RT | LRI | NC | C | SEM | p |
|---|---|---|---|---|---|---|
| Butanone | 4.34 | 902 | 6.25 | 2.61 | 0.61 | <0.01 |
| 2-Ethylfuran | 5.39 | 960 | 4.13 | 1.95 | 0.50 | <0.05 |
| Toluene | 7.49 | 1048 | 6.85 | 4.64 | 0.52 | <0.05 |
| Heptanal | 11.36 | 1191 | 20.07 | 8.83 | 2.85 | <0.05 |
| Dimethyl trisulfide | 16.95 | 1395 | 2.09 | 0.65 | 0.32 | <0.05 |
| 2,4-Heptadienal (E, E) | 19.88 | 1506 | 1.34 | 0.30 | 0.21 | <0.05 |
| Heptylbenzene | 23.16 | 1640 | 1.37 | 2.38 | 0.19 | <0.01 |
| 4-Ethylbenzoic acid, 2-butylester | 26.06 | 1762 | 1.69 | 0.93 | 0.18 | <0.05 |
| 2-Pentyl methyl thiazolidine | 27.95 | 1852 | 1.25 | 0.64 | 0.11 | <0.01 |
| Pulegol | 28.41 | 1876 | 1.00 | 0.41 | 0.09 | <0.001 |
| Trimenal | 31.21 | 2007 | 0.98 | 3.86 | 0.55 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano Ayora, Á.; Avilés-Ramírez, C.; García-Valverde, R.M.; Martínez Marín, A.L. Comprehensive Evaluation of Physicochemical Parameters in Retail Chicken Meat. Foods 2025, 14, 4276. https://doi.org/10.3390/foods14244276
Serrano Ayora Á, Avilés-Ramírez C, García-Valverde RM, Martínez Marín AL. Comprehensive Evaluation of Physicochemical Parameters in Retail Chicken Meat. Foods. 2025; 14(24):4276. https://doi.org/10.3390/foods14244276
Chicago/Turabian StyleSerrano Ayora, Ángela, Carmen Avilés-Ramírez, Rosa M. García-Valverde, and Andrés L. Martínez Marín. 2025. "Comprehensive Evaluation of Physicochemical Parameters in Retail Chicken Meat" Foods 14, no. 24: 4276. https://doi.org/10.3390/foods14244276
APA StyleSerrano Ayora, Á., Avilés-Ramírez, C., García-Valverde, R. M., & Martínez Marín, A. L. (2025). Comprehensive Evaluation of Physicochemical Parameters in Retail Chicken Meat. Foods, 14(24), 4276. https://doi.org/10.3390/foods14244276

