Multivariate Quantitative Prediction of Soluble Solids Content, Moisture Content, and Fruit Firmness in ‘Dinosaur Egg’ Apricot Plum via Near-Infrared Spectroscopy with Cross-Parameter Feature Fusion and SHapley Additive exPlanations-Based Optimization
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Spectral Information Collection
2.3. Quality Index Determination
2.3.1. Soluble Solids Content
2.3.2. Moisture Content
2.3.3. Fruit Firmness
2.4. Analysis of Relationship
2.5. Data Preprocessing and Regression Modeling Methods
2.6. Regression Modeling Methods
2.7. Model Interpretability
3. Results
3.1. Spectral Data Preprocessing
3.2. Apricot Plum Quality Modeling
3.3. Optimization of Fruit Firmness Prediction Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Sun, J.; Wang, Y.; Liu, X.; Zhang, Y.; Fu, H. Non-Destructive Detection of Fruit Quality: Technologies, Applications and Prospects. Foods 2025, 14, 2137. [Google Scholar] [CrossRef]
- Nicolás-Almansa, M.; Ruiz, D.; Salazar, J.A.; Guevara, A.; Cos, J.; Martínez-Gómez, P.; Rubio, M. Phenotypic and molecular characterization of new interspecific Japanese plum × apricot hybrids (plumcots). Sci. Hortic. 2023, 318, 112131. [Google Scholar] [CrossRef]
- Kartal, M.; Erdogan-Orhan, I. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res. Int. 2011, 44, 1238–1243. [Google Scholar] [CrossRef]
- Mihaylova, D.; Desseva, I.; Tumbarski, Y.; Popova, A.; Pandova, S.; Lante, A. Evaluation of the Enzyme Inhibition, Antioxidant, and Antimicrobial Activities of Apricots, Plums, and Their Hybrid Fruits. Plants 2024, 13, 2936. [Google Scholar] [CrossRef]
- Travers, S.; Bertelsen, M.G.; Petersen, K.K.; Kucheryavskiy, S.V. Predicting pear (cv. Clara Frijs) dry matter and soluble solids content with near infrared spectroscopy. LWT 2014, 59, 1107–1113. [Google Scholar] [CrossRef]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Karabulut, I.; Gokbulut, I.; Bilenler, T.; Sislioglu, K.; Ozdemir, I.S.; Bahar, B.; Çelik, B.; Seyhan, F. Effect of fruit maturity level on quality, sensory properties and volatile composition of two common apricot (Prunus armeniaca L.) varieties. J. Food Sci. Technol. 2018, 55, 2671–2678. [Google Scholar] [CrossRef]
- Cho, B.-H.; Lee, K.-B.; Hong, Y.; Kim, K.-C. Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model. Agronomy 2022, 12, 2236. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Huang, H.; Tan, Z.; Hou, C.; Zhuang, J.; Tang, Y. Raman Spectroscopy and Its Application in Fruit Quality Detection. Agriculture 2025, 15, 195. [Google Scholar] [CrossRef]
- Elumalai, A.; Natarajan, V. Advancements in analytical technologies for ensuring food quality and authentication: A comprehensive review. J. Food Compos. Anal. 2024, 139, 107075. [Google Scholar] [CrossRef]
- Paz, P.; Sánchez, M.-T.; Pérez-Marín, D.; Guerrero, J.-E.; Garrido-Varo, A. Nondestructive Determination of Total Soluble Solid Content and Firmness in Plums Using Near-Infrared Reflectance Spectroscopy. J. Agric. Food Chem. 2008, 56, 2565–2570. [Google Scholar] [CrossRef]
- Siyum, Z.H.; Pham, T.T.; Dam, M.S.; Friedrich, L.F.; Hitka, G.; Nguyen, L.L.P.; Baranyai, L. Assessment of plum quality changes during postharvest storage using multispectral NIR technique. J. Agric. Food Res. 2024, 18, 101476. [Google Scholar] [CrossRef]
- Pissard, A.; Marques, E.J.N.; Dardenne, P.; Lateur, M.; Pasquini, C.; Pimentel, M.F.; Pierna, J.A.F.; Baeten, V. Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality. Postharvest Biol. Technol. 2021, 172, 111375. [Google Scholar] [CrossRef]
- Li, M.; Lv, W.; Zhao, R.; Guo, H.; Liu, J.; Han, D. Non-destructive assessment of quality parameters in ‘Friar’ plums during low temperature storage using visible/near infrared spectroscopy. Food Control 2017, 73, 1334–1341. [Google Scholar] [CrossRef]
- Louw, E.D.; Theron, K.I. Robust prediction models for quality parameters in Japanese plums (Prunus salicina L.) using NIR spectroscopy. Postharvest Biol. Technol. 2010, 58, 176–184. [Google Scholar] [CrossRef]
- Posom, J.; Klaprachan, J.; Rattanasopa, K.; Sirisomboon, P.; Saengprachatanarug, K.; Wongpichet, S. Predicting Marian Plum Fruit Quality without Environmental Condition Impact by Handheld Visible–Near-Infrared Spectroscopy. ACS Omega 2020, 5, 27909–27921. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, S.; Tian, S.; Zhang, J.; Ren, Y.; Sun, H.; Gong, G.; Zhang, H.; Xu, Y. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution. PLoS ONE 2017, 12, e0179944. [Google Scholar] [CrossRef] [PubMed]
- Zaharah, S.S.; Singh, Z.; Symons, G.M.; Reid, J.B. Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biol. Technol. 2013, 75, 37–44. [Google Scholar] [CrossRef]
- Yuan, L.-M.; Mao, F.; Chen, X.; Li, L.; Huang, G. Non-invasive measurements of ‘Yunhe’ pears by vis-NIRS technology coupled with deviation fusion modeling approach. Postharvest Biol. Technol. 2020, 160, 111067. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Ma, J.; Wang, X.; Li, Z.; Zheng, D. Visible Near-Infrared Hyperspectral Soil Organic Matter Prediction Based on Combinatorial Modeling. Agronomy 2024, 14, 789. [Google Scholar] [CrossRef]
- Li, F.; Xu, L.; You, T.; Lu, A. Measurement of potentially toxic elements in the soil through NIR, MIR, and XRF spectral data fusion. Comput. Electron. Agric. 2021, 187, 106257. [Google Scholar] [CrossRef]
- Bai, Z.; Xing, F.; Hu, Y.; Zhu, R.; Du, D.; Kang, L. Application of XGBoost-RFE-SHAP in the selection of spectral feature wavelength: A case study of in situ detection for typical foodborne pathogens contamination on mutton. Food Control 2025, 177, 111444. [Google Scholar] [CrossRef]
- Zan, J.; Du, Y.; Hou, B.; Weng, D.; Wu, J.; Sun, T.; Song, L. Discrimination of black Torreya grandis kernels based on explainable features and visible/near-infrared information fusion. J. Food Compos. Anal. 2025, 146, 107970. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, M.; Adhikari, B.; Guo, Z. Nondestructive Detection of Postharvest Quality of Cherry Tomatoes Using a Portable NIR Spectrometer and Chemometric Algorithms. Food Anal. Methods 2019, 12, 914–925. [Google Scholar] [CrossRef]
- Fodor, M. Development of FT-NIR Technique to Determine the Ripeness of Sweet Cherries and Sour Cherries. Processes 2022, 10, 2423. [Google Scholar] [CrossRef]
- Yang, B.; Guo, W.; Li, W.; Li, Q.; Liu, D.; Zhu, X. Portable, visual, and nondestructive detector integrating Vis/NIR spectrometer for sugar content of kiwifruits. J. Food Process. Eng. 2019, 42, e12982. [Google Scholar] [CrossRef]
- de Moraes, I.A.; Cruz-Tirado, L.J.; Barbin, D.F. Online measurement of carambola (Averrhoa carambola L.) physicochemical properties and estimation of maturity stages using a portable NIR spectrometer. Sci. Hortic. 2022, 304, 111263. [Google Scholar] [CrossRef]
- Forte, M.; Currò, S.; Van de Walle, D.; Dewettinck, K.; Mirisola, M.; Fasolato, L.; Carletti, P. Quality Evaluation of Fair-Trade Cocoa Beans from Different Origins Using Portable Near-Infrared Spectroscopy (NIRS). Foods 2022, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, G.; Fu, X.; He, F.; Wu, W. Effect of spectrum measurement position on detection of Klason lignin content of snow pears by a portable NIR spectrometer. Food Energy Secur. 2023, 12, 1. [Google Scholar] [CrossRef]
- Wu, X.; Li, G.; He, F. Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing. Foods 2021, 10, 1315. [Google Scholar] [CrossRef] [PubMed]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Chen, N.; Liu, Z.; Zhang, T.; Lai, Q.; Zhang, J.; Wei, X.; Liu, Y. Research on prediction of yellow flesh peach firmness using a novel acoustic real-time detection device and Vis/NIR technology. LWT 2024, 209, 116772. [Google Scholar] [CrossRef]
- Guido, L.F.; Curto, A.F.; Boivin, P.; Benismail, N.; Gonçalves, C.R.; Barros, A.A. Correlation of Malt Quality Parameters and Beer Flavor Stability: Multivariate Analysis. J. Agric. Food Chem. 2007, 55, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhao, J.; Liu, Y.; Xi, L.; Liao, J.; Liu, X.; Su, G. Effects of green manure planting mode on the quality of Korla fragrant pears (Pyrus sinkiangensis Yu). Front. Plant Sci. 2022, 13, 1027595. [Google Scholar] [CrossRef] [PubMed]
- Robert, G.; Gosselin, R. Evaluating the impact of NIR pre-processing methods via multiblock partial least-squares. Anal. Chim. Acta 2022, 1189, 339255. [Google Scholar] [CrossRef]
- Rodríguez-Febereiro, M.; Dafonte, J.; Fandiño, M.; Cancela, J.J.; Rodríguez-Pérez, J.R. Evaluation of Spectroscopy and Methodological Pre-Treatments to Estimate Soil Nutrients in the Vineyard. Remote. Sens. 2022, 14, 1326. [Google Scholar] [CrossRef]
- Bi, Y.; Yuan, K.; Xiao, W.; Wu, J.; Shi, C.; Xia, J.; Chu, G.; Zhang, G.; Zhou, G. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Anal. Chim. Acta 2016, 909, 30–40. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; He, C.; Wu, B.; Zhang, T.; Sun, J. Several Feature Extraction Methods Combined with Near-Infrared Spectroscopy for Identifying the Geographical Origins of Milk. Foods 2024, 13, 1783. [Google Scholar] [CrossRef]
- Yang, D.; Hu, J. A detection method of oil content for maize kernels based on CARS feature selection and deep sparse autoencoder feature extraction. Ind. Crop. Prod. 2024, 222, 119464. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, W.; Zhou, L.; Cheng, H.; Ye, X.; He, Y. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food Chem. 2020, 319, 126536. [Google Scholar] [CrossRef]
- Pérez-Delgado, M.-L. Color image quantization using the shuffled-frog leaping algorithm. Eng. Appl. Artif. Intell. 2019, 79, 142–158. [Google Scholar] [CrossRef]
- Jahani, T.; Kashaninejad, M.; Ziaiifar, A.M.; Golzarian, M.; Akbari, N.; Soleimanipour, A. Effect of selected pre-processing methods by PLSR to predict low-fat mozzarella texture measured by hyperspectral imaging. J. Food Meas. Charact. 2024, 18, 5060–5072. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Y.; Zhou, Y.; Cui, Y.; Yao, W.; Yu, H.; Guo, Y.; Xie, Y. Dynamic monitoring oxidation process of nut oils through Raman technology combined with PLSR and RF-PLSR model. LWT 2021, 146, 111290. [Google Scholar] [CrossRef]
- Deng, G.; Li, J.; Liu, H.; Wang, Y. A fast method for predicting adenosine content in porcini mushrooms using Fourier transform near-infrared spectroscopy combined with regression model. LWT 2024, 201, 116243. [Google Scholar] [CrossRef]
- Munawar, A.A.; Zulfahrizal; Meilina, H.; Pawelzik, E. Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: Comparison among regression approaches. Comput. Electron. Agric. 2022, 193, 106657. [Google Scholar] [CrossRef]
- Aldrees, A.; Khan, M.; Taha, A.T.B.; Ali, M. Evaluation of water quality indexes with novel machine learning and SHapley Additive ExPlanation (SHAP) approaches. J. Water Process. Eng. 2024, 58, 104789. [Google Scholar] [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M.; Liang, Q. A problem-agnostic approach to feature selection and analysis using SHAP. J. Big Data 2025, 12, 1–22. [Google Scholar] [CrossRef]
- Takefuji, Y. Beyond XGBoost and SHAP: Unveiling true feature importance. J. Hazard. Mater. 2025, 488, 137382. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Pękala, P.; Siemińska-Kuczer, A.; Zdunek, A. A determination of the composition and structure of the polysaccharides fractions isolated from apple cell wall based on FT-IR and FT-Raman spectra supported by PCA analysis. Food Hydrocoll. 2023, 150, 109688. [Google Scholar] [CrossRef]
- Huang, Y.; Qin, S.; He, J.; Lyu, D. Integration of cell wall fraction, organic matter content, and membrane to understand crispness changes in apples. Sci. Hortic. 2023, 321, 112309. [Google Scholar] [CrossRef]
- Chandrasekaran, I.; Panigrahi, S.S.; Ravikanth, L.; Singh, C.B. Potential of Near-Infrared (NIR) Spectroscopy and Hyperspectral Imaging for Quality and Safety Assessment of Fruits: An Overview. Food Anal. Methods 2019, 12, 2438–2458. [Google Scholar] [CrossRef]
- Badourdine, C.; Féret, J.; Pélissier, R.; Vincent, G. Exploring the link between spectral variance and upper canopy taxonomic diversity in a tropical forest: Influence of spectral processing and feature selection. Remote. Sens. Ecol. Conserv. 2022, 9, 235–250. [Google Scholar] [CrossRef]
- Squeo, G.; Amigo, J.M. Successful Applications of NIR Spectroscopy and NIR Imaging in the Food Processing Chain. Foods 2023, 12, 3041. [Google Scholar] [CrossRef]
- Cherney, J.; Digman, M.; Cherney, D. Handheld NIRS for forage evaluation. Comput. Electron. Agric. 2021, 190, 106469. [Google Scholar] [CrossRef]
- Nascimento, P.A.M.; de Carvalho, L.C.; Júnior, L.C.C.; Pereira, F.M.V.; Teixeira, G.H.d.A. Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR). Postharvest Biol. Technol. 2016, 111, 345–351. [Google Scholar] [CrossRef]
- Gao, F.; Xing, Y.; Li, J.; Guo, L.; Sun, Y.; Shi, W.; Yuan, L. Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables. Molecules 2025, 30, 1543. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciorba, R.; Ruggiero, G.; Masciola, F.; Scutaru, D.; Ciccoritti, R. Vis/NIR Spectroscopy and Vis/NIR Hyperspectral Imaging for Non-Destructive Monitoring of Apricot Fruit Internal Quality with Machine Learning. Foods 2025, 14, 196. [Google Scholar] [CrossRef]
- Mishra, P.; Paillart, M.; Meesters, L.; Woltering, E.; Chauhan, A. Avocado dehydration negatively affects the performance of visible and near-infrared spectroscopy models for dry matter prediction. Postharvest Biol. Technol. 2022, 183, 111739. [Google Scholar] [CrossRef]
- de Oliveira, G.A.; Bureau, S.; Renard, C.M.-G.C.; Pereira-Netto, A.B.; de Castilhos, F. Comparison of NIRS approach for prediction of internal quality traits in three fruit species. Food Chem. 2014, 143, 223–230. [Google Scholar] [CrossRef]
- Gong, Z.; Zhi, Z.; Zhang, C.; Cao, D. Non-Destructive Detection of Soluble Solids Content in Fruits: A Review. Chemistry 2025, 7, 115. [Google Scholar] [CrossRef]
- Fatchurrahman, D.; Nosrati, M.; Amodio, M.L.; Chaudhry, M.M.A.; de Chiara, M.L.V.; Mastrandrea, L.; Colelli, G. Comparison Performance of Visible-NIR and Near-Infrared Hyperspectral Imaging for Prediction of Nutritional Quality of Goji Berry (Lycium barbarum L.). Foods 2021, 10, 1676. [Google Scholar] [CrossRef] [PubMed]






| Quality Index | SSC | MC | FF |
|---|---|---|---|
| SSC | 1 | −0.96 | 0.81 |
| MC | −0.96 | 1 | −0.79 |
| FF | 0.81 | −0.79 | 1 |
| Quality Type | Modeling Method | Spectral Waveband (nm) |
|---|---|---|
| SSC | RFLA-PLSR | 1200.389; 1206.325;1265.668; 1313.122; 1319.052; 1324.982; 1330.912; 1384.267; 1419.824; 1425.75; 1431.675; 1520.513; 1526.433; 1532.353; 1567.867; 1573.785; 1579.702; 1585.62; 1591.537; 1621.118 |
| MC | CARS-PLSR | 1069.725; 1188.516; 1230.065; 1265.668; 1313.122; 1354.628; 1425.75; 1538.273; 1573.785 |
| FF | CARS-PLSR | 1040.009; 1069.725; 1075.667; 1081.609; 1117.255; 1123.195; 1176.642; 1182.579; 1224;131; 1384.267; 1396.121; 1419.824; 1425.75; 1461.295; 1514.592; 1520.513; 1550.111; 1579.702; 1615.202; 1621.118 |
| Range | Data Type | (N) | ||
|---|---|---|---|---|
| Incipient | No Fusion (20) | 0.8138 | 0.7715 | 1.528 |
| Fusion (38) | 0.8017 | 0.7981 | 1.274 | |
| No Fusion (14) | 0.8117 | 0.7620 | 1.592 | |
| Fusion (25) | 0.8272 | 0.7958 | 1.288 | |
| No Fusion (10) | 0.7816 | 0.6918 | 2.062 | |
| Fusion (17) | 0.8151 | 0.7986 | 1.271 | |
| No Fusion (5) | 0.4432 | 0.5365 | 3.100 | |
| Fusion (15) | 0.8277 | 0.7769 | 1.408 | |
| No Fusion (-) | - | - | - | |
| Fusion (12) | 0.8063 | 0.8336 | 1.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, Z.; Mao, W.; Cui, K.; Yang, L.; Sun, L.; Ma, W.; Ma, W.; Xiang, B. Multivariate Quantitative Prediction of Soluble Solids Content, Moisture Content, and Fruit Firmness in ‘Dinosaur Egg’ Apricot Plum via Near-Infrared Spectroscopy with Cross-Parameter Feature Fusion and SHapley Additive exPlanations-Based Optimization. Foods 2025, 14, 4118. https://doi.org/10.3390/foods14234118
Wang Y, Zhu Z, Mao W, Cui K, Yang L, Sun L, Ma W, Ma W, Xiang B. Multivariate Quantitative Prediction of Soluble Solids Content, Moisture Content, and Fruit Firmness in ‘Dinosaur Egg’ Apricot Plum via Near-Infrared Spectroscopy with Cross-Parameter Feature Fusion and SHapley Additive exPlanations-Based Optimization. Foods. 2025; 14(23):4118. https://doi.org/10.3390/foods14234118
Chicago/Turabian StyleWang, Yunhai, Zhaoshuai Zhu, Wulan Mao, Kuanbo Cui, Liling Yang, Lina Sun, Wenjie Ma, Wenqiang Ma, and Binbin Xiang. 2025. "Multivariate Quantitative Prediction of Soluble Solids Content, Moisture Content, and Fruit Firmness in ‘Dinosaur Egg’ Apricot Plum via Near-Infrared Spectroscopy with Cross-Parameter Feature Fusion and SHapley Additive exPlanations-Based Optimization" Foods 14, no. 23: 4118. https://doi.org/10.3390/foods14234118
APA StyleWang, Y., Zhu, Z., Mao, W., Cui, K., Yang, L., Sun, L., Ma, W., Ma, W., & Xiang, B. (2025). Multivariate Quantitative Prediction of Soluble Solids Content, Moisture Content, and Fruit Firmness in ‘Dinosaur Egg’ Apricot Plum via Near-Infrared Spectroscopy with Cross-Parameter Feature Fusion and SHapley Additive exPlanations-Based Optimization. Foods, 14(23), 4118. https://doi.org/10.3390/foods14234118

