Valorization of Pear Pomace in Taro Gluten-Free Muffins: Composition, Texture, and Sensory Profile
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Taro Flour
2.2. Proximate Composition Analysis of Taro Flour
2.3. Hydration and Oil Absorption and Color Characteristics of Taro Flour
2.4. Thermal Analysis of Taro Flour
2.5. Particle Size Distribution and Microstructural Characterization of Taro Flour
2.6. Muffin Preparation
2.7. Physicochemical Characterization of Muffins
2.8. Total Phenolic Content and Antioxidant Activity
2.9. Quantitative Cellular Structure Characterization by Image Processing
2.10. Sensory Analysis
2.11. Statistical Analysis
3. Results
3.1. Proximate Composition, Hydration, Oil Absorption and Color Properties of Taro Flour
3.2. Thermal Characteristics of Taro Flour
3.3. Microstructure and Particle Size Distribution of Taro Flour
3.4. Proximate Composition, Total Phenolic Content and Antioxidant Activity of Muffins
3.5. Color Results of Muffins
3.6. Texture, Baking Loss and Height of Muffins
3.7. Image Processing Results
3.8. Sensory Analysis Results
4. Discussion
4.1. Functional, Physicochemical, and Thermal Properties of Taro Flour
4.2. Physicochemical, Bioactive, Textural and Cellular Structure of Muffins
4.3. Sensory Evaluation
4.4. Sustainability, Scale-Up Considerations, and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krajewska, A.; Dziki, D.; Yilmaz, M.A.; Özdemir, F.A. Physicochemical Properties of Dried and Powdered Pear Pomace. Molecules 2024, 29, 742. [Google Scholar] [CrossRef]
- Kallel, F.; Chaieb, Z.; Fendri, L.B.; Chaabouni, S.E.; Neifar, M. By-product of prickly pear juice industry: A novel ingredient to improve the physicochemical, texture and sensory properties of cake. J. Food Meas. Charact. 2024, 18, 7656–7668. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Fruit peel waste: Characterization and its potential uses. Curr. Sci. 2017, 113, 444. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2017, 58, 2119–2135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ji, Y.; Tian, G.; Zheng, Y.; Sang, Y.; Gao, J. Pear pomace soluble dietary fiber suppresses fat deposition in high fat diet-fed mice by regulating the ADPN-AMPK/PPAR-α signaling pathway. J. Funct. Foods 2024, 122, 106483. [Google Scholar] [CrossRef]
- Alibaş, İ.; Yılmaz, A.; Günaydın, S.; Arkain, B. Influence of Drying Methods on Drying Kinetics and Color Parameters. Turk. J. Agric. Food Sci. Technol. 2021, 9, 897–908. [Google Scholar]
- Bchir, B.; Rabetafika, H.N.; Paquot, M.; Blecker, C. Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food Bioprocess. Technol. 2014, 7, 1114–1127. [Google Scholar] [CrossRef]
- Bchir, B.; Jean-franc, T.; Rabetafika, H.N.; Blecker, C. Effect of pear apple and date fibres incorporation on the physico-chemical, sensory, nutritional characteristics and the acceptability of cereal bars. Food Sci. Technol. Int. 2018, 24, 198–208. [Google Scholar] [CrossRef]
- Rocha Parra, A.F.; Belorio, M.; Ribotta, P.D.; Ferrero, C.; Gómez Pallarés, M. Effect of the particle size of pear pomace on the quality of enriched layer and sponge cakes. Int. J. Food Sci. Technol. 2019, 54, 1265–1275. [Google Scholar] [CrossRef]
- Muresan, A.E.; Man, S.; Socaci, S.A.; Puscas, A.; Tanislav, A.E.; Pall, E.; Muresan, V.; Cerbu, C.G. Functionality of Muffins Fortified with Apple Pomace: Nutritional, Textural, and Sensory Aspects. Appl. Sci. 2024, 14, 6439. [Google Scholar] [CrossRef]
- Zbikowska, A.; Lukasiak, P.; Kowalska, M.; Lukasiak, A.; Kozłowska, M.; Marciniak-Lukasiak, K. Incorporation of Chokeberry Pomace into Baked Products: Influence on the Quality of the Dough and the Muffins. Appl. Sci. 2024, 14, 9675. [Google Scholar] [CrossRef]
- Bozdogan, N.; Ormanli, E.; Kumcuoglu, S.; Tavman, S. Pear pomace powder added quinoa-based gluten-free cake formulations: Effect on pasting properties, rheology, and product quality. Food Sci. Technol. 2022, 42, e39121. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Korus, J.; Kruczek, M. Apple pomace as a source of bioactive polyphenol compounds in gluten-free breads. Antioxidants 2021, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Pecyna, A.; Krzywicka, M.; Blicharz-Kania, A.; Buczaj, A.; Kobus, Z.; Zdybel, B.; Domin, M.; Siłuch, D. Impact of incorporating two types of dried raspberry pomace into gluten-free bread on its nutritional and antioxidant characteristics. Appl. Sci. 2024, 14, 1561. [Google Scholar] [CrossRef]
- Baldán, Y.; Riveros, M.; Fabani, M.P.; Rodriguez, R. Grape pomace powder valorization: A novel ingredient to improve the nutritional quality of gluten-free muffins. Biomass Convers. Biorefin. 2021, 13, 9997–10009. [Google Scholar] [CrossRef]
- dos Santos, B.B.; Fernandes, L.C.; Burak, N.M.; Isaka, G.V.; Pimentel, T.C.; Rosset, M. Valorization of melon (Cucumis melo L.) peels as flour for vegan and gluten-free muffins. Appl. Sci. 2025, 15, 9680. [Google Scholar] [CrossRef]
- Çelik, C.; Isik, F. Quality characteristics of gluten-free muffins fortified with watermelon rind powder. Food Sci. Technol. 2022, 42, e113822. [Google Scholar] [CrossRef]
- Rehal, J.K.; Aggarwal, P.; Dhaliwal, I.; Sharma, M.; Kaushik, P. A tomato pomace enriched gluten-free ready-to-cook snack’s nutritional profile, quality, and shelf life evaluation. Horticulturae 2022, 8, 403. [Google Scholar] [CrossRef]
- Nurtiana, W.; Rismaya, R.; Sulistyawati, E.Y.E.; Fauziyyah, A.; Hakiki, D.N.; Radiansyah, M.R.; Rahmawan, A. The Effect of Beneng Taro (Xanthosoma undipes K.Koch) Flour Substitution on Physical and Sensory Characteristics of Muffins. Food ScienTech J. 2022, 4, 129–144. [Google Scholar] [CrossRef]
- Shah, Y.A.; Saeed, F.; Afzaal, M.; Waris, N.; Ahmad, S.; Shoukat, N.; Ateeq, H. Industrial applications of taro (Colocasia esculenta) as a novel food ingredient: A review. J. Food Process Preserv. 2022, 46, e16951. [Google Scholar] [CrossRef]
- Kaushal, P.; Kumar, V.; Sharma, H.K. Utilization of taro (Colocasia esculenta): A review. J. Food Sci. Technol. 2015, 52, 27–40. [Google Scholar] [CrossRef]
- Ganongo-Po, F.B.; Matos, L.; Kimbonguila, A.; Ndangui, C.B.; Nzikou, J.M.; Scher, J. Sieving Effect on the Physicochemical and Functional Properties of Taro (Colocasia esculenta) Flour. Adv. J. Food Sci. Technol. 2018, 14, 42–49. [Google Scholar] [CrossRef]
- Singla, D.; Singh, A.; Dhull, S.B.; Kumar, P.; Malik, T.; Kumar, P. Taro starch: Isolation, morphology, modification and novel applications concern—A review. Int. J. Biol. Macromol. 2020, 163, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Boahemaa, L.V.; Dzandu, B.; Amissah, J.G.N.; Akonor, P.T.; Saalia, F.K. Physico-chemical and functional characterization of flour and starch of taro (Colocasia esculenta) for food applications. Food Humanit. 2024, 2, 100245. [Google Scholar] [CrossRef]
- Struck, S.; Gundel, L.; Zahn, S.; Rohm, H. Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT-Food Sci. Technol. 2016, 65, 32–38. [Google Scholar] [CrossRef]
- Aljuhaimi, F.; Şimşek, Ş.; Ozcan, M.M. Comparison of chemical properties of taro (Colocasia esculenta L.) and tigernut (Cyperus esculentus) tuber and oils. J. Food Process Preserv. 2017, 41, e13534. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Moon, J.-H.; Choi, H.D.; Choi, I.; Kim, Y.-S. Physicochemical Properties of Taro Flours with Different Drying, Roasting and Steaming Conditions. Korean J. Food Sci. Technol. 2011, 43, 696–701. [Google Scholar] [CrossRef]
- Prianita, A.; Purwandari, U.; Watson, B.; Vasiljevic, T. Physico-chemical properties of flours and starches from selected commercial tubers available in Australia. Int. Food Res. J. 2009, 16, 507–520. [Google Scholar]
- Tsykhanovska, I.; Stabnikova, O.; Riabchykov, M.; Lazarieva, T.; Korolyova, N. Effect of partial replacement of wheat flour by flour from extruded sunflower seed kernels on muffins quality. Plant Food Hum. Nutr. 2024, 79, 769–778. [Google Scholar] [CrossRef]
- Grasso, S.; Liu, S.; Methven, L. Quality of muffins enriched with upcycled defatted sunflower seed flour. LWT-Food Sci. Technol. 2020, 119, 108893. [Google Scholar] [CrossRef]
- Sung, W.-C.; Chai, P.-S. Effect of flaxseed flour and xanthan gum on gluten-free cake properties. J. Food Nutr. Res. 2017, 5, 717–728. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, H.K. Process optimization for extraction of bioactive compounds from taro (Colocasia esculenta), using RSM and ANFIS modeling. J. Food Meas. Charact. 2017, 11, 704–718. [Google Scholar] [CrossRef]
- Rodríguez-García, J.; Salvador, A.; Hernando, I. Replacing fat and sugar with inulin in cakes: Bubble size distribution, physical and sensory properties. Food Bioprocess. Technol. 2014, 7, 964–974. [Google Scholar] [CrossRef]
- Martínez-Cervera, S.; Salvador, A.; Muguerza, B.; Moulay, L.; Fiszman, S.M. Cocoa fibre and its application as a fat replacer in chocolate muffins. LWT-Food Sci. Technol. 2011, 44, 729–736. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Moon, J.-H.; Kim, R.; Choi, H.-D.; Kim, Y.-S. Nutrient Composition and Physicochemical Properties of Korean Taro Flours According to Cultivars. Korean J. Food Sci. Technol. 2010, 42, 613–619. [Google Scholar]
- Aboubakar, C.; Bonciu, G.R.; Râpeanu, G.; Njintang, Y.N.; Mbofung, C.M.; Bahrim, G. Biochemical and structural changes of taro (Colocasia esculenta) tubers during simple thermal treatments (Low Temperature) or in combination with chemicals. Food Bioprocess Technol. 2012, 5, 2739–2747. [Google Scholar] [CrossRef]
- Arici, M.; Yildirim, R.M.; Ozulku, G.; Yasar, B.; Toker, O.S. Physicochemical and nutritional properties of taro (Colocasia esculenta L. Schott) flour as affected by drying temperature and air velocity. LWT-Food Sci. Technol. 2016, 74, 434–440. [Google Scholar] [CrossRef]
- Shewry, P.R.; Joy, E.J.M.; Segovia De La Revilla, L.; Hansen, Å.; Brennan, J.; Lovegrove, A. Increasing fibre in white flour and bread: Implications for health and processing. Nutr. Bull. 2023, 48, 587–593. [Google Scholar] [CrossRef]
- Bamal, P.; Dhull, S.B. Development of Functional Muffins from Wheat Flour-Carrot Pomace Powder using Fenugreek Gum as Fat Replacer. Curr. Res. Nutr. Food Sci. 2024, 12, 306–319. [Google Scholar] [CrossRef]
- Aboubakar; Njintang, Y.N.; Scher, J.; Mbofung, C.M.F. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J. Food Eng. 2008, 86, 294–305. [Google Scholar] [CrossRef]
- Deguchi, M.; Ito, S.; Motohashi, R.; Arai, E. Effects of taro (Colocasia esculenta L. Schott) drying on the properties of taro flour and taro flour products. Food Sci. Technol. Res. 2021, 27, 369–379. [Google Scholar] [CrossRef]
- Nguimbou, R.M.; Njintang, N.Y.; Makhlouf, H.; Gaiani, C.; Scher, J.; Mbofung, C.M.F. Effect of Cross-Section Differences and Drying Temperature on the Physicochemical, Functional and Antioxidant Properties of Giant Taro Flour. Food Bioprocess. Technol. 2013, 6, 1809–1819. [Google Scholar] [CrossRef]
- Huang, H.; Li, J.; Liu, H. Thermal analysis kinetics of Tartary buckwheat flour. Int. J. Heat. Technol. 2018, 36, 1414–1422. [Google Scholar] [CrossRef]
- Roozendaal, H.; Abu-hardan, M.; Frazier, R.A. Thermogravimetric analysis of water release from wheat flour and wheat bran suspensions. J. Food Eng. 2012, 111, 606–611. [Google Scholar] [CrossRef]
- Pigłowska, M.; Kurc, B.; Rymaniak, Ł.; Lijewski, P.; Fuć, P. Kinetics and Thermodynamics of Thermal Degradation of Different Starches and Estimation the OH Group and H2O Content on the Surface by TG/DTG-DTA. Polymers 2020, 12, 357. [Google Scholar] [CrossRef]
- Consumi, M.; Tamasi, G.; Pepi, S.; Leone, G.; Bonechi, C.; Magnani, A.; Donati, A.; Rossi, C. Analytical composition of flours through thermogravimetric and rheological combined methods. Thermochim. Acta 2022, 711, 179204. [Google Scholar] [CrossRef]
- Mao, T.; Huang, F.; Zhu, X.; Wei, D.; Chen, L. Effects of dietary fiber on glycemic control and insulin sensitivity in patients with type 2 diabetes: A systematic review and meta-analysis. J. Funct. Foods 2021, 82, 104500. [Google Scholar] [CrossRef]
- Veronese, I.; Gianfredi, V.; Solmi, M.; Barbagallo, M.; Dominguez, L.J.; Mandalà, C.; Di Palermo, C.; Carruba, L.; Solimando, L.; Stubbs, B.; et al. The impact of dietary fiber consumption on human health: An umbrella review of evidence from 17,155,277 individuals. Clin. Nutr. 2025, 51, 325–333. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Chen, M.; He, Z. Effects of taro powder on the properties of wheat flour and dough. Food Sci. Technol. 2022, 42, e116221. [Google Scholar] [CrossRef]
- Ferreira, J.; Tkacz, K.; Turkiewicz, I.P.; Santos, I.; Camoesas e Silva, M.; Lima, A.; Sousa, I. Exploring the Bioactive Properties and Therapeutic Benefits of Pear Pomace. Antioxidants 2024, 13, 784. [Google Scholar] [CrossRef]
- Antoniewska, A.; Rutkowska, J.; Martinez Pineda, M.; Adamska, A. Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT-Food Sci. Technol. 2018, 89, 217–223. [Google Scholar] [CrossRef]
- Marchetti, L.; Acuna, M.S.; Andrés, S.C. Effect of pecan nut expeller meal on quality characteristics of gluten-free muffins. LWT-Food Sci. Technol. 2021, 146, 111426. [Google Scholar] [CrossRef]
- Górnaś, P.; Juhnevica-Radenkova, K.; Radenkovs, V.; Mišina, I.; Pugajeva, I.; Soliven, A.; Segliņa, D. The impact of different baking conditions on the stability of the extractable polyphenols in muffins enriched by strawberry, sour cherry, raspberry or black currant pomace. LWT-Food Sci. Technol. 2016, 65, 946–953. [Google Scholar] [CrossRef]
- Lee, P.; Oh, H.; Kim, S.Y.; Kim, Y.S. Textural, physical and retrogradation properties of muffin prepared with Kamut (Triticum turanicum Jakubz). J. Food Sci. 2020, 32, 107. [Google Scholar]
- Göksen, G.; Ekiz, H.I. Use of aniseed cold-pressed by-product as a food ingredient in muffin formulation. LWT-Food Sci. Technol. 2021, 148, 111722. [Google Scholar] [CrossRef]
- Talens, C.; Álvarez-Sabatel, S.; Rios, Y.; Rodríguez, R. Effect of a new microwave-dried orange fibre ingredient vs. a commercial citrus fibre on texture and sensory properties of gluten-free muffins. Innov. Food Sci. Emerg. Technol. 2017, 44, 83–88. [Google Scholar] [CrossRef]
- Quiles, A.; Campbell, G.M.; Struck, S.; Rohm, H.; Hernando, I. Fiber from fruit pomace: A review of applications in cereal-based products. Food Rev. Int. 2018, 34, 162–181. [Google Scholar] [CrossRef]
- Ostermann-Porcel, M.V.; Rinaldoni, A.N.; Campderrós, M.E.; Gómez, M. Evaluation of gluten-free layer cake quality made with okara flour. J. Food Meas. Charact. 2020, 14, 1614–1622. [Google Scholar] [CrossRef]







| Property | Parameter | Value |
|---|---|---|
| Proximate composition (%) | Moisture content | 9.63 ± 0.32 |
| Fat content | 0.52 ± 0.04 | |
| Protein content | 8.70 ± 0.62 | |
| Ash content | 6.49 ± 0.24 | |
| Fiber content | 5.16 ± 0.09 | |
| Carbohydrates (by difference) | 69.51 ± 0.56 | |
| Hydration and Oil Absorption Properties | Water binding capacity (g/g) | 3.81 ± 0.32 |
| Water holding capacity (g/g) | 3.19 ± 0.16 | |
| Water adsorption capacity (g/g) | 3.05 ± 0.11 | |
| Oil adsorption capacity (g/g) | 1.86± 0.09 | |
| Color parameters | L* (lightness) | 81.97 ± 1.15 |
| a* (redness/greenness) | 7.50 ± 0.08 | |
| b* (yellowness/blueness) | 10.53 ± 0.45 | |
| WI (whiteness index) | 77.81 ± 1.02 |
| Sample | Moisture | Fat | Protein | Ash | Fiber | CHO | TPC | AA |
|---|---|---|---|---|---|---|---|---|
| C0 | 19.48 ± 0.2 d | 20.82 ± 0.18 b | 7.98 ± 0.20 a | 3.41 ± 0.08 a | 1.77 ± 0.1 a | 46.54 ± 0.01 a | 1.65 ± 0.08 a | 56.80 ± 0.26 a |
| DP5 | 18.61 ± 0.31 c | 20.64 ± 0.23 ab | 7.95 ± 0.14 a | 3.56 ± 0.06 ab | 2.55 ± 0.07 b | 46.69 ± 0.55 a | 2.16 ± 0.07 b | 59.09 ± 0.18 b |
| DP10 | 17.54 ± 0.21 b | 20.46 ± 0.20 ab | 7.92 ± 0.11 a | 3.5 ± 0.07 ab | 3.33 ± 0.11 c | 47.25 ± 0.34 a | 2.99 ± 0.10 c | 62.42 ± 0.16 c |
| DP20 | 16.47 ± 0.25 a | 20.24 ± 0.16 a | 7.88 ± 0.10 a | 3.61 ± 0.04 b | 4.87 ± 0.1 d | 46.93 ± 0.37 a | 4.21 ± 0.12 d | 67.90 ± 0.26 d |
| F-value | 55.47 | 3.321 | 0.178 | 3.442 | 374.59 | 2.522 | 282.81 | 966.32 |
| p-value | <0.001 | 0.138 | 0.906 | 0.132 | <0.001 | 0.196 | <0.001 | <0.001 |
| Sample | Crust L* | Crust a* | Crust b* | Crust ΔE |
|---|---|---|---|---|
| Crust | ||||
| Control | 58.38 ± 0.33 c | 11.97 ± 0.08 a | 33.24 ± 0.14 d | |
| DP5 | 57.40 ± 0.01 b | 12.22 ± 0.21 a | 30.49 ± 0.11 c | 2.85 ± 0.11 a |
| DP10 | 57.16 ± 0.17 ab | 13.82 ± 0.04 b | 28.99 ± 0.09 b | 4.80 ± 0.02 b |
| DP20 | 57.04 ± 0.21 a | 13.95 ± 0.09 b | 28.18 ± 0.08 a | 5.60 ± 0.09 c |
| F-value | 16.813 | 142.052 | 868.364 | 19,996.47 |
| p-value | 0.010 | <0.001 | <0.001 | <0.001 |
| Crumb | ||||
| Control | 64.27 ± 0.11 d | 9.98 ± 0.01 a | 17.05 ± 0.06 a | |
| DP5 | 63.89 ± 0.06 c | 10.01 ± 0.04 a | 17.18 ± 0.04 ab | 0.40 ± 0.04 a |
| DP10 | 63.33 ± 0.14 b | 10.24 ± 0.01 b | 17.30 ± 0.05 bc | 1.01 ± 0.12 b |
| DP20 | 62.98 ± 0.07 a | 10.30 ± 0.08 b | 17.37 ± 0.04 c | 1.37 ± 0.09 c |
| F-value | 64.330 | 26.823 | 17.570 | 1859.99 |
| p-value | 0.001 | 0.004 | 0.009 | <0.001 |
| Sample | Weight Loss (%) | Height (cm) | Hardness (g) | Springiness | Cohesiveness | Chewiness (g) | Resilience |
|---|---|---|---|---|---|---|---|
| C0 | 16.70 ± 0.66 a | 4.05 ± 0.07 c | 280.04 ± 2.98 a | 0.74 ± 0.02 c | 0.908 ± 0.01 c | 188.15 ± 10.11 a | 0.595 ± 0.01 d |
| DP5 | 17.43 ± 0.52 ab | 3.88 ± 0.04 b | 284.55 ± 2.62 a | 0.718 ± 0.01 bc | 0.882 ± 0.02 bc | 180.17 ± 0.97 a | 0.563 ± 0.01 c |
| DP10 | 18.15 ± 0.68 ab | 3.80 ± 0.07 b | 314.02 ± 3.96 b | 0.692 ± 0.01 b | 0.850 ± 0.01 ab | 184.75 ± 7.19 a | 0.536 ± 0.01 b |
| DP20 | 18.80 ± 0.61 b | 3.48 ± 0.04 a | 359.50 ± 4.74 c | 0.63 ± 0.02 a | 0.818 ± 0.02 a | 185.39 ± 11.92 a | 0.505 ± 0.01 a |
| F-value | 4.267 | 37.067 | 198.528 | 21.549 | 11.216 | 0.295 | 31.818 |
| p-value | 0.097 | 0.002 | <0.001 | 0.006 | 0.020 | 0.828 | 0.003 |
| Sample | Total Air Cell Area | Average Air Cell Size | Air Cell Area (%) | Circularity |
|---|---|---|---|---|
| C0 | 43.92 ± 0.14 c | 0.164 ± 0.001 a | 27.23 ± 0.09 c | 0.794 ± 0.002 ab |
| DP5 | 39.71 ± 0.57 b | 0.104 ± 0.037 a | 24.62 ± 0.35 b | 0.830 ± 0.013 c |
| DP10 | 38.74 ± 0.67 b | 0.122 ± 0.014 a | 24.02 ± 0.41 b | 0.823 ± 0.012 bc |
| DP20 | 33.30 ± 0.26 a | 0.153 ± 0.079 a | 20.65 ± 0.16 a | 0.780 ± 0.017 a |
| F-value | 177.849 | 0.772 | 177.820 | 7.477 |
| p-value | <0.001 | 0.567 | <0.001 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavak, D.D.; Yilmaz, B.A.; Akdeniz, B. Valorization of Pear Pomace in Taro Gluten-Free Muffins: Composition, Texture, and Sensory Profile. Foods 2025, 14, 3903. https://doi.org/10.3390/foods14223903
Kavak DD, Yilmaz BA, Akdeniz B. Valorization of Pear Pomace in Taro Gluten-Free Muffins: Composition, Texture, and Sensory Profile. Foods. 2025; 14(22):3903. https://doi.org/10.3390/foods14223903
Chicago/Turabian StyleKavak, Dilek Demirbuker, Betül Aslan Yilmaz, and Bilge Akdeniz. 2025. "Valorization of Pear Pomace in Taro Gluten-Free Muffins: Composition, Texture, and Sensory Profile" Foods 14, no. 22: 3903. https://doi.org/10.3390/foods14223903
APA StyleKavak, D. D., Yilmaz, B. A., & Akdeniz, B. (2025). Valorization of Pear Pomace in Taro Gluten-Free Muffins: Composition, Texture, and Sensory Profile. Foods, 14(22), 3903. https://doi.org/10.3390/foods14223903

