Advances in Yarrowia Genus Exploitation: From Fundamental Research to Industrial Biotechnology
Abstract
1. Introduction
2. The Yarrowia Genus: General Characteristics and Research Developments
Species | Number of Strains * | Region of Isolation | Isolation Source | Reference |
---|---|---|---|---|
Yarrowia lipolytica | 42 (CBS) 6 (KKP) 31 (MUCL) 6 (C-) 124 (CLIB) 21 (Y.), 16 (ACA-DC) | Netherlands, Turkey, Southern Ocean, China, Norway, Germany, Russia, United Kingdom, United States of America, France, Argentina, Italy, Poland, Morocco, Belgium, Portugal, Finland, Spain, Czech Republic | human, dairy products, water and aquatic environments, soil, natural environment, food and food fermentation, food industry processes, industrial and petrochemical, unspecified, | [24,25,26,27,28,29,30] |
Yarrowia alimentaria | 3 (CBS) 1 (C-) 3 (Y.) | Norway, Finland, Hungary | Brie Régalou cheese; cured ham; yoghurt production line; fast food, minced beef and pork | [24,28,30] |
Yarrowia brassicae | 1 (CBS) | China | pickled cabbage | [24] |
Yarrowia bubula | 1 (CBS) 5 (Y.) | Hungary | beef and pork | [24,28] |
Yarrowia deformans | 18 (CBS) 1 (KKP) 5 (MUCL) 4 (CLIB) 1 (Y.), 1 (ACA-DC) | Belgium, France, South Africa, Japan, Germany, Austria, Poland, Hungary | frozen chicken; pyrenees cheese; moss; soil; lichens; fish conserves; human; fermented beverage; tick | [24,25,26,27,28,31] |
Yarrowia divulgata | 1 (CBS) 4 (Y.) | Denmark, United States, Hungary | bacon, chicken liver and breast, gryphon, minced beef | [24,28] |
Yarrowia galli | 2 (CBS) 1(C-) 8 (Y.) | United States of America, Finland | chicken liver and breast, pears | [24,28,30] |
Yarrowia hollandica | 2 (CBS) | Belgium, Netherlands | Caprice Des Dieux cheese; back of a cow | [24] |
Yarrowia keelungensis | 1 (CBS) | Taiwan | seawater | [24] |
Yarrowia osloensis | 4 (CBS) | Norway | yoghurt with melon; yoghurt with coconut; yoghurt with kiwi | [24] |
Yarrowia parophonii | 7 (CBS) | Bulgaria | gut of Paraphonus hirsutulus (carabidae) | [24] |
Yarrowia phangngaensis | 1 (CBS) | Thailand | seawater | [24] |
Yarrowia porcina | 2 (CBS) 6 (Y.) | Hungary, Brazil | minced beef and pork; subsurface water of the Rio Doce river | [24,28] |
Yarrowia yakushimensis | 4 (CBS) 4 (Y.) | Japan | gut of Japanese termite (hodotermopsis sjoestedti) | [24,28] |
3. Focus on Y. lipolytica: A Biotechnological Model Organism
Authority | Regulatory Status | Scope of Use | Target Animals | Limitations/Conditions | Legal Basis/Source | Reference |
---|---|---|---|---|---|---|
FEFAC | Approved as feed material (2010) | Protein source, yeast biomass | Poultry, swine, ruminants | Biomass derived from fermentation using crude glycerol (non-GMO); compliance with EU feed hygiene standards; genetically modified micro-organisms shall be compliant with Regulation (EC) No 1829/2003 on genetically modified feed and food. | FEFAC Catalogue No. 00575-EN | [35] |
EFSA (EU) | Authorized as feed material and probiotic additive (depending on strain and form) | Protein-rich biomass, lipid-rich biomass; used in feed for poultry, pigs, aquaculture (e.g., salmon, trout), and pets | Poultry, pigs, ruminants, fish, companion animals | Must comply with Directive 2002/32/EC (undesirable substances); must meet criteria of Regulation (EC) 767/2009 (placing on the market of feed)—but there is no direct reference to the biomass of Yarrowia lipolytica | EFSA FEEDAP Panel opinions; EU Catalogue of Feed Materials) | [34,36] |
FDA (USA) | GRAS or approved feed ingredient (based on intended use) * | Could be used as a protein supplement, a source of lipids, or as a microbial additive | Poultry, swine, cattle, pets, aquaculture species | Product must comply with AAFCO definitions or have GRAS status for feed use | - | [34,37] |
Authority | Regulatory Status | Scope of Use | Target Population | Limitations/Conditions | Legal Basis/Source | Reference |
---|---|---|---|---|---|---|
FDA (USA) | GRAS—Generally Recognized as Safe | Food biotechnology and industrial use: enzyme production, nutritional ingredients, additives | General population | No specific intake limits; safety based on toxicological data and historical use | GRAS Notice (e.g., GRN No. 000252 for Y. lipolytica) | [34,38] |
EFSA (EU) | Novel Food—approved biomass | Dietary supplements, food for special medical purposes, meal replacements, dairy products, baked goods, soups | Individuals over 3 years of age | Max daily intake: 3 g for children (3–9 years), 6 g for older children and adults; biomass must be cultivated on specified waste-based media | Commission Implementing Regulation (EU) 2024/2044 of 6 March 2024—authorizing the placing on the market of Y. lipolytica biomass as a novel food | [34,39] |
4. Species Diversity in the Yarrowia Genus
4.1. Y. alimentaria
4.2. Y. brassicae
4.3. Y. bubula
4.4. Y. deformans
4.5. Y. divulgata
4.6. Y. galli
4.7. Y. hollandica
4.8. Y. keelungensis
4.9. Y. osloensis
4.10. Y. parophonii
4.11. Y. phangngensis
4.12. Y. porcina
4.13. Y. yakushimensis
4.14. Physiological and Genomic Overview of Yarrowia Species
Species | Growth Temperature | Salt Tolerance | Metabolic Traits | Lipid Accumulation | Other Key Traits | Reference |
---|---|---|---|---|---|---|
Y. alimentaria | Not at 30 °C | Sensitive (10% NaCl) | High protease (1.38 U/mL/min) | ~ 4.5% dry weight (low) | pH 3-tolerant, strong brewers’ grain-protein hydrolysis | [62,63,64] |
Y. brassicae | up to 30 °C, fails at 35 °C | Sensitive (10% NaCl) | Urease and diazonium blue B reactions are negative, no fermentation | Not reported | Close to Y. divulgata, difficult to distinguish without molecular analysis | [5,61] |
Y. bubula | 15–25 °C (psychrofilic) | Tolerates 10% NaCl | Strong lipolytic activity (meat processing phase); strain-dependent protease production | Up to 20%, high SFA | Grown on WCO, glycerol, and whey | [65,66,67,68] |
Y. deformans | 25 °C | Not reported | High thermostable, alkaline protease, lipolytic | Lipolytic species | Teleomorphic, potential clinical relevance | [5,69,70,71,72] |
Y. divulgata | 25–30 °C | Not reported | Non-fermentative | Not reported | Vitamin-requiring, phenotypically very similar to Y. brassicae | [61,73] |
Y. galli | 25 °C, unable to grow at 37 °C | Not reported | Variable morphology, possible clinical significance | Not reported | A rare human pathogen may cause superficial infections | [74,75] |
Y. hollandica | Grows at 30 °C | Tolerates 10% NaCl | Moderate protease production | Not reported | Variable carbon source utilization, acid tolerance, and useful in dry-aged beef processes | [71,76] |
Y. keelungensis | 25–35 °C | Not reported | Non—fermentative, high cell surface, hydrophobicity, xylitol yield | ≥20% DW, xylitol production | UV-resistant, anamorphic | [77,78] |
Y. osloensis | Optimal at 25 °C | Not reported | Excellent mannitol producer (0.54 g/g substrate) | Not reported | One of the top mannitol-producing species in the genus | [56,71,79,80] |
Y. parophonii | Up to 25 °C | Not reported | Moderate protease (0.80 U/mL/min), enzyme biotech potential | Not reported | Vitamin–free growth, hyphae, hat–shaped ascospores; | [64,68,81,82] |
Y. phangngensis | Up to 37 °C | Not reported | High—lipid production (up to twofold higher than Y. lipolytica) | High in C16:0 and C16:1 | Vitamin requirement, distinct fatty acid profile | [5,78,79,83] |
Y. porcina | At 25–30 °C | 10% NaCl | No extracellular lipase, teleomorphic | Not reported | Teleomorphic, asci with ascospores, heterothallic | [65,68,84] |
Y. yakushimensis | 25 °C, not at 30 °C | Not reported | Non-fermentative, lipid content decreases over time | From 6% to 4.7% DW | Linoleic acid dominant, PUFA-focused biotech potential | [5,62,67,70] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jach, M.E.; Malm, A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022, 27, 2300. [Google Scholar] [CrossRef]
- Fabiszewska, A.U.; Kobus, J.; Górnicka, M.; Piotrowicz, A.; Piasecka, I.; Nowak, D. Valorisation of Waste Oils through Oleaginous Yarrowia lipolytica Yeast: Insights into Lipid Stability and Nutritive Properties of Lipid-Rich Biomass. Appl. Sci. 2025, 15, 6796. [Google Scholar] [CrossRef]
- Barth, G. (Ed.) Yarrowia lipolytica: Biotechnological Applications. 2013th ed.; Springer: Berlin, Germany, 2013; ISBN 9783642385827. [Google Scholar]
- Barth, G. (Ed.) Yarrowia lipolytica: Genetics, Genomics, and Physiology. 2013th ed.; Springer: Berlin, Germany, 2013; ISBN 9783642383199. [Google Scholar]
- Madzak, C. Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J. Fungi 2021, 7, 548. [Google Scholar] [CrossRef] [PubMed]
- Madzak, C. Yarrowia lipolytica Engineering as a Source of Microbial Cell Factories. In Microbial Cell Factories Engineering for Production of Biomolecules; Elsevier: Amsterdam, The Netherlands, 2021; pp. 345–380. ISBN 9780128214770. [Google Scholar]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Recent Advances in Biological Production of Erythritol. Crit. Rev. Biotechnol. 2018, 38, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Rymowicz, W.; Rywińska, A.; Żarowska, B.; Juszczyk, P. Citric Acid Production from Raw Glycerol by Acetate Mutants of Yarrowia lipolytica. Chem. Pap. 2006, 60, 391–394. [Google Scholar] [CrossRef]
- Kamzolova, S.V. A Review on Citric Acid Production by Yarrowia lipolytica Yeast: Past and Present Challenges and Developments. Processes 2023, 11, 3435. [Google Scholar] [CrossRef]
- Rywińska, A.; Tomaszewska-Hetman, L.; Lazar, Z.; Juszczyk, P.; Sałata, P.; Malek, K.; Kawecki, A.; Rymowicz, W. Application of New Yarrowia lipolytica Transformants in Production of Citrates and Erythritol from Glycerol. Int. J. Mol. Sci. 2024, 25, 1475. [Google Scholar] [CrossRef]
- Fickers, P.; Marty, A.; Nicaud, J.M. The Lipases from Yarrowia lipolytica: Genetics, Production, Regulation, Biochemical Characterization and Biotechnological Applications. Biotechnol. Adv. 2011, 29, 632–644. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Yarrowia lipolytica: A Model Microorganism Used for the Production of Tailor-made Lipids. Eur. J. Lipid Sci. Technol. 2010, 112, 639–654. [Google Scholar] [CrossRef]
- Markham, K.A.; Alper, H.S. Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica. Trends Biotechnol. 2018, 36, 1085–1095. [Google Scholar] [CrossRef]
- Miller, K.K.; Alper, H.S. Yarrowia lipolytica: More than an Oleaginous Workhorse. Appl. Microbiol. Biotechnol. 2019, 103, 9251–9262. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, X.; Zhang, Y.; Li, Q.; Ji, L.; Cheng, H. Concomitant Production of Erythritol and β-Carotene by Engineered Yarrowia lipolytica. J. Agric. Food Chem. 2023, 71, 11567–11578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Xu, Y.; Xu, S.; Bilal, M.; Cheng, H. Engineering Thermotolerant Yarrowia lipolytica for Sustainable Biosynthesis of Mannitol and Fructooligosaccharides. Biochem. Eng. J. 2022, 187, 108604. [Google Scholar] [CrossRef]
- Bilal, M.; Xu, S.; Iqbal, H.M.N.; Cheng, H. Yarrowia lipolytica as an Emerging Biotechnological Chassis for Functional Sugars Biosynthesis. Crit. Rev. Food Sci. Nutr. 2021, 61, 535–552. [Google Scholar] [CrossRef]
- Krzyczkowska, J.; Fabiszewska, A.U. Yarrowia lipolytica-Niekonwencjonalne Drożdże w Biotechnologii. Postępy Mikrobiologii. 2015, 54, 33–43. [Google Scholar]
- ScienceDirect. Available online: https://www.sciencedirect.com/ (accessed on 6 June 2025).
- GoogleScholar. Available online: https://scholar.google.com/schhp?hl=pl&as_sdt=0,5 (accessed on 6 June 2025).
- PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 1 October 2025).
- Global Catalogue of Microorganisms, Global Catalogue. Available online: https://gcm.wdcm.org/search?search=YARROWIA (accessed on 10 September 2025).
- Novotny, D. European Culture Collections’ Organisation. Available online: https://www.eccosite.org/ (accessed on 10 September 2025).
- Westerdijk Fungal Biodiversity Institute, Netherlands. Available online: https://wi.knaw.nl/fungal_table (accessed on 8 June 2025).
- Polish Collection of Industrial Microorganisms, Poland. Available online: https://kkp.ibprs.pl/ (accessed on 8 June 2025).
- The Belgian Coordinated Collections of Microorganisms, Belgium. Available online: https://bccm.belspo.be/MUCL-catalogue-search (accessed on 8 June 2025).
- Levures Yeast Collection Catalogue, France. Available online: https://cirm-levures.bio-aware.com/strains_table (accessed on 8 June 2025).
- National Collection of Agricultural and Industrial Microorganisms, Hungary. Available online: https://ncaim.etk.szie.hu/node?combined=yarrowia&strain_status=All&items_per_page=50 (accessed on 8 June 2025).
- ACA-DC, Global Catalogue of Microorganisms, Global Catalogue. Available online: https://gcm.wdcm.org/strainlist?term=Yarrowia%20lipolytica&type=name&keyword=aca-dc (accessed on 10 September 2025).
- VTT, Culture Collection, Finland. Available online: https://culturecollection.vtt.fi/m/html?p=spl&type=C&g=Yarrowia&n=Y (accessed on 8 June 2025).
- ACA-DC, Global Catalogue of Microorganisms, Global Catalogue. Available online: https://gcm.wdcm.org/strainlist?term=Yarrowia%20deformans&type=name&keyword=aca-dc (accessed on 10 September 2025).
- Da Silva, J.L.; Sales, M.B.; De Castro Bizerra, V.; Nobre, M.M.R.; De Sousa Braz, A.K.; Sousa, P.; Cavalcante, A.L.G.; Melo, R.L.F.; Gonçalves De Sousa Junior, P.; Neto, F.S. Lipase from Yarrowia lipolytica: Prospects as an Industrial Biocatalyst for Biotechnological Applications. Fermentation 2023, 9, 581. [Google Scholar] [CrossRef]
- Bigey, F.; Pasteur, E.; Połomska, X.; Thomas, S.; Crutz-Le Coq, A.-M.; Devillers, H.; Neuvéglise, C. Insights into the Genomic and Phenotypic Landscape of the Oleaginous Yeast Yarrowia lipolytica. J. Fungi 2023, 9, 76. [Google Scholar] [CrossRef]
- Wierzchowska, K.; Szulc, K.; Zieniuk, B.; Fabiszewska, A. Bioconversion of Liquid and Solid Lipid Waste by Yarrowia lipolytica Yeast: A Study of Extracellular Lipase Biosynthesis and Microbial Lipid Production. Molecules 2025, 30, 959. [Google Scholar] [CrossRef]
- FEFAC Feed Material Register, 2010 Edition. Available online: https://fefac.eu/wp-content/uploads/2021/04/21_DOC_46_new.pdf (accessed on 8 June 2025).
- Regulation-767/2009-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009R0767 (accessed on 3 May 2025).
- FDA Enforcement Policy for AAFCO-Defined Animal Feed Ingredients. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-293-fda-enforcement-policy-aafco-defined-animal-feed-ingredients (accessed on 9 June 2025).
- GRAS Notices. Available online: https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&sort=GRN_No&order=DESC&startrow=1&type=basic&search=yarrowia (accessed on 9 June 2025).
- Rozporządzenie Wykonawcze-UE-2024/2044-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32024R2044 (accessed on 9 June 2025).
- Wang, J.; Ledesma-Amaro, R.; Wei, Y.; Ji, B.; Ji, X.-J. Metabolic Engineering for Increased Lipid Accumulation in Yarrowia lipolytica—A Review. Bioresour. Technol. 2020, 313, 123707. [Google Scholar] [CrossRef]
- Naveira-Pazos, C.; Robles-Iglesias, R.; Fernández-Blanco, C.; Veiga, M.C.; Kennes, C. State-of-the-Art in the Accumulation of Lipids and Other Bioproducts from Sustainable Sources by Yarrowia lipolytica. Rev. Environ. Sci. Biotechnol. 2023, 22, 1131–1158. [Google Scholar] [CrossRef]
- Souza, A.H.; Moura, M.F.C.; De Franson, R.C.B.; Carvalho, T.; Martins, M.G.; Pereira, A.; Da, S.; Torres, A.G.; Amaral, P.F.F. Selection of Yarrowia lipolytica Lipases for Efficient Ester Synthesis or Hydrolysis. Reactions 2024, 5, 1027–1041. [Google Scholar] [CrossRef]
- Miranda, S.M.; Belo, I.; Lopes, M. Yarrowia lipolytica Growth, Lipids, and Protease Production in Medium with Higher Alkanes and Alkenes. World J. Microbiol. Biotechnol. 2024, 40, 318. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.B.; Harholt, J.; Arneborg, N. Application of Yarrowia lipolytica in Fermented Beverages. Front. Food Sci. Technol. 2023, 3, 1190063. [Google Scholar] [CrossRef]
- Zieniuk, B.; Jasińska, K.; Wierzchowska, K.; Uğur, Ş.; Fabiszewska, A. Yarrowia lipolytica Yeast: A Treasure Trove of Enzymes for Biocatalytic Applications—A Review. Fermentation 2024, 10, 263. [Google Scholar] [CrossRef]
- Sanya, D.R.A.; Onésime, D. New Roles for Yarrowia lipolytica in Molecules Synthesis and Biocontrol. Appl. Microbiol. Biotechnol. 2022, 106, 7397–7416. [Google Scholar] [CrossRef]
- Gottardi, D.; Siroli, L.; Braschi, G.; D’Alessandro, M.; Vannini, L.; Patrignani, F.; Lanciotti, R. Surface Application and Impact of Yarrowia lipolytica Grown in Cheese Whey as Adjunct Culture for Innovative and Fast-Ripening Caciotta-like Cheeses. Int. J. Food Microbiol. 2025, 432, 111112. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Galiotou-Panayotou, M.; Fakas, S.; Komaitis, M.; Aggelis, G. Citric Acid Production by Yarrowia lipolytica Cultivated on Olive-Mill Wastewater-Based Media. Bioresour. Technol. 2008, 99, 2419–2428. [Google Scholar] [CrossRef]
- Shanmugam, S.R.; Schorer, R.; Arthur, W.; Drabold, E.; Rudar, M.; Higgins, B. Upcycling Nutrients from Poultry Slaughterhouse Wastewater through Cultivation of the Nutritional Yeast, Yarrowia lipolytica. J. Environ. Chem. Eng. 2025, 13, 115245. [Google Scholar] [CrossRef]
- Soong, Y.-H.V.; Liu, N.; Yoon, S.; Lawton, C.; Xie, D. Cellular and Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Bioconversion of Hydrophobic Substrates into High-Value Products. Eng. Life Sci. 2019, 19, 423–443. [Google Scholar] [CrossRef]
- Nunes, D.D.; Pillay, V.L.; Van Rensburg, E.; Pott, R.W.M. Oleaginous Microorganisms as a Sustainable Oil Source with a Focus on Downstream Processing and Cost-Lowering Production Strategies: A Review. Bioresour. Technol. Rep. 2024, 26, 101871. [Google Scholar] [CrossRef]
- Park, Y.-K.; Nicaud, J.-M. Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica. Microorganisms 2020, 8, 1937. [Google Scholar] [CrossRef]
- Egermeier, M.; Russmayer, H.; Sauer, M.; Marx, H. Metabolic Flexibility of Yarrowia lipolytica Growing on Glycerol. Front. Microbiol. 2017, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Filippousi, R.; Antoniou, D.; Tryfinopoulou, P.; Nisiotou, A.A.; Nychas, G.-J.; Koutinas, A.A.; Papanikolaou, S. Isolation, Identification and Screening of Yeasts towards Their Ability to Assimilate Biodiesel-Derived Crude Glycerol: Microbial Production of Polyols, Endopolysaccharides and Lipid. J. Appl. Microbiol. 2019, 127, 1080–1100. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulou, P.; Filippousi, R.; Antoniou, D.; Varfi, E.; Xenopoulos, E.; Sarris, D.; Papanikolaou, S. Production of Added-Value Microbial Metabolites during Growth of Yeast Strains on Media Composed of Biodiesel-Derived Crude Glycerol and Glycerol/Xylose Blends. FEMS Microbiol. Lett. 2020, 367, fnaa063. [Google Scholar] [CrossRef] [PubMed]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Lipids by Yarrowia lipolytica Strains Cultivated on Glucose in Batch Cultures. Microorganisms 2020, 8, 1054. [Google Scholar] [CrossRef]
- Vasilakis, G.; Roidouli, C.; Karayannis, D.; Giannakis, N.; Rondags, E.; Chevalot, I.; Papanikolaou, S. Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella Elegans through Glycerol Conversion in Shake Flasks and Bioreactors. Microorganisms 2024, 12, 2097. [Google Scholar] [CrossRef]
- Barth, G.; Gaillardin, C. Physiology and Genetics of the Dimorphic Fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 1997, 19, 219–237. [Google Scholar] [CrossRef]
- Onésime, D.; Vidal, L.; Thomas, S.; Henry, C.; Martin, V.; André, G.; Kubiak, P.; Minard, P.; Celinska, E.; Nicaud, J.-M. Newly Discovered Four-Member Protein Family Involved in Extracellular Fatty Acid Binding in Yarrowia lipolytica. Microb. Cell Fact 2022, 21, 200. [Google Scholar] [CrossRef]
- Lockhart, F.; Burgardt, L.J.; Ferreyra, N.I.; Ceolin, R.G.; Ermácora, M.; Córsico, M.R. Fatty Acid Transfer from Yarrowia lipolytica Sterol Carrier Protein 2 to Phospholipid Membranes. Biophys. J. 2009, 97, 248–256. [Google Scholar] [CrossRef]
- Liu, K.F.; Li, X.H.; Hui, F.L. Yarrowia brassicae Fa, sp. Nov., a New Yeast Species from Traditional Chinese Sauerkraut. Int. J. Syst. Evol. Microbiol. 2018, 68, 2024–2027. [Google Scholar] [CrossRef]
- Michely, S.; Gaillardin, C.; Nicaud, J.-M.; Neuvéglise, C. Comparative Physiology of Oleaginous Species from the Yarrowia Clade. PLoS ONE 2013, 8, e63356. [Google Scholar] [CrossRef]
- Groenewald, M.; Daniel, H.M.; Robert, V.; Van Den Broek, M.; Boekhout, T. Phenotypic and Molecular Identification of Novel Yarrowia Species. Int. J. Syst. Evol. Microbiol. 2007, 57, 1035–1042. [Google Scholar]
- Ciurko, D.; Neuvéglise, C.; Szwechłowicz, M.; Lazar, Z.; Janek, T. Comparative Analysis of the Alkaline Proteolytic Enzymes of Yarrowia Clade Species and Their Putative Applications. Int. J. Mol. Sci. 2023, 24, 6514. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Dlauchy, D.; Medeiros, A.O.; Péter, G.; Rosa, C.A. Yarrowia Porcina sp. Nov. and Yarrowia Bubula f.a. sp. Nov., Two Yeast Species from Meat and River Sediment. Antonie Van Leeuwenhoek 2014, 105, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.R.; Barvkar, V.T.; Kashikar, A.; Gaikwad, P.; Ravikumar, A. Dynamics of the Lipid Body Lipidome in the Oleaginous Yeast Yarrowia sp. FEMS Yeast Res. 2024, 24, foae021. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, P.; Joshi, S.; Mandlecha, A.; RaviKumar, A. Phylogenomic and Biochemical Analysis Reassesses Temperate Marine Yeast Yarrowia lipolytica NCIM 3590 to Be Yarrowia Bubula. Sci. Rep. 2021, 11, 5487. [Google Scholar] [CrossRef]
- Sipiczki, G.; Micevic, S.S.; Kohari-Farkas, C.; Nagy, E.S.; Nguyen, Q.D.; Gere, A.; Bujna, E. Effects of Olive Oil and Tween 80 on Production of Lipase by Yarrowia Yeast Strains. Processes 2024, 12, 1206. [Google Scholar] [CrossRef]
- Romo-Silva, M.; Flores-Camargo, E.O.; Chávez-Camarillo, G.M.; Cristiani-Urbina, E. Production, Purification, and Characterization of Extracellular Lipases from Hyphopichia wangnamkhiaoensis and Yarrowia deformans. Fermentation 2024, 10, 595. [Google Scholar] [CrossRef]
- Groenewald, M.; Smith, M.T. The Teleomorph State of Candida deformans Langeron & Guerra and Description of Yarrowia yakushimensis Comb. Nov. Antonie Van Leeuwenhoek 2013, 103, 1023–1028. [Google Scholar] [CrossRef]
- Knutsen, A.K.; Robert, V.; Poot, G.A.; Epping, W.; Figge, M.; Holst-Jensen, A.; Skaar, I.; Smith, M.T. Polyphasic Re-Examination of Yarrowia lipolytica Strains and the Description of Three Novel Candida Species: Candida Oslonensis sp. Nov., Candida alimentaria sp. Nov. and Candida hollandica sp. Nov. Int. J. Syst. Evol. Microbiol. 2007, 57, 2426–2435. [Google Scholar] [CrossRef]
- Bigey, F.; Tuery, K.; Bougard, D.; Nicaud, J.-M.; Moulin, G. Identification of a Triacylglycerol Lipase Gene Family in Candida Deformans: Molecular Cloning and Functional Expression. Yeast 2003, 20, 233–248. [Google Scholar] [CrossRef]
- Nagy, E.; Niss, M.; Dlauchy, D.; Arneborg, N.; Nielsen, D.S.; Péter, G. Yarrowia divulgata f.a., sp. Nov., a Yeast Species from Animal-Related and Marine Sources. Int. J. Syst. Evol. Microbiol. 2013, 63, 4818–4823. [Google Scholar] [CrossRef]
- Bing, J.; You, Z.; Zheng, Q.; Tang, J.; Ran, Y.; Huang, G. Biological and Genomic Analyses of a Clinical Isolate of Yarrowia galli from China. Curr. Genet. 2020, 66, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Sater, M.A.; Moubasher, A.-A.H.; Soliman, Z. Identification of Three Yeast Species Using the Conventional and Internal Transcribed Spacer Region Sequencing Methods as First or Second Global Record from Human Superficial Infections. Mycoses 2016, 59, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, D.; Peng, A.; Li, T.; Li, H.; Mu, B.; Wang, J.; Cui, M.; Piao, C.; Li, G. Hydrolysis of Beef Sarcoplasmic Protein by Dry-Aged Beef-Isolated Penicillium oxalicum and Its Associated Metabolic Pathways. Foods 2024, 13, 1038. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-F.; Chen, C.-C.; Lee, C.-F.; Liu, S.-M. Identifying and Characterizing Yarrowia Keelungensis sp. Nov., an Oil-Degrading Yeast Isolated from the Sea Surface Microlayer. Antonie Van Leeuwenhoek 2013, 104, 1117–1123. [Google Scholar] [CrossRef]
- Quarterman, J.; Slininger, P.J.; Kurtzman, C.P.; Thompson, S.R.; Dien, B.S. A Survey of Yeast from the Yarrowia Clade for Lipid Production in Dilute Acid Pretreated Lignocellulosic Biomass Hydrolysate. Appl. Microbiol. Biotechnol. 2017, 101, 3319–3334. [Google Scholar] [CrossRef]
- Rakicka, M.; Kieroń, A.; Hapeta, P.; Neuvéglise, C.; Lazar, Z. Sweet and Sour Potential of Yeast from the Yarrowia Clade. Biomass Bioenergy 2016, 92, 48–54. [Google Scholar] [CrossRef]
- Vastaroucha, E.-S.; Maina, S.; Michou, S.; Kalantzi, O.; Pateraki, C.; Koutinas, A.A.; Papanikolaou, S. Bioconversions of Biodiesel-Derived Glycerol into Sugar Alcohols by Newly Isolated Wild-Type Yarrowia lipolytica Strains. Reactions 2021, 2, 499–513. [Google Scholar] [CrossRef]
- Gouliamova, D.E.; Dimitrov, R.A.; Guéorguiev, B.V.; Smith, M.T.; Groenewald, M. Yarrowia parophonii. Fungal Planet description sheets: 288–289. Persoonia 2017, 39, 270–467. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Boekhout, T.; Robert, V.; Smith, M.T.; Wöstemeyer, J. The Yeasts: A Taxonomic Study, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Limtong, S.; Youngmanitchai, W.; Kawasaki, H.; Seki, T. Candida phangngensis sp. Nov., an Anamorphic Yeast Species in the Yarrowia Clade, Isolated from Water in Mangrove Forests in Phang-Nga Province, Thailand. Int. J. Syst. Evol. Microbiol. 2008, 58, 515–519. [Google Scholar] [CrossRef]
- Nagy, E.S. Biodiversity of Food Spoilage Yarrowia Group in Different Kinds of Food. Ph.D. Thesis, Corvinus University, Budapest, Hungary, 2015. (In Hungarian). [Google Scholar]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J. Identification and Phylogeny of Ascomycetous Yeasts from Analysis of Nuclear Large Subunit (26S) Ribosomal DNA Partial Sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. The Yeasts, a Taxonomic Study; Elsevier: London, UK, 2011. [Google Scholar]
- Groenewald, M.; Boekhout, T.; Neuvéglise, C.; Gaillardin, C.; van Dijck, P.W.M.; Wyss, M. Yarrowia lipolytica: Safety Assessment of an Oleaginous Yeast with a Great Industrial Potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Dujon, B.; Sherman, D.; Fischer, G.; Durrens, P.; Casaregola, S.; Lafontaine, I.; De Montigny, J.; Marck, C.; Neuveglise, C.; Talla, E.; et al. Genome evolution in yeasts. Nature 2004, 430, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, A.; Venkatesh, K.V. Genome sequencing and annotation of Yarrowia lipolytica PO1f, a strain widely used for genetic and metabolic engineering. J. Biotechnol. 2017, 257, 27–34. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Li, X.; Zhang, B.; Jiang, Y. Complete genome sequence of Yarrowia lipolytica WSH-Z06 and its potential for lipid production. Front. Microbiol. 2018, 9, 1390. [Google Scholar] [CrossRef]
Kingdom | Funghi |
Subkingdom | Dikaryota |
Phylum | Ascomycota |
Subphylum | Saccharomyconita |
Class | Saccharomycetes |
Order | Saccharomycetales |
Family | Dipodascaceae |
Genus | Yarrowia |
Species | Year | Assembly Level | No. of Scaffolds/ Chromosomes | Genome Size (Mb) | GC Content (%) | No. of Genes (CDS) | No. of Assemblies (NCBI) |
---|---|---|---|---|---|---|---|
Y. alimentaria | 2018–2023 | Scaffold | 11–882 | 19.48–19.83 | 49.50–49.50 | - | 2 |
Y. brassicae (nom. inval.) | 2023 | Scaffold | 407–407 | 20.95 | 50.50–50.50 | - | 1 |
Y. bubula | 2018–2023 | Scaffold | 28–811 | 20.21–20.90 | 47.00–47.00 | - | 3 |
Y. deformans | 2016–2023 | Scaffold | 42–426 | 20.55–21.12 | 50.00–50.50 | - | 3 |
Y. divulgata (nom. inval.) | 2018 | Scaffold | 19–488 | 21.24–21.44 | 50.00–50.50 | - | 2 |
Yarrowia galli | 2018–2023 | Scaffold | 6–482 | 22.68–23.02 | 49.50–49.50 | - | 3 |
Y. hollandica | 2018–2023 | Scaffold | 18–371 | 19.50–20.07 | 48.00–48.00 | - | 2 |
Y. keelungensis | 2016–2023 | Scaffold | 39–474 | 21.64–21.82 | 48.00–48.50 | - | 3 |
Y. lipolytica | 2015–2025 | Chromosome, Complete Genome, Contig, Scaffold | 6–530 | 0.01–21.25 | 47.00–50.50 | 7082–8746 | 48 |
Y. lipolytica CLIB122 * | 2004 | Chromosome | 6–6 | 20.50 | 49.00–49.00 | 7144–7334 | 2 |
Y. lipolytica PO1f * | 2014–2024 | Chromosome, Complete Genome | 6–6 | 20.51–20.62 | 49.00–49.00 | - | 2 |
Y. lipolytica WSH-Z06 * | 2014 | Complete Genome | 6–6 | 20.09 | 49.00–49.00 | - | 1 |
Y. osloensis | 2018–2023 | Scaffold | 37–536 | 22.97–23.25 | 51.00–51.00 | - | 2 |
Y. phangngaensis | 2018–2023 | Scaffold | 9–435 | 16.21–16.23 | 43.50–43.50 | - | 2 |
Y. porcina | 2018–2023 | Scaffold | 43–887 | 30.00–30.43 | 44.50–44.50 | - | 2 |
Yarrowia sp. B02 | 2021 | Contig | 6–6 | 19.98 | 51.00–51.00 | 7047–7047 | 1 |
Yarrowia sp. C11 | 2021 | Contig | 11–11 | 24.88 | 46.50–46.50 | 6900–6900 | 1 |
Yarrowia sp. E02 | 2021 | Contig | 9–9 | 25.05 | 46.50–46.50 | 6879–6879 | 1 |
Yarrowia sp. JCM 30694 | 2016 | Scaffold | 19–19 | 21.76 | 46.50–46.50 | - | 1 |
Yarrowia sp. JCM 30695 | 2016 | Scaffold | 41–41 | 21.90 | 48.50–48.50 | - | 1 |
Yarrowia sp. JCM 30696 | 2016 | Scaffold | 39–39 | 21.75 | 48.50–48.50 | - | 1 |
Y. yakushimensis | 2018–2023 | Scaffold | 7–218 | 18.43–18.84 | 48.00–48.50 | - | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobus, J.; Wierzchowska, K.; Piotrowicz, A.; Fabiszewska, A.U. Advances in Yarrowia Genus Exploitation: From Fundamental Research to Industrial Biotechnology. Foods 2025, 14, 3502. https://doi.org/10.3390/foods14203502
Kobus J, Wierzchowska K, Piotrowicz A, Fabiszewska AU. Advances in Yarrowia Genus Exploitation: From Fundamental Research to Industrial Biotechnology. Foods. 2025; 14(20):3502. https://doi.org/10.3390/foods14203502
Chicago/Turabian StyleKobus, Joanna, Katarzyna Wierzchowska, Aleksandra Piotrowicz, and Agata Urszula Fabiszewska. 2025. "Advances in Yarrowia Genus Exploitation: From Fundamental Research to Industrial Biotechnology" Foods 14, no. 20: 3502. https://doi.org/10.3390/foods14203502
APA StyleKobus, J., Wierzchowska, K., Piotrowicz, A., & Fabiszewska, A. U. (2025). Advances in Yarrowia Genus Exploitation: From Fundamental Research to Industrial Biotechnology. Foods, 14(20), 3502. https://doi.org/10.3390/foods14203502