What’s Next for Microalgae Oil? A Scientific Mapping for Saturated Fatty Acids
Abstract
1. Introduction
2. Materials and Methods
2.1. Systematic Search and Selection Criteria for Scientific Papers
2.2. Data Collection for Mapping Microalgae Lipid Applications
2.3. Data Organization and Analysis
3. Results and Discussion
3.1. Description of Documents
3.2. Organisms Characteristics
3.3. Cultivation Conditions
3.4. Lipids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DHA | Docosahexaenoic acid |
EPA | Eicosapentaenoic acid |
FID | Flame ionization detection |
GC-MS | Gas chromatography-mass spectrometry |
HILIC | Hydrophilic interaction chromatography |
HPLC | High performance liquid chromatography |
MUFA | Monounsaturated fatty acid |
PUFA | Polyunsaturated fatty acid |
SFA | Saturated fatty acid |
TAG | Triacylglycerol |
References
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Fatima, S.; Abbas, S.; Rebi, A.; Ying, Z. Sustainable Forestry and Environmental Impacts: Assessing the Economic, Environmental, and Social Benefits of Adopting Sustainable Agricultural Practices. Ecol. Front. 2024, 44, 1119–1127. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and Forestry Trade Drives Large Share of Tropical Deforestation Emissions. Glob. Environ. Change 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Hua, F.; Wang, W.; Nakagawa, S.; Liu, S.; Miao, X.; Yu, L.; Du, Z.; Abrahamczyk, S.; Arias-Sosa, L.A.; Buda, K.; et al. Ecological Filtering Shapes the Impacts of Agricultural Deforestation on Biodiversity. Nat. Ecol. Evol. 2024, 8, 251–266. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J.; et al. Greenhouse Gas Emissions from Food Systems: Building the Evidence Base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Reisinger, A.; Clark, H.; Cowie, A.L.; Emmet-Booth, J.; Gonzalez Fischer, C.; Herrero, M.; Howden, M.; Leahy, S. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? Philos. Trans. R. Soc. 2021, 379, 2210. [Google Scholar] [CrossRef]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water Scarcity in Agriculture: An Overview of Causes, Impacts and Approaches for Reducing the Risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Baweja, P.; Kumar, S.; Kumar, G. Fertilizers and Pesticides: Their Impact on Soil Health and Environment. In Soil Health; Springer: Berlin/Heidelberg, Germany, 2020; pp. 265–285. [Google Scholar]
- Halpern, B.S.; Frazier, M.; Verstaen, J.; Rayner, P.-E.; Clawson, G.; Blanchard, J.L.; Cottrell, R.S.; Froehlich, H.E.; Gephart, J.A.; Jacobsen, N.S.; et al. The Environmental Footprint of Global Food Production. Nat. Sustain. 2022, 5, 1027–1039. [Google Scholar] [CrossRef]
- Bishaw, B.; Soolanayakanahally, R.; Karki, U.; Hagan, E. Agroforestry for Sustainable Production and Resilient Landscapes. Agrofor. Syst. 2022, 96, 447–451. [Google Scholar] [CrossRef]
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting Future Food Demand with Current Agricultural Resources. Glob. Environ. Change 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Panizza, S. If Veganism Is Not a Choice: The Moral Psychology of Possibilities in Animal Ethics. Animals 2020, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Jürkenbeck, K.; Spiller, A.; Schulze, M. Climate Change Awareness of the Young Generation and Its Impact on Their Diet. Clean. Responsible Consum. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Scarborough, P.; Clark, M.; Cobiac, L.; Papier, K.; Knuppel, A.; Lynch, J.; Harrington, R.; Key, T.; Springmann, M. Vegans, Vegetarians, Fish-Eaters and Meat-Eaters in the UK Show Discrepant Environmental Impacts. Nat. Food 2023, 4, 565–574. [Google Scholar] [CrossRef]
- Derbyshire, E.J. Flexitarian Diets and Health: A Review of the Evidence-Based Literature. Front. Nutr. 2017, 3, 55. [Google Scholar] [CrossRef]
- Hölker, S.; von Meyer-Höfer, M.; Spiller, A. Animal Ethics and Eating Animals: Consumer Segmentation Based on Domain-Specific Values. Sustainability 2019, 11, 3907. [Google Scholar] [CrossRef]
- Hopwood, C.J.; Bleidorn, W.; Schwaba, T.; Chen, S. Health, Environmental, and Animal Rights Motives for Vegetarian Eating. PLoS ONE 2020, 15, e0230609. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-Based Food and Protein Trend from a Business Perspective: Markets, Consumers, and the Challenges and Opportunities in the Future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- Chen, C.; Tang, T.; Shi, Q.; Zhou, Z.; Fan, J. The Potential and Challenge of Microalgae as Promising Future Food Sources. Trends Food Sci. Technol. 2022, 126, 99–112. [Google Scholar] [CrossRef]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a Future Food Source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Y.; He, Y.; Liu, B.; Mou, H.; Chen, F.; Yang, S. Microalgae-Derived Pigments for the Food Industry. Mar. Drugs 2023, 21, 82. [Google Scholar] [CrossRef]
- Pereira, L.; Cotas, J.; Valado, A. Antioxidants from Microalgae and Their Potential Impact on Human Well-Being. Explor. Drug Sci. 2024, 2, 292–321. [Google Scholar] [CrossRef]
- Matos, J.; Cardoso, C.; Bandarra, N.M.; Afonso, C. Microalgae as Healthy Ingredients for Functional Food: A Review. Food Funct. 2017, 8, 2672–2685. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Wandurraga, Z.N.; Igual, M.; Reino-Moyón, J.; García-Segovia, P.; Martínez-Monzó, J. Effect of Microalgae (Arthrospira platensis and Chlorella vulgaris) Addition on 3D Printed Cookies. Food Biophys. 2021, 16, 27–39. [Google Scholar] [CrossRef]
- Niccolai, A.; Bažec, K.; Rodolfi, L.; Biondi, N.; Zlatić, E.; Jamnik, P.; Tredici, M.R. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Front. Microbiol. 2020, 11, 560684. [Google Scholar] [CrossRef] [PubMed]
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; Ferreira da Costa, L.; Germini, A.; Goumperis, T.; et al. Novel Foods in the European Union: Scientific Requirements and Challenges of the Risk Assessment Process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef]
- Canelli, G.; Tarnutzer, C.; Carpine, R.; Neutsch, L.; Bolten, C.J.; Dionisi, F.; Mathys, A. Biochemical and Nutritional Evaluation of Chlorella and Auxenochlorella Biomasses Relevant for Food Application. Front. Nutr. 2020, 7, 565996. [Google Scholar] [CrossRef]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef]
- Vieira, M.V.; Pastrana, L.M.; Fuciños, P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Mar. Drugs 2020, 18, 644. [Google Scholar] [CrossRef]
- Jadhav, H.B. Functional Triacylglycerols from Microalgae and Their Use in the Formulation of Functional Foods—Review. Food Chem. Adv. 2024, 4, 100695. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Jesionowska, M.; Ovadia, J.; Hockemeyer, K.; Clews, A.C.; Xu, Y. EPA and DHA in Microalgae: Health Benefits, Biosynthesis, and Metabolic Engineering Advances. J. Am. Oil Chem. Soc. 2023, 100, 831–842. [Google Scholar] [CrossRef]
- Pina-Pérez, M.C.; Brück, W.M.; Brück, T.; Beyrer, M. Microalgae as Healthy Ingredients for Functional Foods. In The Role of Alternative and Innovative Food Ingredients and Products in Consumer Wellness; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–137. [Google Scholar]
- Manisali, A.Y.; Sunol, A.K.; Philippidis, G.P. Effect of Macronutrients on Phospholipid Production by the Microalga Nannochloropsis oculata in a Photobioreactor. Algal Res. 2019, 41, 101514. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Kumari, A.; Panwar, A. Astaxanthin: A Super Antioxidant from Microalgae and Its Therapeutic Potential. J. Basic Microbiol. 2022, 62, 1064–1082. [Google Scholar] [CrossRef] [PubMed]
- Elsevier Scopus Custom Data Documentation. Available online: https://www.elsevier.com/products/scopus/data (accessed on 25 September 2025).
- Elsevier Scopus Content Coverage Guide. Available online: https://assets.ctfassets.net/o78em1y1w4i4/EX1iy8VxBeQKf8aN2XzOp/c36f79db25484cb38a5972ad9a5472ec/Scopus_ContentCoverage_Guide_WEB.pdf?utm_source=chatgpt.com (accessed on 25 September 2025).
- Raynaud, M.; Goutaudier, V.; Louis, K.; Al-Awadhi, S.; Dubourg, Q.; Truchot, A.; Brousse, R.; Saleh, N.; Giarraputo, A.; Debiais, C.; et al. Impact of the COVID-19 pandemic on publication dynamics and non-COVID-19 research production. BMC Res. Methodol. 2021, 21, 255. [Google Scholar] [CrossRef]
- Lima e Silva, A.; Kurpan, D.; Ribeiro de Moura, M.; Costa dos Santos, A.; de Souza Silva, T.; de Lemos Novo, B.; de Oliveira Santo, I.; Balata, L.Q.; Carvalho de Assis, L.; Barbarino, E.; et al. Bioremediation of Brewery Wastewater Using Arthrospira Sp.: Preliminary Assessment of Biomass as a Biofertilizer toward Circular Economy. J. Appl. Phycol. 2024, 37, 55–65. [Google Scholar] [CrossRef]
- Gallego, I.; Medic, N.; Pedersen, J.S.; Ramasamy, P.K.; Robbens, J.; Vereecke, E.; Romeis, J. The Microalgal Sector in Europe: Towards a Sustainable Bioeconomy. N. Biotechnol. 2025, 86, 1–13. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-Based Wastewater Treatment for Nutrients Recovery: A Review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Borowiak, D.; Krzywonos, M. Bioenergy, Biofuels, Lipids and Pigments—Research Trends in the Use of Microalgae Grown in Photobioreactors. Energies 2022, 15, 5357. [Google Scholar] [CrossRef]
- Mehariya, S.; Goswami, R.K.; Karthikeysan, O.P.; Verma, P. Microalgae for High-Value Products: A Way towards Green Nutraceutical and Pharmaceutical Compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef] [PubMed]
- Cirne-Santos, C.C.; Barros, C.S.; da Silva, A.C.R.; Kurpan, D.; da Silva Cunha Oliveira, W.; Vasconcellos, B.M.; de Palmer Paixão, I.C.N.; Moreira, M.F.; do Valle, A.F. Arthrospira Maxima Extract Prevents and Cures Zika Virus Infection: In Vitro Analysis with VERO Cells. Algal Res. 2024, 79, 103479. [Google Scholar] [CrossRef]
- Rehman, M.; Kesharvani, S.; Dwivedi, G.; Gidwani Suneja, K. Impact of Cultivation Conditions on Microalgae Biomass Productivity and Lipid Content. Mater. Today Proc. 2022, 56, 282–290. [Google Scholar] [CrossRef]
- Kurpan Nogueira, D.P.; Silva, A.F.; Elia, O.; Araú Jo, Q.F.; Chaloub, R.M. Impact of Temperature and Light Intensity on Triacylglycerol Accumulation in Marine Microalgae. Biomass Bioenergy 2015, 72, 280–287. [Google Scholar] [CrossRef]
- Lucas, B.F.; Brunner, T.A. Attitudes and Perceptions towards Microalgae as an Alternative Food: A Consumer Segmentation in Switzerland. Algal Res. 2024, 78, 103386. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.-S. Advances in Lipid Extraction Methods—A Review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef]
- Je, S.; Yamaoka, Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae chlorella and Its Future Perspectives. J. Microbiol. Biotechnol. 2022, 32, 1357–1372. [Google Scholar] [CrossRef]
- Martins, A.P.; Zambotti-Villela, L.; Yokoya, N.S.; Colepicolo, P. Biotechnological Potential of Benthic Marine Algae Collected along the Brazilian Coast. Algal Res. 2018, 33, 316–327. [Google Scholar] [CrossRef]
- Lafarga, T.; Fernández-Sevilla, J.M.; González-López, C.; Acién-Fernández, F.G. Spirulina for the Food and Functional Food Industries. Food Res. Int. 2020, 137, 109356. [Google Scholar] [CrossRef]
- Bakku, R. Promising Polyunsaturated Oils from Marine Haptophyta. J. Ecol. Nat. Resour. 2018, 2, 000143. [Google Scholar] [CrossRef]
- Aziz, E.; Batool, R.; Khan, M.U.; Rauf, A.; Akhtar, W.; Heydari, M.; Rehman, S.; Shahzad, T.; Malik, A.; Mosavat, S.H.; et al. An Overview on Red Algae Bioactive Compounds and Their Pharmaceutical Applications. J. Complement. Integr. Med. 2021, 17. [Google Scholar] [CrossRef]
- Yi, Z.; Xu, M.; Di, X.; Brynjolfsson, S.; Fu, W. Exploring Valuable Lipids in Diatoms. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef]
- Andersen, R. Algal Culturing Techniques, 1st ed.; Andersen, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Allen, M.M. Simple Conditions for Growth of Unicellular Blue-Green Algae on Plates. J. Phycol. 1968, 4, 1–4. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 29–60. [Google Scholar]
- Bold, H.C. The Morphology of Chlamydomonas chlamydogama, Sp. Nov. Bull. Torrey Bot. Club 1949, 76, 101. [Google Scholar] [CrossRef]
- Wang, X.; Fosse, H.K.; Li, K.; Chauton, M.S.; Vadstein, O.; Reitan, K.I. Influence of Nitrogen Limitation on Lipid Accumulation and EPA and DHA Content in Four Marine Microalgae for Possible Use in Aquafeed. Front. Mar. Sci. 2019, 6, 95. [Google Scholar] [CrossRef]
- Wahidin, S.; Idris, A.; Shaleh, S.R.M. The Influence of Light Intensity and Photoperiod on the Growth and Lipid Content of Microalgae Nannochloropsis sp. Bioresour. Technol. 2013, 129, 7–11. [Google Scholar] [CrossRef]
- Gaignard, C.; Zissis, G.; Buso, D. Influence of Different Abiotic Factors on Lipid Production by Microalgae—A Review. OCL 2021, 28, 57. [Google Scholar] [CrossRef]
- Bartley, M.L.; Boeing, W.J.; Dungan, B.N.; Holguin, F.O.; Schaub, T. PH Effects on Growth and Lipid Accumulation of the Biofuel Microalgae Nannochloropsis salina and Invading Organisms. J. Appl. Phycol. 2014, 26, 1431–1437. [Google Scholar] [CrossRef]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and Cyanobacterial Cultivation: The Supply of Nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Clark, C.; Lands, B. Creating Benefits from Omega-3 Functional Foods and Nutraceuticals. Food Nutr. Sci. 2015, 6, 1613–1623. [Google Scholar] [CrossRef]
- Santigosa, E.; Brambilla, F.; Milanese, L. Microalgae Oil as an Effective Alternative Source of EPA and DHA for Gilthead Seabream (Sparus aurata) Aquaculture. Animals 2021, 11, 971. [Google Scholar] [CrossRef]
Keywords Combination | Focus |
---|---|
Microalgae + Oil | Product |
Microalgae + Lipids | |
Microalgae + Fatty + Acid | |
Microalgae + Saturated + Oil | |
Microalgae + Oil + Food | Applications in the food sector |
Microalgae + Lipids + Food | |
Microalgae + Fatty + Acid + Food | |
Microalgae + Saturated + Oil + Food | |
Microalgae + Oil + Food + Perspective | Future trends for microalgae oil applications in the food sector |
Microalgae + Lipids + Food + Perspective | |
Microalgae + Fatty + Acid + Food + Perspective | |
Microalgae + Saturated + Oil + Food + Perspective | |
Microalgae + Oil + Food + Trends | |
Microalgae + Lipids + Food + Trends | |
Microalgae + Fatty + Acid + Food + Trends | |
Microalgae + Saturated + Oil + Food + Trends | |
Microalgae + Oil + Trends | Future trends for microalgae oil applications in general |
Microalgae + Lipids + Trends | |
Microalgae + Fatty + Acid + Trends | |
Microalgae + Saturated + Oil + Trends |
Country | No. of Publications | % |
---|---|---|
China | 42 | 13.1 |
Spain | 18 | 5.6 |
Brazil | 17 | 5.3 |
Italy | 17 | 5.3 |
Portugal | 17 | 5.3 |
India | 16 | 5.0 |
USA | 13 | 4.1 |
Japan | 12 | 3.8 |
France | 11 | 3.4 |
Iran | 10 | 3.1 |
Malaysia | 10 | 3.1 |
South Korea | 10 | 3.1 |
Subject Area | No. of Publications | % |
---|---|---|
Agricultural and life sciences | 114 | 24.8 |
Biochemistry and genetics | 62 | 13.5 |
Chemical engineering | 53 | 11.5 |
Environmental sciences | 40 | 8.7 |
Chemistry | 37 | 8.1 |
Microbiology and immunology | 36 | 7.8 |
Energy | 32 | 7.0 |
Engineering | 16 | 3.5 |
Pharmacology, toxicology, and pharmaceuticals | 16 | 3.5 |
Medicine | 11 | 2.4 |
Multidisciplinary studies | 8 | 1.7 |
Social sciences | 8 | 1.7 |
Health | 6 | 1.3 |
Computational sciences | 5 | 1.1 |
Planetary and earth sciences | 4 | 0.9 |
Material sciences | 4 | 0.9 |
Nursing | 2 | 0.4 |
Veterinary sciences | 2 | 0.4 |
Economics | 1 | 0.2 |
Mathematics | 1 | 0.2 |
Physics and astronomy | 1 | 0.2 |
Application | No. of Publications | % |
---|---|---|
Basic research | 121 | 27.0 |
Food | 93 | 20.7 |
Bioenergy | 64 | 14.3 |
Nutraceuticals | 60 | 13.4 |
Animal feed | 37 | 8.2 |
Biorefinery | 29 | 6.5 |
Pharmaceuticals | 23 | 5.1 |
Aquaculture | 16 | 3.6 |
Cosmetics | 6 | 1.3 |
Objectives | No. of Publications | % |
---|---|---|
Production and product improvement | 157 | 20.1 |
Lipid profile characterization | 156 | 20.0 |
Cultivation conditions | 118 | 15.1 |
Biomass production | 72 | 9.2 |
Bioactive compounds | 65 | 8.3 |
Extraction methods | 56 | 7.2 |
Benefits from microalgae | 53 | 6.8 |
Molecular mechanisms | 42 | 5.4 |
Downstream processes | 28 | 3.6 |
Lipid detection | 28 | 3.6 |
Others | 7 | 0.9 |
Growth Medium Treatment | No. of Publications | % |
---|---|---|
Nutrient supplementation | 27 | 43.5 |
Nutrient starvation | 27 | 43.5 |
Nutrient limitation | 8 | 12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amario, M.; Kurpan, D.; da Silveira, W.B.; do Valle, A.F. What’s Next for Microalgae Oil? A Scientific Mapping for Saturated Fatty Acids. Foods 2025, 14, 3451. https://doi.org/10.3390/foods14193451
Amario M, Kurpan D, da Silveira WB, do Valle AF. What’s Next for Microalgae Oil? A Scientific Mapping for Saturated Fatty Acids. Foods. 2025; 14(19):3451. https://doi.org/10.3390/foods14193451
Chicago/Turabian StyleAmario, Michelle, Daniel Kurpan, Wendel Batista da Silveira, and Anita Ferreira do Valle. 2025. "What’s Next for Microalgae Oil? A Scientific Mapping for Saturated Fatty Acids" Foods 14, no. 19: 3451. https://doi.org/10.3390/foods14193451
APA StyleAmario, M., Kurpan, D., da Silveira, W. B., & do Valle, A. F. (2025). What’s Next for Microalgae Oil? A Scientific Mapping for Saturated Fatty Acids. Foods, 14(19), 3451. https://doi.org/10.3390/foods14193451