Synthesis of Magnetic Core–Shell Materials and Their Application in Detection of Food Contaminants
Abstract
1. Introduction
2. Synthesis Strategies of Magnetic Core–Shell Nanomaterials Composite
2.1. Coprecipitation Method
2.2. In Situ Synthesis Method
2.2.1. Preparation of Magnetic Core–Shell Materials with MOF Shells
2.2.2. Preparation of Magnetic Core–Shell Materials with MIP Shells
2.2.3. Preparation of Magnetic Core–Shell Materials with Magnetic MOF and Molecularly Imprinted Multilayer Shells
2.2.4. Preparation of Magnetic Core–Shell Materials with Noble Metal Shells
2.2.5. Preparation of Magnetic Core–Shell Materials with Functional Polymer Shells
2.3. Alternative Synthesis Strategies for Magnetic Core–Shell Materials
2.3.1. Physical Coating Method
2.3.2. Chemical Vapor Deposition
2.3.3. Self-Assembly Technology
2.3.4. Self-Sacrificial Template Method
2.4. Practical Applicability, Stability, and Reusability of Different Magnetic Core–Shell Material Synthesis Methods in Large-Scale Food Monitoring
3. Applications of Magnetic Core–Shell Nanomaterials in Extraction, Enrichment, and Detection of Food Contaminants
3.1. Pesticide and Veterinary Drug Residues
3.2. Antibiotic Residues
3.3. Toxin Residues
3.4. Heavy Metal Ion Residues
3.5. Non-Compliant Food Additives and Other Hazardous Residues
Food Contaminants | Magnetic Core–Shell Materials | Detection Methods | Recovery | LOD | Other Key Data | Ref. | |
---|---|---|---|---|---|---|---|
Pesticide and veterinary drug residues | CAR | Fe3O4-MOF-Pt | LFIAs | 91.40–102.40% (Vegetables) | 0.15 ng/mL | Linear range: 0.25–50 ng/mL | [84] |
PUHs | Fe3O4@TpDAB | MSPE-HPLC | 84.6–105% (Water), 80.3–102% (Beverages) | 0.05–0.15 ng/mL (Water), 0.30–0.50 ng/mL (Beverages) | Adsorption (capacities of five PUHs) 10.7–12.1mg/g | [95] | |
Sim; Pro | Fe3O4@COF | MSPE-HPLC | 81.44–91.03% (Fruit) | 0.01–0.2 μg/mL | Adsorption capacity:387.6 and 448.5 μg/g | [98] | |
TBZ | Fe3O4@Au@PDA | MSPE-SPR | 95.8–100.3% (Cucumber), 94.7–102.3% (Corn) | 0.61 ng/mL | Linear range: 1–200 ng/mL 3.3-fold signal amplification | [101] | |
Thiram | Fe3O4@Au@Ag@Au (DFAAA) | SERS | 89.60–118.34% (Apple) | LOD: 0.13–0.18 ng/cm2 | enhancement factor: 3.01 × 107 | [100] | |
Antibiotics | TC | Fe3O4@COFs | MSPE-HPLE | 80–120% (Milk, meat) | 0.24–0.30 μg/L | Low adsorbent consumption: 5mg Short extraction time: 10 min | [105] |
TC | Fe3O4@PDA@Eu-MOF | FL | 94.7–106.1% (Milk, honey) | 2 μg/L | Maximum adsorption capacity: 144.9 mg/g Adsorption equilibrium time: 80 min | [107] | |
SAs | Fe3O4@GC | MSPE-HPLC | 77.2–118.0% (Milk) | 0.11–0.25 μg/L | Linear range: 1–250 μg/L Enrichment factors: 35.1–39.2 Adsorption equilibrium time: 15 min | [141] | |
AGs | Fe3O4@SiO2−NH2-MDMIPs | MSPE-HPLC-MS/MS | 82.6−114.1% (Milk) | 3.6−9.6 μg/kg | Limit of Quantitation: 19 μg/kg (kanamycin sulfate), 25 μg/kg (apramycin sulfate), 32 μg/kg (paromomycin sulfate) | [109] | |
Toxins | ZEN | Fe3O4@Au | SERS | 96.0% ± 2.2% (Beer) 111.4% ± 3.8% (Wine) | 0.001 ng/mL | Adsorption time: 60 min | [115] |
ZEN | MMIP-CD | HPLC-FLD | 96.35–98.80% | 0.1 ng/kg (Cereals); 3 ng/kg (feed) | Adsorption equilibrium time: 20 min Maximum adsorption capacity: 30 mg/g | [116] | |
OTA | Fe3O4@SiO2@UiO-66−NH2 | MSPE-HPLC | 95.83–101.5% (Peanuts) | 0.3 μg/kg | Adsorption equilibrium time: 10 min Number of repetitions: three times | [57] | |
AFB1 | Fe3O4@UiO-66-NH2@MON | MSPE-HPLC | 87.3–101.8% (Corn, rice, millet) | 0.15–0.87 μg/L | Adsorption capacity: 16.3–19.6 mg/g Adsorption time: 10 min | [120] | |
OA | Fe3O4@TaTp | MSPE-LC-MS/MS | 96.08–104.82% (Shellfish) | 0.04 μg/kg | Pretreatment time: 15 min Adsorbent amount: 5 mg | [121] | |
Heavy metals | Cd2+ | MWCNT-Fe3O4@SiO2 | VAD-MSPE | 96.3–108% (Carrots) | 0.090 μg/L | Preconcentration factor: 33.14 Linear range: 0.001–40.0 μg/L | [126] |
As3+ | GA-MSMP (Fe3O4@SiO2-MCM-41) | MSPE-AAS | 98.4–99.8% (Rice) | Not reported | Maximum adsorption capacity: 312 mg/g Number of repetitions: six times | [127] | |
Cd2+ | Fe3O4@HC | ICP-OES | 60–80% (Mussel) | Not reported | Adsorption capacity: 129.87 mg/g | [142] | |
Illegal additives and others | NO2− | Fe3O4@SiO2-TbDPA | FL detection | 96–108% (Water, meat products) | 1.03 μM | Saturation magnetization: 0.075 emu/g | [136] |
NSAIDs | MMON-PANI | MSPE-HPLC-UV | Not reported | 0.07–1.7 μg/L | Enrichment factor: 98.6–99.9 Adsorbent consumption: 3 mg (chicken, beef, pork) | [138] | |
PVC; PS; PP; PES | Fe3O4@SiO2@MIL−53(Al) | Magnetic Separation-Removal | 56.05–97.10% (Liquor) | Not reported | Number of repetitions: five times Maximum adsorption capacity: 10511–44390 mg/g | [139] | |
SIB | Fe3O4@Ag@MIPs | MMIPs-SERS | 83.97–91.77% (Tea powder) | 1.0 × 10−9 M | Number of repetitions: five times, The SERS signal intensity: 1.0 × 10−9 M–1.0 × 10−5 M | [143] |
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, N.; Zhang, L.N.; Li, J.; Zhou, Q.; Yang, H.; Shan, Y.M.; Chen, Y.X.; Li, K.; Yu, X.Q. Recent advances in reactive small-molecule fluorescent probes for food safety. Coord. Chem. Rev. 2025, 530, 216480. [Google Scholar] [CrossRef]
- Sharma, A.; Bansal, S.; Moore, M.D.; Luo, Y.; Schneider, K.R.; Zhang, B. Exploring the frontiers of nanopore sequencing in food safety and food microbiology. Annu. Rev. Food Sci. Technol. 2025, 16, 219–244. [Google Scholar] [CrossRef]
- Fatemi, K.; Lau, S.Y.; Fatemi, R.; Coorey, R.; Heshmatipour, Z.; Chung, L.Y.; Kiew, S.F. Paper-based biosensing using single-stranded oligonucleotide aptamers for enhanced food safety. J. Food Compos. Anal. 2025, 141, 107331. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Rodrigues, P.; Hussein, G.A.; Sunil, M.; Aggarwal, A.; Kumar, P.R.; Jassal, P.; Alnajar, M.J.; Hussein, A.R.; Ridha-Salman, H. Emerging nanoplatforms using molecular imprinted nanozymes for the detection of food hazards: Towards the future techniques of food safety assurance. Microchem. J. 2025, 214, 113986. [Google Scholar] [CrossRef]
- Al-Saidi, H.M.; Khan, S. Recent advancement in the development of detection and removal of heavy metal ions by deep eutectic solvents: A review. Curr. Anal. Chem. 2025, 21, 5–14. [Google Scholar] [CrossRef]
- Akbari-Alavijeh, S.; Shaddel, R.; Lee, C.C.; Pourjafar, H.; Ansari, F.; Sani, M.A.; Ajili, N.; Assadpour, E.; Zhang, F.; Jafari, S.M. Nano-immunosensors for the rapid and sensitive detection of foodborne toxins; Recent advances. Ind. Crops Prod. 2025, 228, 120879. [Google Scholar] [CrossRef]
- Mi, K.; Wu, X.; Lin, Z.M. Chemical risk assessment in food animals via physiologically based pharmacokinetic modeling—Part I: Veterinary drugs on human food safety assessment. Environ. Int. 2025, 197, 109339. [Google Scholar] [CrossRef] [PubMed]
- Maphaisa, T.C.; Akinmoladun, O.F.; Adelusi, O.A.; Mwanza, M.; Fon, F.; Tangni, E.; Njobeh, P.B. Advances in mycotoxin detection techniques and the crucial role of reference material in ensuring food safety. a review. Food Chem. Toxicol. 2025, 200, 115387. [Google Scholar] [CrossRef]
- Hou, R.; He, L.Q.; Ji, X.; Rong, X.X.; Yin, Y.L.; Li, X.; Weng, Y.X.; Zhao, X.Y. Recent advances in fluorescent aptasensors for food safety analysis. Trends Food Sci. Technol. 2025, 160, 105023. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Yang, R.Q.; Chen, H.L.; Zhang, X.N. Recent advances in food Safety: Nanostructure-sensitized surface-enhanced raman sensing. Foods 2025, 14, 1115. [Google Scholar] [CrossRef]
- Li, W.; Xu, Z.; He, Q.; Pan, J.; Zhang, Y.; El-Sheikh, E.-S.A.; Hammock, B.D.; Li, D. Nanobody-based immunoassays for the detection of food hazards—A review. Biosensors 2025, 15, 183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Li, G.L.; Wu, D.; Li, X.T.; Yu, Y.X.; Luo, P.J.; Chen, J.; Dai, C.J.; Wu, Y.N. Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. TrAC Trends Anal. Chem. 2019, 121, 115669. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.L.; Wu, D.; Liu, J.H.; Li, X.T.; Luo, P.J.; Hu, N.; Wang, H.L.; Wu, Y.N. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. [Google Scholar] [CrossRef]
- Tang, Z.T.; Liu, F.; Fang, F.; Ding, X.L.; Han, Q.R.; Tan, Y.Z.; Peng, C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J. Sep. Sci. 2022, 45, 2273–2300. [Google Scholar] [CrossRef] [PubMed]
- Soares da Silva Burato, J.; Vargas Medina, D.A.; de Toffoli, A.L.; Vasconcelos Soares Maciel, E.; Mauro Lanças, F. Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci. 2020, 43, 202–225. [Google Scholar] [CrossRef]
- Xu, J.F.; Chen, J.H.; Li, W.; Jiang, H.X.; Kong, D.M.; Zhu, L.N. Preparation of hierarchically porous monolithic corn straw@ COF composite for fat-rich food pretreatment in non-targeted analysis. Chem. Eur. J. 2025, 31, e202501502. [Google Scholar] [CrossRef]
- Castell, A.; Arroyo-Manzanares, N.; Viñas, P.; López-García, I.; Campillo, N. Advanced materials for magnetic solid-phase extraction of mycotoxins: A review. TrAC Trends Anal. Chem. 2024, 178, 117826. [Google Scholar] [CrossRef]
- Jano, A.; De La Fuente Ballesteros, A.; Ares Sacristán, A.M.; Bernal Yagüe, J.L. Miniaturized solid-phase extraction techniques in sample preparation applied to food matrices: A review. Microchem. J. 2025, 213, 113794. [Google Scholar] [CrossRef]
- Yaqoob, S.; Hanif, M.A. Use of magnetic nanomaterials in wastewater treatment: A review. Environ. Monit. Assess. 2025, 197, 917. [Google Scholar] [CrossRef]
- Spoială, A.; Ilie, C.-I.; Crăciun, L.N.; Ficai, D.; Ficai, A.; Andronescu, E. Magnetite-silica core/shell nanostructures: From surface functionalization towards biomedical applications—A review. Appl. Sci. 2021, 11, 11075. [Google Scholar] [CrossRef]
- Dong, L.; Chen, G.; Liu, G.Y.; Huang, X.D.; Xu, X.M.; Li, L.Y.; Zhang, Y.G.; Wang, J.; Jin, M.J.; Xu, D.H. A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry. Crit. Rev. Food Sci. Nutr. 2024, 64, 1110–1138. [Google Scholar] [CrossRef]
- Chand, K.; Vasquez-Guardado, E.S. Magnetic Nanoparticles: Synthesis and Applications in Life Sciences. ChemistryOpen 2025, 00, 2500214. [Google Scholar] [CrossRef]
- Aghayi-Anaraki, M.; Safarifard, V. Fe3O4@MOF Magnetic Nanocomposites: Synthesis and Applications. Eur. J. Inorg. Chem. 2020, 2020, 1916–1937. [Google Scholar] [CrossRef]
- Zou, Y.D.; Sun, Z.K.; Wang, Q.Y.; Ju, Y.M.; Sun, N.R.; Yue, Q.; Deng, Y.; Liu, S.B.; Yang, S.F.; Wang, Z.Y.; et al. Core–Shell Magnetic Particles: Tailored Synthesis and Applications. Chem. Rev. 2025, 125, 972–1048. [Google Scholar] [CrossRef]
- Xue, T.Y.; Yuan, Y.; Yuan, Y.Y.; Song, Z.X.; Xiong, Z.L.; Wang, H.G. Enhanced by Ionic Liquids: Magnetic Molecularly Imprinted Polymers-Magnetic Solid-Phase Extraction-Uhplc-Uv for Sensitive Detection of Benzimidazoles in Multiple Food Matrices. J. Chromatogr. A 2025, 1759, 466237. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, J.Y.; Liu, Z.; Shao, W. Gentamicin sulfate grafted magnetic go nanohybrids with excellent antibacterial properties and recyclability. Nanomaterials 2023, 13, 1416. [Google Scholar] [CrossRef] [PubMed]
- Ramin, N.A.; Ramachandran, M.R.; Saleh, N.M.; Mat Ali, Z.M.; Asman, S. Magnetic nanoparticles molecularly imprinted polymers: A review. Curr. Nanosci. 2023, 19, 372–400. [Google Scholar] [CrossRef]
- Wei, C.H.; Wu, A.H.; Xu, L.G.; Xu, C.L.; Liu, L.Q.; Kuang, H.; Xu, X.X. Recent progress on lateral flow immunoassays in foodborne pathogen detection. Food Biosci. 2023, 52, 102475. [Google Scholar] [CrossRef]
- Fu, Q.B.; Xia, Z.Z.; Sun, X.; Jiang, H.L.; Wang, L.L.; Ai, S.Y.; Zhao, R.S. Recent advance and applications of covalent organic frameworks based on magnetic solid-phase extraction technology for food safety analysis. TrAC Trends Anal. Chem. 2023, 162, 117054. [Google Scholar] [CrossRef]
- Wu, G.J.; Qiu, H.M.; Liu, X.; Luo, P.J.; Wu, Y.N.; Shen, Y.Z. Nanomaterials-based fluorescent assays for pathogenic bacteria in food-related matrices. Trends Food Sci. Technol. 2023, 142, 104214. [Google Scholar] [CrossRef]
- Altalbawy, F.M.; Ali, E.; Mustafa, Y.F.; Ibrahim, A.A.; Mansouri, S.; Bokov, D.; Alawadi, A.; Saxena, A.; Alsaalamy, A. Comprehensive review on biosensors based on integration of aptamer and magnetic nanomaterials for food analysis. J. Taiwan Inst. Chem. Eng. 2024, 157, 105410. [Google Scholar] [CrossRef]
- Shalileh, F.; Shamani, N.; Golbashy, M.; Dadmehr, M.; Hosseini, M. Synergistic applications of quantum dots and magnetic nanomaterials in pathogen detection: A comprehensive review. Nanotechnology 2024, 36, 052002. [Google Scholar] [CrossRef]
- Logan, N.; Cao, C.o.; Freitag, S.; Haughey, S.A.; Krska, R.; Elliott, C.T. Advancing mycotoxin detection in food and feed: Novel insights from surface-enhanced Raman spectroscopy (SERS). Adv. Mater. 2024, 36, 2309625. [Google Scholar] [CrossRef] [PubMed]
- Althomali, R.H.; Uinarni, H.; Gandla, K.; Mayet, A.M.; Romero-Parra, R.M.; Cahalib, I.; Oudaha, K.H.; Almulla, A.F.; Bisht, Y.S. Applications of magnetic nanomaterials in the fabrication of lateral flow assays toward increasing performance of food safety analysis: Recent advances. Food Biosci. 2023, 56, 103149. [Google Scholar] [CrossRef]
- Habib, S.; Talhami, M.; Hassanein, A.; Mahdi, E.; Al-Ejji, M.; Hassan, M.K.; Altaee, A.; Das, P.; Hawari, A.H. Advances in functionalization and conjugation mechanisms of dendrimers with iron oxide magnetic nanoparticles. Nanoscale 2024, 16, 13331–13372. [Google Scholar] [CrossRef]
- Jung, J.H.; An, G.S. Fabrication of Core–shell γ-Fe2O3@SiO2 nanoparticles for plasmid DNA purification. ACS Appl. Nano Mater. 2023, 6, 19423–19430. [Google Scholar] [CrossRef]
- Huang, R.; Tang, T.T. Assembly of magnetic nano-Fe3O4@GSH-Au NCs core–shell microspheres for the visualization of latent fingerprints. Nano 2018, 13, 1850128. [Google Scholar] [CrossRef]
- Gamal, M.; Imam, M.S.; Albugami, A.S.; Hunjur, S.A.; Aldhalmi, A.K.; AbdElrahman, M.; Ghoneim, M.M.; Ali, H.M.; Abdelwahab, N.S.; Eissa, M.S. Current advances in the implementation of magnetic molecularly imprinted polymers tailored for enrichment of target analytes in different environmental samples: An overview from a comprehensive perspective. Trends Environ. Anal. Chem. 2024, 43, e00236. [Google Scholar] [CrossRef]
- Abedi-Firouzjah, R.; Tavassoli, M.; Khezerlou, A.; Mazaheri, Y.; Alizadeh-Sani, M.; Ehsani, A.; Moore, M.D. Recent advances in applications of aptasensors/nanomaterials platform for food and biomedical: A review. Food Anal. Methods 2025, 18, 1–26. [Google Scholar] [CrossRef]
- Song, Y.; Jin, J.Y.; Hu, L.L.; Hu, B.Q.; Wang, M.Y.; Guo, L.L.; Lv, X.Y. Core-shell-shell upconversion nanomaterials applying for simultaneous immunofluorescent detection of fenpropathrin and procymidone. Foods 2023, 12, 3445. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.Q.; Shi, X.; Wang, S.J.; He, Y.; Zheng, B.F.; Deng, X.H.; Zhou, Z.Q.; Wu, W.B.; Xin, K.; Tang, L.H. Recyclable Fe3O4@UiO-66-PDA core–shell nanomaterials for extensive metal ion adsorption: Batch experiments and theoretical analysis. J. Colloid Interface Sci. 2024, 665, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.L.; Wei, D.Z.; Cao, M.S.; Wang, Z.Y.; Wang, M. Biosensors based on core–shell nanoparticles for detecting mycotoxins in food: A review. Food Chem. 2023, 429, 136944. [Google Scholar] [CrossRef] [PubMed]
- Tsamos, D.; Krestou, A.; Papagiannaki, M.; Maropoulos, S. An Overview of the production of magnetic core-shell nanoparticles and their biomedical applications. Metals 2022, 12, 605. [Google Scholar] [CrossRef]
- Xuemin, H.; Wei, Z.; Youwei, Y. Controllable synthesis and performance of magnetic nanocomposites with core/shell structure. Acta Phys. Sin. 2018, 67, 227501. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, Z.; Yao, B.X.; Wu, J.Y.; Jiao, Z.; Gu, N. Polyhedral magnetic nanoparticles of high magnetization synthesized by hydrocooling and magnetically internal heating coprecipitation: Implications for magnetic resonance imaging. ACS Appl. Nano Mater. 2024, 7, 10377–10386. [Google Scholar] [CrossRef]
- Li, B.Z.; Liu, S.J.; Huang, L.J.; Jin, M.J.; Wang, J.L. Nanohybrid SERS substrates intended for food supply chain safety. Coord. Chem. Rev. 2023, 494, 215349. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Behboudnia, M.; Jamilpanah, L.; Sheikhi, M.; Mohajerani, E.; Tian, K.; Tiwari, A.; Elahi, P.; Mohseni, S. High saturation magnetization, low coercivity and fine YIG nanoparticles prepared by modifying co-precipitation method. J. Magn. Magn. Mater. 2019, 476, 355–360. [Google Scholar] [CrossRef]
- Omelyanchik, A.; Kamzin, A.; Valiullin, A.; Semenov, V.; Vereshchagin, S.; Volochaev, M.; Dubrovskiy, A.; Sviridova, T.; Kozenkov, I.; Dolan, E. Iron oxide nanoparticles synthesized by a glycine-modified coprecipitation method: Structure and magnetic properties. Colloids Surf. A 2022, 647, 129090. [Google Scholar] [CrossRef]
- Suharyadi, E.; Muzakki, A.; Nofrianti, A.; Istiqomah, N.I.; Kato, T.; Iwata, S. Photocatalytic activity of magnetic core-shell CoFe2O4@ ZnO nanoparticles for purification of methylene blue. Mater. Res. Express 2020, 7, 085013. [Google Scholar] [CrossRef]
- Aquino, R.; Tourinho, F.; Itri, R.; e Lara, M.; Depeyrot, J. Size control of MnFe2O4 nanoparticles in electric double layered magnetic fluid synthesis. J. Magn. Magn. Mater. 2002, 252, 23–25. [Google Scholar] [CrossRef]
- Maciel, A.P.; Gomide, G.; da Silva, F.G.; Guerra, A.A.A.; Depeyrot, J.; Mezzi, A.; Campos, A.F. L-lysine-coated magnetic core–shell nanoparticles for the removal of acetylsalicylic acid from aqueous solutions. Nanomaterials 2023, 13, 514. [Google Scholar] [CrossRef] [PubMed]
- Surowiec, Z.; Budzyński, M.; Durak, K.; Czernel, G. Synthesis and characterization of iron oxide magnetic nanoparticles. Nukleonika 2017, 62, 73–77. [Google Scholar] [CrossRef]
- Vinnacombe-Willson, G.A.; García-Astrain, C.; Troncoso-Afonso, L.; Wagner, M.; Langer, J.; Gonzalez-Callejo, P.; Silvio, D.D.; Liz-Marzan, L.M. Growing gold nanostars on 3D hydrogel surfaces. Chem. Mater. 2024, 36, 5192–5203. [Google Scholar] [CrossRef]
- Morel, A.-L.; Nikitenko, S.I.; Gionnet, K.; Wattiaux, A.; Lai-Kee-Him, J.; Labrugere, C.; Chevalier, B.; Deleris, G.; Petibois, C.; Brisson, A. Sonochemical approach to the synthesis of Fe3O4@ SiO2 core− shell nanoparticles with tunable properties. ACS Nano 2008, 2, 847–856. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, G.; Deep, A.; Nayak, M.K. A multifunctional recyclable adsorbent based on engineered MIL-125 (Ti) magnetic mesoporous composite for the effective removal of pathogens. Environ. Res. 2023, 233, 116496. [Google Scholar] [CrossRef]
- Qi, Y.; Wan, M.F.; Abd El-Aty, A.; Li, H.; Cao, L.P.; She, Y.X.; Shao, Y.; Jin, F.; Wang, S.S.; Wang, J. A “half” core-shell magnetic nanohybrid composed of zeolitic imidazolate framework and graphitic carbon nitride for magnetic solid-phase extraction of sulfonylurea herbicides from water samples followed by LC-MS/MS detection. Microchim. Acta 2020, 187, 279. [Google Scholar] [CrossRef]
- Li, M.; Tian, K.X.; Liu, S.J.; Liang, P.; Xiong, W.Z.; Yao, X.Y. Highly efficient adsorption and removal of Cd (II) from wastewater by mass synthesis of magnetically functionalized UiO-66 based on its high coordination advantage. Chem. Eng. J. 2024, 494, 152886. [Google Scholar] [CrossRef]
- Wang, B.C.; Wang, Y.F.; Zhang, X.Y.; He, K. Novel advanced materials and magnetic solid phase extraction as approaches in sample preparation to enhance the analysis of ochratoxin A in peanuts. Anal. Methods. 2024, 16, 2897–2904. [Google Scholar] [CrossRef]
- Huang, Y.F.; Ma, C.; Huang, X.J. A review on molecularly imprinted magnetic solid phase extraction emphasizing the analysis of antibiotics in complex matrices: Design, preparation, and application. J. Chromatogr. A 2025, 1742, 465653. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.X.; Fang, Y.W.; Li, Y.Z.; Wei, J.; Jiao, T.H.; Chen, Q.S.; Guo, Z.Y.; Chen, X.; Chen, X.M. Molecularly imprinted polymers-coated magnetic covalent organic frameworks for efficient solid-phase extraction of sulfonamides in fish. Food Chem. 2025, 462, 141007. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Z.; Yang, C.; Qian, H.L.; Xu, S.T.; Yan, X.P. Pore size adjustment strategy for the fabrication of molecularly imprinted covalent organic framework nanospheres at room temperature for selective extraction of zearalenone in cereal samples. Anal. Chem. 2024, 96, 3561–3568. [Google Scholar] [CrossRef] [PubMed]
- Guadaño-Sánchez, M.; López, J.J.; Serrano, L.A.; Álvaro-Gómez, L.; Pérez, L.; Saura-Múzquiz, M.; Urraca, J.L. Determination of cyclopiazonic acid in food samples by using molecularly imprinted polymers based on magnetic halloysite nanotubes. Anal. Bioanal. Chem. 2025, 417, 3141–3156. [Google Scholar] [CrossRef]
- Khojasteh, F.T.; Bazmandegan-Shamili, A. Preparation of magnetic molecularly imprinted polymer based on multiwalled carbon nanotubes for selective dispersive micro-solid phase extraction of fenitrothion followed by ion mobility spectrometry analysis. J. Sep. Sci. 2022, 45, 1590–1599. [Google Scholar] [CrossRef]
- Gao, L.; Qin, D.L.; Chen, Z.X.; Wu, S.; Tang, S.Z.; Wang, P. Determination of sulfonamide antibiotics in fish and shrimp samples based on magnetic carbon nanotube dummy molecularly imprinted polymer extraction followed by UPLC-MS/MS. Electrophoresis 2021, 42, 725–734. [Google Scholar] [CrossRef]
- Pan, M.F.; Liu, X.; Sun, J.M.; Zhang, D.; Wang, Y.X.; Hu, X.C.; Wang, S. Computational simulation-assisted template selection of magnetic MOFs molecularly imprinted materials applying the adsorption and detection of multiple fluoroquinolones. Food Chem. 2024, 460, 140660. [Google Scholar] [CrossRef]
- Zhu, Y.B.; Liang, M.; Liu, Y.L.; Zhong, M.; Zhou, B.B.; Huang, L.J.; Zhang, Z. Magnetic metal–organic framework material synthesized by molecular imprinting technology for analysis of bisphenol A. Chromatographia 2023, 86, 669–676. [Google Scholar] [CrossRef]
- Ekmen, E.; Bilici, M.; Turan, E.; Tamer, U.; Zengin, A. Surface molecularly-imprinted magnetic nanoparticles coupled with SERS sensing platform for selective detection of malachite green. Sens. Actuators B 2020, 325, 128787. [Google Scholar] [CrossRef]
- Hoang, V.T.; Tufa, L.T.; Lee, J.; Doan, M.Q.; Anh, N.H.; Tran, V.T.; Le, A.-T. Tunable SERS activity of Ag@Fe3O4 core-shell nanoparticles: Effect of shell thickness on the sensing performance. J. Alloys Compd. 2023, 933, 167649. [Google Scholar] [CrossRef]
- Phuc, L.G.; Do, P.Q.; Ta, H.K.; Dang, V.Q.; Joo, S.W.; Manh, D.H.; Bach, T.N.; Van, T.T.T.; Tran, N.H. Metal-enhanced fluorescence for alpha-fetoprotein detection and for SERS using hybrid nanoparticles of magnetic cluster core—Plasmonic shell composite. Chemosensors 2023, 11, 56. [Google Scholar] [CrossRef]
- Michałowska, A.; Krajczewski, J.; Kudelski, A. Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: An easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements. Spectrochim. Acta Part A 2022, 277, 121266. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Feng, W.; Li, Y.R.; Wang, C.; Han, D.L.; Song, J.; Yang, S. Reuseable Fe3O4@PEI-DTC-Au@Ag magnetic nanocomposites: A versatile and sensitive SERS substrate for food safety assessment. J. Alloys Compd. 2024, 1002, 175433. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.P.; Picchetti, P.; Zheng, K.Y.; Zhang, X.N.; Wu, Y.L.; Shen, Y.; De Cola, L.; Shi, J.Y.; Guo, Z.M. Quantitative SERS sensor for mycotoxins with extraction and identification function. Food Chem. 2024, 456, 140040. [Google Scholar] [CrossRef]
- Chen, Q.; Tian, R.; Liu, G.; Wen, Y.L.; Bian, X.J.; Luan, D.L.; Wang, H.Y.; Lai, K.Q.; Yan, J. Fishing unfunctionalized SERS tags with DNA hydrogel network generated by ligation-rolling circle amplification for simple and ultrasensitive detection of kanamycin. Biosens. Bioelectron. 2022, 207, 114187. [Google Scholar] [CrossRef]
- Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef]
- Hu, T.; Liu, B.N.; Bu, H.T.; Hu, H.J.; Zhu, Q.S.; Tang, S.P.; Li, Y.T.; Wang, J.J.; Jiang, G.B. Self-separating core-shell spheres with a carboxymethyl chitosan/acrylic acid/Fe3O4 composite core for soil Cd removal. Carbohydr. Polym. 2024, 343, 122428. [Google Scholar] [CrossRef]
- Li, H.L.; Li, X.H.; Guo, D.F.; Lou, L.; Li, W.; Zhang, X.Y. Three-dimensional self-assembly of core/shell-like nanostructures for high-performance nanocomposite permanent magnets. Nano Lett. 2016, 16, 5631–5638. [Google Scholar] [CrossRef]
- Lima, M.; Macuvele, D.; Muller, L.; Nones, J.; Silva, L.; Fiori, M.; Soares, C.; Riella, H. Synthesis and potential adsorption of Fe3O4@C core-shell nanoparticles for to removal of pollutants in aqueous solutions: A brief review. J. Adv. Chem. Eng. 2017, 7, 1000172. [Google Scholar] [CrossRef]
- Tyurikova, I.; Alexandrov, S.; Tyurikov, K.; Kirilenko, D.; Speshilova, A.; Shakhmin, A. Fast and controllable synthesis of core–shell Fe3O4–C nanoparticles by aerosol CVD. ACS Omega 2020, 5, 8146–8150. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.G.; Yang, Y.M.; Huang, L.; Kuang, D.T.; Lu, J.; Dong, L.J. Synthesis of MnFe-C core–shell nanoparticles with tunable microwave absorption performance by designing the Mn/Fe ratio. Mater. Lett. 2024, 377, 137425. [Google Scholar] [CrossRef]
- Mertdinç-Ülküseven, S.; Savacı, U.; Onbasli, K.; Balcı-Çağıran, Ö.; Acar, H.Y.; Öveçoğlu, M.L.; Ağaoğulları, D. In-situ synthesis of graphene encapsulated Fe/Fe2O3 nanoparticles for possible biomedical applications. J. Mater. Res. Technol. 2022, 20, 2558–2577. [Google Scholar] [CrossRef]
- Wang, Y.L.; Kang, Y.T.; Zhang, W.J.; Jiang, Z.; Yin, X.C. Preparation of core-shell nanoparticles and their application in precision machining. Rare Met. Mater. Eng. 2024, 53, 3348–3357. [Google Scholar] [CrossRef]
- Xu, J.S.; Shang, M.; Ni, X.J.; Cao, Y.H. Strategy based on rapid self-assembly of magnetic nanoparticles for construction of photonic crystals. ACS Appl. Nano Mater. 2020, 3, 8052–8059. [Google Scholar] [CrossRef]
- Zheng, X.T.; Yan, B.Y.; Wu, F.L.; Zhang, J.L.; Qu, S.X.; Zhou, S.B.; Weng, J. Supercooling self-assembly of magnetic shelled core/shell. ACS Appl. Mater. Interfaces 2016, 8, 23969–23977. [Google Scholar] [CrossRef]
- Zhai, S.; Dong, H.; Wang, H.; Huang, J.; Li, D.; Li, Z.; Li, Z.; Li, P.; Zhang, P.; Zhao, M.; et al. Multifunctional nanoenzyme lateral flow immunoassay strip for rapid and ultrasensitive detection of carbofuran in vegetables. J. Hazard. Mater. 2024, 477, 135296. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.H.; Sun, J.Y.; Su, Y.; Li, X.Y.; Jiang, H.; Guo, L.; Xiong, Y.H.; Huang, X.L. Magnetic aggregation-induced emission of bifunctional nanoparticles for enhanced double-color lateral flow immunoassay of fumonisin B1 and T-2 toxin. Food Chem. 2025, 488, 144898. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.R.; Zeng, D.P.; Tian, Y.B.; Chen, F.; Feng, J.W.; Shi, J.L. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 2010, 4, 6001–6013. [Google Scholar] [CrossRef]
- Chatzipavlidis, A.; Bilalis, P.; Efthimiadou, E.; Boukos, N.; Kordas, G. Sacrificial template-directed fabrication of superparamagnetic polymer microcontainers for pH-activated controlled release of daunorubicin. Langmuir 2011, 27, 8478–8485. [Google Scholar] [CrossRef]
- Huang, L.J.; He, M.; Chen, B.B.; Hu, B. A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg 2+ from water. J. Mater. Chem. A 2015, 3, 11587–11595. [Google Scholar] [CrossRef]
- Tran, V.A.; Nguyen, T.L.H.; Doan, V.D. Fabrication of Fe3O4/CuO@C composite from MOF-based materials as an efficient and magnetically separable photocatalyst for degradation of ciprofloxacin antibiotic. Chemosphere 2021, 270, 129417. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.Y.; Liu, J.H.; Li, Y.; Yin, Z.Y.; Zhang, Y.Y.; Pi, F.W.; Sun, X.L. Sensitive techniques for POCT sensing on the residues of pesticides and veterinary drugs in food. Bull. Environ. Contam. Toxicol. 2021, 107, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Li, M.T.; Zhang, X. Nanostructure-based surface-enhanced raman spectroscopy techniques for pesticide and veterinary drug residues screening. Bull. Environ. Contam. Toxicol. 2021, 107, 194–205. [Google Scholar] [CrossRef]
- Jia, M.; E, Z.; Zhai, F.; Bing, X. Rapid multi-residue detection methods for pesticides and veterinary drugs. Molecules 2020, 25, 3590. [Google Scholar] [CrossRef]
- Wu, D.; Du, D.; Lin, Y.H. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC Trends Anal. Chem. 2016, 83, 95–101. [Google Scholar] [CrossRef]
- Jia, Q.; Liao, G.Q.; Chen, L.; Qian, Y.Z.; Yan, X.; Qiu, J. Pesticide residues in animal-derived food: Current state and perspectives. Food Chem. 2024, 438, 137974. [Google Scholar] [CrossRef]
- Guo, L.Y.; Liu, J.J.; Li, J.Q.; Hao, L.; Liu, W.H.; Wang, C.; Wu, Q.H.; Wang, Z. A core-shell structured magnetic covalent organic framework as a magnetic solid-phase extraction adsorbent for phenylurea herbicides. J. Chromatogr. A 2021, 1651, 462301. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Q.; Yu, M.H.; Zhang, X.J.; Deng, C.H. Sulfonic acid-based metal organic framework functionalized magnetic nanocomposite combined with gas chromatography-electron capture detector for extraction and determination of organochlorine. Chin. Chem. Lett. 2020, 31, 1843–1846. [Google Scholar] [CrossRef]
- Pan, H.; Gan, Z.S.; Hu, H.Y.; Liu, C.; Huang, Y.P.; Ruan, G.H. Magnetic phenolic resin core-shell structure derived carbon microspheres for ultrafast magnetic solid-phase extraction of triazine herbicides. J. Sep. Sci. 2022, 45, 2687–2698. [Google Scholar] [CrossRef]
- Li, S.M.; Liang, Q.; Ahmed, S.A.H.; Zhang, J. Simultaneous determination of five benzimidazoles in agricultural foods by core-shell magnetic covalent organic framework nanoparticle–based solid-phase extraction coupled with high-performance liquid chromatography. Food Anal. Methods 2020, 13, 1111–1118. [Google Scholar] [CrossRef]
- Cheshari, E.C.; Ren, X.; Li, X. Core-shell magnetic Ag-molecularly imprinted composite for surface enhanced Raman scattering detection of carbaryl. J. Environ. Sci. Health Part B 2021, 56, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.C.; Pu, H.B.; Sun, D.W. A durian-shaped multilayer core-shell SERS substrate for flow magnetic detection of pesticide residues on foods. Food Chem. 2024, 433, 137389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.L.; Wang, L.; Cai, H.Y. Magnetic Fe3O4@Au@PDA core-shell nanoparticle-enhanced SPR detection of tebuconazole. Microchem. J. 2025, 212, 113472. [Google Scholar] [CrossRef]
- Huang, W.H.; Si, H.J.; Qing, Y.J.; Zhang, L.M.; Zhang, W.W.; Song, F.; Ni, X.N.; Yang, W.M. A magnetic, core–shell structured, pH-responsive molecularly imprinted polymers for the selective detection of sulfamethoxazole. J. Inorg. Organomet. Polym Mater. 2021, 31, 2054–2062. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Darwish, W.S.; Eldaly, E.A.; El-Abbasy, M.T.; Ikenaka, Y.; Nakayama, S.; Ishizuka, M. Antibiotic residues in food: The African scenario. Jpn. J. Vet. Res. 2013, 61, S13–S22. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic residues in food: Extraction, analysis, and human health concerns. J. Agric. Food. Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
- Sun, S.Y.; Li, Z.Y.; Zhu, J.H.; Lv, S.N.; Zhao, J.; Yang, X.S.; Liu, Y.S.; Wang, L.L.; Chen, W. Determination of tetracycline antibiotics in food using covalent organic frameworks composites-based on magnetic solid phase extraction coupled to HPLC. J. Chromatogr. A 2025, 1746, 465800. [Google Scholar] [CrossRef]
- Li, J.; Yao, R.H.; Deng, B.W.; Li, Z.J.; Tuo, K.; Fan, C.B.; Liu, G.; Pu, S.Z. A facile construction of bifunctional core–shell–shell structured magnetic metal–organic frameworks for detection and removal of tetracycline. Chem. Eng. J. 2023, 464, 142626. [Google Scholar] [CrossRef]
- Han, S.; Leng, Q.X.; Teng, F.; Ding, Y.X.; Yao, A.X. Preparation of mesh covalent organic framework Tppa-2-based adsorption enhanced magnetic molecularly imprinted composite for selective extraction of tetracycline residues from animal-derived foods. Food Chem. 2022, 384, 132601. [Google Scholar] [CrossRef]
- Cao, X.L.; Zhang, Z.; Liu, G.Y.; Zhang, Z.P.; Yin, J.G. Preparation of magnetic dummy template molecularly imprinted polymers for the determination of aminoglycosides antibiotics in milk. Food Anal. Methods 2021, 14, 2111–2120. [Google Scholar] [CrossRef]
- Huang, Y.F.; Zhang, Y.Y.; Yu, Y.L.; Song, X.C.; Huang, X.J. One-pot preparation of magnetic molecularly imprinted adsorbent with dual template molecules for simultaneously specific capture of sulfonamides and quinolones in water and milk samples. Food Chem. 2024, 434, 137412. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Anwar, F.; Ghazali, F. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024, 10, e28361. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.P.; Zhou, R.Y.; Zhang, D.; Zheng, X.Y.; El-Seedi, H.R.; Chen, S.Q.; Niu, L.D.; Li, X.; Guo, Z.M.; Zou, X.B. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13266. [Google Scholar] [CrossRef]
- Ntungwe, E.N.; Tchana, A.N.; Abia, W.A. Mycotoxin management: Exploring natural solutions for mycotoxin prevention and detoxification in food and feed. Mycotoxin Res. 2024, 40, 519–534. [Google Scholar] [CrossRef]
- Han, X.; Huangfu, B.X.; Xu, T.X.; Xu, W.T.; Asakiya, C.; Huang, K.L.; He, X.Y. Research progress of safety of zearalenone: A review. Toxins 2022, 14, 386. [Google Scholar] [CrossRef]
- Chen, R.P.; Sun, Y.F.; Huo, B.Y.; Mao, Z.F.; Wang, X.J.; Li, S.Y.; Lu, R.; Li, S.; Liang, J.; Gao, Z.X. Development of Fe3O4@ Au nanoparticles coupled to Au@ Ag core-shell nanoparticles for the sensitive detection of zearalenone. Anal. Chim. Acta. 2021, 1180, 338888. [Google Scholar] [CrossRef]
- Fu, H.; Liu, J.P.; Xu, W.; Wang, H.X.; Liao, S.H.; Chen, G.T. A new type of magnetic molecular imprinted material combined with β-cyclodextrin for the selective adsorption of zearalenone. J. Mater. Chem. B 2020, 8, 10966–10976. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Mao, Y.; Opoku, J.; Mehl, H.L. Enzymatic degradation is an effective means to reduce aflatoxin contamination in maize. BMC Biotech. 2021, 21, 70. [Google Scholar] [CrossRef]
- Pezeshkpur, M.; Tadayon, F.; Sohrabi, M.R. A molecularly imprinted polymer based on Fe3O4@ Au nanoparticles for detection of Aflatoxin B1 in food samples. ChemistrySelect 2023, 8, e202300112. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhao, Y.L.; Jin, Y.; Wang, Y.Q.; Xiao, G.; Baeyens, J.; Su, H.J. Double detection of mycotoxins based on aptamer induced Fe3O4@TiO2@Ag Core− Shell nanoparticles “turn on” fluorescence resonance energy transfer. Food Chem. 2025, 464, 141601. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Liu, J.M.; Wang, Z.H.; Lv, S.W.; Zhao, N.; Wang, S. Integration of Fe3O4@UiO-66-NH2@MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix. J. Hazard. Mater. 2020, 384, 121348. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.Q.; Li, J.J.; Feng, J.N.; Xiang, Y.J.Y.; Zhu, J.L.; Li, Y.; Yu, Y.Q.; Li, Y. Core-shell structured magnetic covalent-organic frameworks for rapid extraction and preconcentration of okadaic acid in seawater and shellfish followed with LC-MS/MS quantification. Food Chem. 2022, 374, 131778. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, L.; Jiang, S.; El-Seedi, H.R.; El-Garawani, I.M.; Zou, X. Sensitive determination of Patulin by aptamer functionalized magnetic surface enhanced Raman spectroscopy (SERS) sensor. J. Food Compos. Anal. 2023, 115, 104985. [Google Scholar] [CrossRef]
- Meng, R.N.; Zhu, Q.J.; Long, T.Y.; He, X.L.; Luo, Z.W.; Gu, R.H.; Wang, W.Z.; Xiang, P. The innovative and accurate detection of heavy metals in foods: A critical review on electrochemical sensors. Food Control. 2023, 150, 109743. [Google Scholar] [CrossRef]
- Si, L.X.; Wu, Q.; Jin, Y.L.; Wang, Z. Research progress in the detection of trace heavy metal ions in food samples. Front. Chem. 2024, 12, 1423666. [Google Scholar] [CrossRef]
- Huang, X.Y.; Wang, W.; Ling, L.; Zhang, W.X. Heavy metal-nZVI reactions: The core-shell structure and applications for heavy metal treatment. Acta Chim. Sin. 2017, 75, 529. [Google Scholar] [CrossRef]
- Morales, P.D.; Dos Santos, P.M.; De Carvalho, A.E.; Corazza, M.Z. Vortex-assisted magnetic solid-phase extraction of cadmium in food, medicinal herb, and water samples using silica-coated thiol-functionalized magnetic multiwalled carbon nanotubes as adsorbent. Food Chem. 2022, 368, 130823. [Google Scholar] [CrossRef]
- Modheji, M.; Emadi, H.; Vojoudi, H. Efficient pre-concentration of As (III) in food samples using guanidine-modified magnetic mesoporous silica. J. Porous Mater. 2020, 27, 971–978. [Google Scholar] [CrossRef]
- Salman, A.D.; Juzsakova, T.; Ákos, R.; Ibrahim, R.I.; Al-Mayyahi, M.A.; Mohsen, S.; Abdullah, T.A.; Domokos, E. Synthesis and surface modification of magnetic Fe3O4@SiO2 core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media. Environ. Sci. Pollut. Res. 2021, 28, 28428–28443. [Google Scholar] [CrossRef] [PubMed]
- Long, X.X.; Chen, H.N.; Huang, T.J.; Zhang, Y.J.; Lu, Y.F.; Tan, J.H.; Chen, R.Z. Removal of Cd (II) from micro-polluted water by magnetic core-shell Fe3O4@Prussian blue. Molecules 2021, 26, 2497. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, M.F.; Selim, H.; Elshypany, R. Hybrid magnetic core–shell TiO2@CoFe3O4 composite towards visible light-driven photodegradation of Methylene blue dye and the heavy metal adsorption: Isotherm and kinetic study. J. Environ. Health Sci. Eng. 2022, 20, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Nnadozie, E.C.; Ajibade, P.A. Multifunctional magnetic oxide nanoparticle (MNP) core-shell: Review of synthesis, structural studies and application for wastewater treatment. Molecules 2020, 25, 4110. [Google Scholar] [CrossRef]
- Neto, A.G.d.S.; Costa, J.H.; Morawski, F.d.M.; Valentini, G.; Faita, F.L.; Parize, A.L.; Jost, C.L. Core–shell chitosan cobalt ferrite nanoparticles for ultrasensitive simultaneous voltammetric determination of Pb (II) and Cd (II). ACS Appl. Nano Mater. 2024, 7, 18499–18510. [Google Scholar] [CrossRef]
- Kulpa-Koterwa, A.; Ossowski, T.; Niedziałkowski, P. Functionalized Fe3O4 nanoparticles as glassy carbon electrode modifiers for heavy metal ions detection—A mini review. Materials 2021, 14, 7725. [Google Scholar] [CrossRef]
- Urrutia-Pereira, M.; Fogelbach, G.G.; Chong-Neto, H.J.; Solé, D. Food additives and their impact on human health. Allergol. Immunopathol. 2025, 53, 26–31. [Google Scholar] [CrossRef]
- PS, A.; Thadathil, D.A.; George, L.; Varghese, A. Food additives and evolved methods of detection: A review. Crit. Rev. Anal. Chem. 2024, 482, 144219. [Google Scholar] [CrossRef]
- Li, X.Q.; Wen, Q.; Chen, J.N.; Sun, W.J.; Zheng, Y.H.; Long, C.G.; Wang, Q.M. Lanthanide molecular species generated Fe3O4@ SiO2-TbDPA nanosphere for the efficient determination of nitrite. Molecules 2022, 27, 4431. [Google Scholar] [CrossRef]
- Teng, X.; Ding, X.Y.; She, Z.X.; Li, Y.; Xiong, X.H. Preparation of functionalized magnetic polystyrene microspheres and their application in food safety detection. Polymers 2022, 15, 77. [Google Scholar] [CrossRef]
- Li, Y.H.; Li, X.H.; Cui, Y.Y.; Abdukayum, A.; Yang, C.X. Fabrication of sea urchin shaped polyaniline-modified magnetic microporous organic network for efficient extraction of non-steroidal anti-inflammatory drugs from animal-derived food samples. J. Chromatogr. A 2024, 1730, 465140. [Google Scholar] [CrossRef]
- Liu, Q.R.; Chen, Y.L.; Chen, Z.; Xie, Y.F.; Yu, H.; Yuan, S.F.; Guo, Y.H.; Cheng, Y.L.; Qian, H.; Yao, W.R. Rapid magnetization and removal of microplastics from environment and food based on magnetic metal-organic framework Fe3O4@ SiO2@ MIL-53 (Al). Environ. Sci. Pollut. Res. 2023, 30, 117373–117389. [Google Scholar] [CrossRef]
- Rushdi, I.W.; Hardian, R.; Rusidi, R.S.; Khairul, W.M.; Hamzah, S.; Khalik, W.M.A.W.M.; Abdullah, N.S.; Yahaya, N.K.E.; Szekely, G.; Azmi, A.A. Microplastic and organic pollutant removal using imine-functionalized mesoporous magnetic silica nanoparticles enhanced by machine learning. Chem. Eng. J. 2025, 510, 161595. [Google Scholar] [CrossRef]
- Liu, X.Y.; Tong, Y.; Zhang, L. Tailorable yolk-shell Fe3O4@graphitic carbon submicroboxes as efficient extraction materials for highly sensitive determination of trace sulfonamides in food samples. Food Chem. 2020, 303, 125369. [Google Scholar] [CrossRef]
- Xiang, X.W.; Mao, X.Y.; Ding, X.Q.; Gu, X.; Li, H.R.; Liu, R.Z.; Liu, Y.; Jin, J.B.; Qin, L. Assembly of core-shell Fe3O4 @CD-MOFs derived hollow magnetic microcubes for efficient extraction of hazardous substances: Plausible mechanisms for selective adsorption. J. Hazard. Mater. 2024, 473, 134588. [Google Scholar] [CrossRef]
- Liu, Z.G.; Gao, Y.; Jin, L.; Jin, H.; Xu, N.; Yu, X.Y.; Yu, S.H. Core–shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustainable Chem. Eng. 2019, 7, 8168–8175. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages |
---|---|---|
Coprecipitation method | Environmentally friendly; excellent biocompatible; cost-effective; nanoparticles with narrow size distributions; allowing control over products’ morphology and crystalline phase; easy for mass production | Precise coordination requirement of reaction parameters; poor control over shell thickness/uniformity; uneven distribution of core–shell components; poor compatibility with sensitive cores; poor shell uniformity; obvious performance degradation after cycles |
In situ synthesis method | Precise size/thickness control; uniform shell growth; rapid synthesis; suitable for diverse magnetic core–shell composites; uniform shell growth; excellent reusability | Interfacial impurity incorporation; kinetic control challenges; phase compatibility issues; incomplete shell coverage; high cost in large-scale applications; strict control of reaction conditions |
Physical coating method | Nondestructive encapsulation; solvent-free processing; large-scale production; solvent-free; high mass production efficiency | Weak interfacial interaction between core and shell; poor uniformity of shell layer; limited control over shell thickness and morphology |
Chemical vapor deposition | Solvent-free process; uniform coating formation; high-purity products; controlled thickness; high product purity; excellent stability | High equipment cost; limited to inorganic shells; low production efficiency; complex process control; energy-intensive; high equipment cost; low mass production efficiency |
Self-assembly technology | Precise control of shell composition; nanoscale thickness regulation; ordered structural organization; bottom-up fabrication capability; excellent adsorption/stability; controllable structure | Magnetic core aggregation; poor size distribution control; instability of hybrid materials; magnetic sensitivity to shell variations; complex template removal; difficult for large-scale application |
Self-sacrificial template method | Versatile template options; precise structure engineering; tunable material properties; hollow/porous architecture fabrication capability; rapid synthesis | Complex template removal; structural damage risks; incomplete-removal issues; requires process optimization; easy magnetic core aggregation; signal attenuation after cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Li, H.; Cui, J.; Gao, M.; Sun, J.; Pan, M. Synthesis of Magnetic Core–Shell Materials and Their Application in Detection of Food Contaminants. Foods 2025, 14, 3305. https://doi.org/10.3390/foods14193305
Cao J, Li H, Cui J, Gao M, Sun J, Pan M. Synthesis of Magnetic Core–Shell Materials and Their Application in Detection of Food Contaminants. Foods. 2025; 14(19):3305. https://doi.org/10.3390/foods14193305
Chicago/Turabian StyleCao, Jing, Huilin Li, Jingjing Cui, Mengmeng Gao, Jingming Sun, and Mingfei Pan. 2025. "Synthesis of Magnetic Core–Shell Materials and Their Application in Detection of Food Contaminants" Foods 14, no. 19: 3305. https://doi.org/10.3390/foods14193305
APA StyleCao, J., Li, H., Cui, J., Gao, M., Sun, J., & Pan, M. (2025). Synthesis of Magnetic Core–Shell Materials and Their Application in Detection of Food Contaminants. Foods, 14(19), 3305. https://doi.org/10.3390/foods14193305