Detection of Rice Prolamin and Glutelin Content Using Hyperspectral Imaging Combined with Feature Selection Algorithms and Multivariate Regression Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Sources
2.2. Hyperspectral Image Acquisition and Spectral Extraction
2.3. Determination of Prolamin and Glutelin Contents
2.4. Regression Analysis Methods
2.4.1. Machine-Learning Methods
2.4.2. Deep-Learning Methods
2.5. Feature Selection Algorithms
2.5.1. Successive Projections Algorithm (SPA)
2.5.2. Competitive Adaptive Reweighted Sampling (CARS) Algorithm
2.5.3. Gradient-Weighted Class Activation Mapping++ (GradCAM++)
2.6. Software and Hardware
2.7. Evaluation Metrics
3. Results
3.1. Outlier Removal and Dataset Partitioning
3.2. Results of Full-Spectra-Based Models for Prolamin and Glutelin Content Prediction
3.3. Results of Prolamin and Glutelin Content Detection Models Based on Characteristic Wavelengths
3.3.1. Prediction of Prolamin and Glutelin Content Using SPA-Selected Characteristic Wavelengths
3.3.2. Prediction Study of Prolamin and Glutelin Content Based on CARS-Selected Characteristic Wavelengths
3.3.3. Analysis of Results Combining Grad-CAM++ with Conventional Methods
3.4. Comparison Between Full-Spectra Models and Feature-Wavelength-Based Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, M.; Chen, J.; Cao, F.; Tao, Z.; Lei, T.; Tian, A.; Liu, Y.; Chen, G.; Zou, Y. Quantifying accumulation characteristics of glutelin and prolamin in rice grains. PLoS ONE 2019, 14, e0220139. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Shen, Z.; Ming, L.; Li, Y.; Dan, W.; Lou, G.; Peng, B.; Wu, B.; Li, Y.; Zhao, D.; et al. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis. Front. Plant Sci. 2018, 9, 612. [Google Scholar] [CrossRef] [PubMed]
- Balindong, J.L.; Ward, R.M.; Liu, L.; Rose, T.J.; Pallas, L.A.; Ovenden, B.W.; Snell, P.J.; Waters, D.L.E. Rice grain protein composition influences instrumental measures of rice cooking and eating quality. J. Cereal Sci. 2018, 79, 35–42. [Google Scholar] [CrossRef]
- Yang, H.E.; Kim, N.W.; Lee, H.G.; Kim, M.J.; Sang, W.G.; Yang, C.; Mo, C. Prediction of protein content in paddy rice (Oryza sativa L.) combining near-infrared spectroscopy and deep-learning algorithm. Front. Plant Sci. 2024, 15, 1398762. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Sun, D.W. Application of hyperspectral imaging in food safety inspection and control: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef]
- Sun, D.-W.; Pu, H.; Yu, J. Applications of hyperspectral imaging technology in the food industry. Nat. Rev. Electr. Eng. 2024, 1, 251–263. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, S.; Liu, F.; He, Y.; Bao, Y.; Zhang, C. Hyperspectral imaging for seed quality and safety inspection: A review. Plant Methods 2019, 15, 91. [Google Scholar] [CrossRef]
- Lu, X.; Sun, J.; Mao, H.; Wu, X.; Gao, H. Quantitative determination of rice starch based on hyperspectral imaging technology. Int. J. Food Prop. 2017, 20, S1037–S1044. [Google Scholar] [CrossRef]
- Ma, C.; Ren, Z.; Zhang, Z.; Du, J.; Jin, C.; Yin, X. Development of simplified models for nondestructive testing of rice (with husk) protein content using hyperspectral imaging technology. Vib. Spectrosc. 2021, 114, 103230. [Google Scholar] [CrossRef]
- Xuan, G.; Jia, H.; Shao, Y.; Shi, C. Protein content prediction of rice grains based on hyperspectral imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 320, 124589. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yin, X.; Ma, C.Y. Development of simplified models for the nondestructive testing of rice with husk starch content using hyperspectral imaging technology. Anal. Methods 2019, 11, 5910–5918. [Google Scholar] [CrossRef]
- Chen, J.Y.; Miao, Y.; Sato, S.; Zhang, H. Near Infrared Spectroscopy for Determination of the Protein Composition of Rice Flour. Food Sci. Technol. Res. 2008, 14, 132–138. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Rahman, A.; Cho, B.-K. Assessment of seed quality using non-destructive measurement techniques: A review. Seed Sci. Res. 2016, 26, 285–305. [Google Scholar] [CrossRef]
- Mishra, P.; Passos, D.; Marini, F.; Xu, J.; Amigo, J.M.; Gowen, A.A.; Jansen, J.J.; Biancolillo, A.; Roger, J.M.; Rutledge, D.N.; et al. Deep learning for near-infrared spectral data modelling: Hypes and benefits. TrAC-Trend Anal. Chem. 2022, 157, 116804. [Google Scholar] [CrossRef]
- Jin, C.; Zhou, L.; Pu, Y.; Zhang, C.; Qi, H.; Zhao, Y. Application of deep learning for high-throughput phenotyping of seed: A review. Artif. Intell. Rev. 2025, 58, 76. [Google Scholar] [CrossRef]
- Dai, Q.; Cheng, J.H.; Sun, D.W.; Zeng, X.A. Advances in feature selection methods for hyperspectral image processing in food industry applications: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1368–1382. [Google Scholar] [CrossRef]
- Huan, K.; Chen, X.; Song, X.; Dong, W. Variable selection in near-infrared spectra: Application to quantitative non-destructive determination of protein content in wheat. Infrared Phys. Tech. 2021, 119, 103937. [Google Scholar] [CrossRef]
- Yun, Y.-H.; Li, H.-D.; Deng, B.-C.; Cao, D.-S. An overview of variable selection methods in multivariate analysis of near-infrared spectra. TrAC-Trend Anal. Chem. 2019, 113, 102–115. [Google Scholar] [CrossRef]
- Xiaobo, Z.; Jiewen, Z.; Povey, M.J.; Holmes, M.; Hanpin, M. Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Sun, D.-W.; Zeng, X.-A. Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry. Food Bioprocess Technol. 2013, 7, 307–323. [Google Scholar] [CrossRef]
- Rogers, M.; Blanc-Talon, J.; Urschler, M.; Delmas, P. Wavelength and texture feature selection for hyperspectral imaging: A systematic literature review. J. Food Meas. Charact. 2023, 17, 6039–6064. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Yang, J.; Chen, L.; Zhou, H.; Liu, X.; Li, H.; Lin, T.; Ying, Y. Understanding the learning mechanism of convolutional neural networks in spectral analysis. Anal. Chim. Acta 2020, 1119, 41–51. [Google Scholar] [CrossRef]
- Lee, A.; Baek, I.; Kim, J.; Hong, S.-J.; Kim, M.S. Deep learning approaches for bruised mandarin orange classification by fluorescence hyperspectral imaging. Postharvest Biol. Technol. 2025, 230, 113724. [Google Scholar] [CrossRef]
- Tang, L.J.; Li, X.K.; Huang, Y.; Zhang, X.-Z.; Li, B.Q. Accurate and visualiable discrimination of Chenpi age using 2D-CNN and Grad-CAM++ based on infrared spectral images. Food Chem. X 2024, 23, 101759. [Google Scholar] [CrossRef] [PubMed]
- Shin, J. Feasibility of local interpretable model-agnostic explanations (LIME) algorithm as an effective and interpretable feature selection method: Comparative fNIRS study. Biomed. Eng. Lett. 2023, 13, 689–703. [Google Scholar] [CrossRef]
- Li, L.; Cao, R.; Zhao, L.; Liu, N.; Sun, H.; Zhang, Z.; Sun, Y. Near-Infrared Spectroscopy Combined with Explainable Machine Learning for Storage Time Prediction of Frozen Antarctic Krill. Foods 2025, 14, 1293. [Google Scholar] [CrossRef]
- Tang, Z.; Ma, S.; Qi, H.; Zhang, X.; Zhang, C. Nondestructive Detection of Rice Milling Quality Using Hyperspectral Imaging with Machine and Deep Learning Regression. Foods 2025, 14, 1977. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Qiao, J.; Liu, Z.; Lin, Z.; Li, G.; Wang, Q.; Wang, S.; Ding, Y. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. J. Cereal Sci. 2010, 52, 90–95. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Wythoff, B.J. Backpropagation neural networks: A tutorial. Chemom. Intell. Lab. Syst. 1993, 18, 115–155. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef]
- Soares, S.F.C.; Gomes, A.A.; Araujo, M.C.U.; Filho, A.R.G.; Galvão, R.K.H. The successive projections algorithm. TrAC-Trend Anal. Chem. 2013, 42, 84–98. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, N.; Sharma, P.; Ananthan, R.; Singh, M.; Gayacharan; Singh, A.K.; Bhardwaj, R. Optimizing protein content prediction in rice bean (Vigna umbellata L.) by integrating near-infrared reflectance spectroscopy, MPLS, deep learning, and key wavelengths selection algorithms. J. Food Compos. Anal. 2024, 135, 106655. [Google Scholar] [CrossRef]
- Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks of Presentation. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, CA, USA, 12–15 March 2018. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhai, Y.; Zhou, L.; Yin, Y.; Qi, H.; Zhang, C. Detection of Soluble Solid Content in Citrus Fruits Using Hyperspectral Imaging with Machine and Deep Learning: A Comparative Study of Two Citrus Cultivars. Foods 2025, 14, 2091. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yang, M.; Yim, D.G.; Jo, C.; Kim, G. VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle. J. Food Eng. 2023, 350, 111500. [Google Scholar] [CrossRef]
- Sharma, S.; Sirisomboon, P.; Sumesh, K.C.; Terdwongworakul, A.; Phetpan, K.; Kshetri, T.B.; Sangwanangkul, P. Near-infrared hyperspectral imaging combined with machine learning for physicochemical-based quality evaluation of durian pulp. Postharvest Biol. Technol. 2023, 200, 112334. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, L.; Zhao, Y.; Qi, H.; Pu, Y.; Zhang, C. Deep learning-based regression of food quality attributes using near-infrared spectroscopy and hyperspectral imaging: A review. Food Chem. 2025, 493, 145932. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.; Zhou, X.; Yao, K.; Tian, Y.; Nirere, A. A method of information fusion for identification of rice seed varieties based on hyperspectral imaging technology. J. Food Process Eng. 2021, 44, 13797. [Google Scholar] [CrossRef]
- Renati, P.; Kovacs, Z.; De Ninno, A.; Tsenkova, R. Temperature dependence analysis of the NIR spectra of liquid water confirms the existence of two phases, one of which is in a coherent state. J. Mol. Liq. 2019, 292, 111449. [Google Scholar] [CrossRef]
- Köllmann, N.; Schreuders, F.K.G.; Mishra, P.; Zhang, L.; der Goot, A.J.V. Near-infrared spectroscopy-based quantification of sunflower oil and pea protein isolate in dense mixtures for novel plant-based products. J. Food Compos. Anal. 2023, 121, 105414. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, L.; Tu, Y.; Zhao, H.; Kuang, L.; Zhang, G. The Influence of Nitrogen Application Level on Eating Quality of the Two Indica-Japonica Hybrid Rice Cultivars. Plants 2020, 9, 1663. [Google Scholar] [CrossRef] [PubMed]
Minimum | Maximum | Mean | Standard Deviation | ||
---|---|---|---|---|---|
Prolamin | Training | 0.51 | 0.88 | 0.70 | 0.07 |
Validation | 0.55 | 0.83 | 0.70 | 0.07 | |
Test | 0.51 | 0.85 | 0.69 | 0.08 | |
Glutelin | Training | 3.43 | 7.38 | 5.01 | 0.99 |
Validation | 3.32 | 6.74 | 4.91 | 1.02 | |
Test | 3.27 | 7.00 | 5.07 | 1.03 |
Model | Label | Training | Validation | Test | |||
---|---|---|---|---|---|---|---|
rc a | RMSEC | rv | RMSEV | rp | RMSEP | ||
PLSR | Prolamin | 0.748 | 0.048 | 0.753 | 0.046 | 0.722 | 0.057 |
Glutelin | 0.858 | 0.503 | 0.829 | 0.578 | 0.794 | 0.667 | |
SVR | Prolamin | 0.641 | 0.056 | 0.649 | 0.051 | 0.714 | 0.059 |
Glutelin | 0.856 | 0.509 | 0.811 | 0.599 | 0.828 | 0.598 | |
CNN | Prolamin | 0.726 | 0.093 | 0.740 | 0.968 | 0.779 | 0.103 |
Glutelin | 0.842 | 1.461 | 0.876 | 1.462 | 0.813 | 1.410 | |
BPNN | Prolamin | 0.855 | 0.038 | 0.809 | 0.043 | 0.831 | 0.051 |
Glutelin | 0.849 | 0.517 | 0.880 | 0.492 | 0.902 | 0.526 |
Attributes | Number | Wavelengths (nm) |
---|---|---|
Prolamin | 30 | 981, 1005, 1019, 1033, 1057, 1071, 1085, 1092, 1113, 1127, 1144, 1165, 1193, 1249, 1326, 1358, 1383, 1393, 1397, 1404, 1407, 1414, 1428, 1439, 1446, 1474, 1499, 1577, 1648, 1680 |
Glutelin | 30 | 981, 1001, 1019, 1033, 1057, 1074, 1085, 1102, 1127, 1137, 1147, 1196, 1266, 1326, 1358, 1383, 1400, 1404, 1407, 1411, 1414, 1425, 1436, 1439, 1446, 1474, 1499, 1535, 1613, 1681 |
Model | Label | Training | Validation | Test | |||
---|---|---|---|---|---|---|---|
rc a | RMSEC | rv | RMSEV | rp | RMSEP | ||
PLSR | Prolamin | 0.708 | 0.051 | 0.714 | 0.049 | 0.706 | 0.059 |
Glutelin | 0.827 | 0.551 | 0.803 | 0.602 | 0.726 | 0.726 | |
SVR | Prolamin | 0.638 | 0.056 | 0.644 | 0.052 | 0.730 | 0.057 |
Glutelin | 0.829 | 0.548 | 0.808 | 0.595 | 0.748 | 0.705 | |
CNN | Prolamin | 0.775 | 0.059 | 0.791 | 0.052 | 0.812 | 0.057 |
Glutelin | 0.817 | 0.656 | 0.836 | 0.646 | 0.835 | 0.732 | |
BPNN | Prolamin | 0.898 | 0.032 | 0.810 | 0.040 | 0.830 | 0.048 |
Glutelin | 0.995 | 0.089 | 0.875 | 0.497 | 0.920 | 0.409 |
Attributes | Number | Wavelengths (nm) |
---|---|---|
Prolamin | 24 | 984, 1022, 1026, 1071, 1088, 1186, 1217, 1252, 1256, 1273, 1291, 1295, 1379, 1389, 1467, 1471, 1503, 1549, 1577, 1599, 1606, 1638, 1642, 1659 |
Glutelin | 44 | 984, 991, 1040, 1043, 1064, 1074, 1106, 1134, 1151, 1189, 1193, 1207, 1210, 1228, 1242, 1252, 1266, 1288, 1305, 1323, 1340, 1347, 1372, 1376, 1379, 1383, 1411, 1414, 1446, 1453, 1474, 1478, 1485, 1492, 1499, 1513, 1534, 1538, 1542, 1574, 1581, 1613, 1617, 1638 |
Model | Label | Training | Validation | Test | |||
---|---|---|---|---|---|---|---|
rc a | RMSEC | rv | RMSEV | rp | RMSEP | ||
PLSR | Prolamin | 0.829 | 0.040 | 0.714 | 0.053 | 0.677 | 0.062 |
Glutelin | 0.887 | 0.452 | 0.791 | 0.627 | 0.829 | 0.628 | |
SVR | Prolamin | 0.645 | 0.056 | 0.649 | 0.051 | 0.695 | 0.060 |
Glutelin | 0.862 | 0.498 | 0.818 | 0.587 | 0.877 | 0.532 | |
CNN | Prolamin | 0.718 | 0.053 | 0.770 | 0.045 | 0.797 | 0.053 |
Glutelin | 0.775 | 0.840 | 0.867 | 0.694 | 0.816 | 0.901 | |
BPNN | Prolamin | 0.754 | 0.051 | 0.798 | 0.051 | 0.807 | 0.062 |
Glutelin | 0.849 | 0.519 | 0.873 | 0.499 | 0.864 | 0.540 |
Model | Label | Training | Validation | Test | |||
---|---|---|---|---|---|---|---|
rc a | RMSEC | rv | RMSEV | rp | RMSEP | ||
PLSR | Prolamin | 0.716 | 0.050 | 0.719 | 0.048 | 0.744 | 0.055 |
Glutelin | 0.845 | 0.524 | 0.778 | 0.648 | 0.808 | 0.628 | |
SVR | Prolamin | 0.639 | 0.056 | 0.660 | 0.050 | 0.724 | 0.060 |
Glutelin | 0.823 | 0.560 | 0.820 | 0.592 | 0.798 | 0.641 | |
CNN | Prolamin | 0.678 | 0.056 | 0.713 | 0.054 | 0.780 | 0.059 |
Glutelin | 0.817 | 0.645 | 0.844 | 0.614 | 0.806 | 0.650 | |
BPNN | Prolamin | 0.887 | 0.031 | 0.798 | 0.047 | 0.824 | 0.056 |
Glutelin | 0.984 | 0.174 | 0.884 | 0.472 | 0.898 | 0.471 |
Model | Label | Training | Validation | Test | |||
---|---|---|---|---|---|---|---|
rc a | RMSEC | rv | RMSEV | rp | RMSEP | ||
PLSR | Prolamin | 0.645 | 0.055 | 0.678 | 0.050 | 0.753 | 0.055 |
Glutelin | 0.757 | 0.641 | 0.769 | 0.646 | 0.687 | 0.764 | |
SVR | Prolamin | 0.636 | 0.056 | 0.653 | 0.051 | 0.771 | 0.055 |
Glutelin | 0.692 | 0.719 | 0.727 | 0.731 | 0.712 | 0.724 | |
CNN | Prolamin | 0.647 | 0.057 | 0.709 | 0.049 | 0.791 | 0.056 |
Glutelin | 0.730 | 0.812 | 0.772 | 0.758 | 0.691 | 0.917 | |
BPNN | Prolamin | 0.881 | 0.034 | 0.803 | 0.045 | 0.787 | 0.057 |
Glutelin | 0.923 | 0.378 | 0.901 | 0.443 | 0.815 | 0.598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Tang, Z.; Tan, X.; Qi, H.; Zhang, X.; Ma, S. Detection of Rice Prolamin and Glutelin Content Using Hyperspectral Imaging Combined with Feature Selection Algorithms and Multivariate Regression Models. Foods 2025, 14, 3304. https://doi.org/10.3390/foods14193304
Zhang C, Tang Z, Tan X, Qi H, Zhang X, Ma S. Detection of Rice Prolamin and Glutelin Content Using Hyperspectral Imaging Combined with Feature Selection Algorithms and Multivariate Regression Models. Foods. 2025; 14(19):3304. https://doi.org/10.3390/foods14193304
Chicago/Turabian StyleZhang, Chu, Zhongjie Tang, Xiaojing Tan, Hengnian Qi, Xincheng Zhang, and Shanlin Ma. 2025. "Detection of Rice Prolamin and Glutelin Content Using Hyperspectral Imaging Combined with Feature Selection Algorithms and Multivariate Regression Models" Foods 14, no. 19: 3304. https://doi.org/10.3390/foods14193304
APA StyleZhang, C., Tang, Z., Tan, X., Qi, H., Zhang, X., & Ma, S. (2025). Detection of Rice Prolamin and Glutelin Content Using Hyperspectral Imaging Combined with Feature Selection Algorithms and Multivariate Regression Models. Foods, 14(19), 3304. https://doi.org/10.3390/foods14193304