Improving Biocontrol Potential of Antagonistic Yeasts Against Fungal Pathogen in Postharvest Fruits and Vegetables Through Application of Organic Enhancing Agents
Abstract
1. Introduction
2. Causes of Postharvest Loss in Fruits and Vegetables
3. Common Postharvest Diseases in Fruits and Vegetables and Fungal Disease Management
3.1. Physical Methods
3.2. Chemical Methods
3.3. Biological Control Methods
Common Biocontrol Agents for Postharvest Fruits and Vegetables
4. Factors Affecting the Efficacy of Antagonistic Microbes
4.1. Environmental Factors
4.2. Host Plant Characteristics
4.3. Pathogen Characteristics
4.4. Chemical Inputs
4.5. Biocontrol Agents’ Characteristics
5. Common Reagents Used as Enhancers of Antagonistic Yeast and Their Characteristics
5.1. Nutrient Supplements and Molecules
5.2. Complex Structure Polysaccharides
5.3. Antioxidants
5.4. pH Modulators
6. Application Methods for Enhancers of Antagonistic Yeast Performance
6.1. Pretreatment of Yeast Cells
6.2. Co-Application of Yeast with Enhancers
6.3. Encapsulation or Immobilization
6.4. Post-Application Treatment
7. Mechanisms Involved in Enhancement
7.1. Stimulating Yeast Growth and Fitness Activity
7.2. Improving the General Induction of Host Resistance
7.3. Enhancing Antagonistic Properties
7.4. Improving Adhesion and Colonization
7.5. Improving Stress Tolerance
8. Conclusions and Predictions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.; Ali, A.; Ali, S.; Chen, H.; Wu, W.; Liu, R.; Chen, H.; Ahmed, Z.F.R.; Gao, H. Global insights and advances in edible coatings or films toward quality maintenance and reduced postharvest losses of fruit and vegetables: An updated review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70103. [Google Scholar] [CrossRef]
- Karoney, E.; Molelekoa, T.; Bill, M.; Siyoum, N.; Korsten, L. Global research network analysis of fresh produce postharvest technology: Innovative trends for loss reduction. Postharvest Biol. Technol. 2024, 208, 112642. [Google Scholar] [CrossRef]
- Rahul, S.N.; Khilari, K.; Sagar, S.; Chaudhary, S.; Kumar, S.; Vihan, N.; Tomar, A. Challenges in Postharvest Management of fungal Diseases in Fruits and Vegetables: A review. South Asian J. Food Technol. Environ. 2015, 1, 126–130. [Google Scholar] [CrossRef]
- Shanmugam, V.; Pothiraj, G.; Dauda, W.P. Endophytes for postharvest disease management in vegetables and fruits. In Postharvest Handling and Diseases of Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2021; pp. 93–110. [Google Scholar]
- Araújo, A.S.; de Lima, G.S.; dos Santos Nunes, I.; de Oliveira Farias, J.C.R.; Navarro, D.M.d.A.F.; Melo, N.F.C.B.; Magalhães, N.S.S.; França, R.; Carvalho, R.d.S.F.; Stamford, T.C.M. Chitosan hydrochloride-gum Arabic-passion fruit seed oil nanoparticle edible coating to control fungal infection and maintain quality parameters of strawberries. Food Control 2024, 161, 110360. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, L.; Fan, K. Recent advances in polysaccharide-based edible coatings for preservation of fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 3823–3838. [Google Scholar] [CrossRef]
- Akanbi, T.A. Common Causes and Prevention of Postharvest Losses in Fruits and Vegetables. Quest J. J. Res. Agric. Anim. Sci. 2021, 8, 21–24. [Google Scholar]
- Ferdousi, J.; Hussain, M.; Saha, S.; Rob, M.; Afroz, T.; Pramanik, S.; Islam, M.; Nath, D. Postharvest physiology of fruits and vegetables and their management technology: A Review. J. Anim. Plant Sci. 2024, 34, 291–303. [Google Scholar] [CrossRef]
- Kamboj, M.; Chauhan, N.; Goswami, P. Postharvest Diseases in Fruits and Vegetables during Storage. In Packaging and Storage of Fruits and Vegetables; Apple Academic Press: New York, NY, USA, 2021; pp. 269–287. [Google Scholar]
- Fatimma, A.N. Efficacy of Allium sativum extract as post-harvest treatment of fruit rot of mango. Plant Pathol. Quar. 2018, 8, 144–152. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, R.R.; Kesharwani, A.K. Postharvest losses of horticultural produce. In Postharvest Handling and Diseases of Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2021; pp. 1–24. [Google Scholar]
- Sharma, R.; Yadav, A.; Lata, C.; Verma, A.; Singh, D.; Rajput, L.S.; Joshi, R.; Samota, M.K.; Kumar, S.; Kumar, K.; et al. Role of biotechnology for shelf-life extension and quality improvement of perishable fruits and vegetables: A comprehensive review. Food Sci. Biotechnol. 2025. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Huang, Z.; Zhao, X.; Qiao, L.; Wu, C.; Xue, Z.; Kou, X. Phenylpropanoids for the control of fungal diseases of postharvest fruit. Plant Mol. Biol. 2025, 115, 39. [Google Scholar] [CrossRef] [PubMed]
- James, A.; Zikankuba, V. Postharvest management of fruits and vegetable: A potential for reducing poverty, hidden hunger and malnutrition in sub-Sahara Africa. Cogent Food Agric. 2017, 3, 1312052. [Google Scholar] [CrossRef]
- Gahlot, D.; Meena, N.L.; Trivedi, A.; Kumar, S. In vitro efficacy of fungicides and phyto-extracts against Colletotrichum gloeosporioides causing Anthracnose of Mango. Ann. Plant Prot. Sci. 2021, 29, 217–221. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Xin, Y.; Godana, E.A.; Dhanasekaran, S.; Luo, R.; Li, J.; Zhao, L.; Zhang, H. Exploring the biocontrol performance of Bacillus velezensis against postharvest diseases of eggplants and the underlying action mechanisms in soft rot management. Postharvest Biol. Technol. 2025, 227, 113556. [Google Scholar] [CrossRef]
- Godana, E.A.; Yang, Q.; Zhang, X.; Zhao, L.; Wang, K.; Dhanasekaran, S.; Mehari, T.G.; Zhang, H. Biotechnological and biocontrol approaches for mitigating postharvest diseases caused by fungal pathogens and their mycotoxins in fruits: A review. J. Agric. Food Chem. 2023, 71, 17584–17596. [Google Scholar] [CrossRef]
- Abano, E.E.; Sam-Amoah, L.K. Application of antagonistic microorganisms for the control of postharvest decays in fruits and vegetables. Int. J. Adv. Biol. Res. 2012, 2, 1–8. [Google Scholar]
- Zhou, Y.; Zhao, L.; Chen, Y.; Dhanasekaran, S.; Chen, X.; Zhang, X.; Yang, X.; Wu, M.; Song, Y.; Zhang, H. Study on the control effect and physiological mechanism of Wickerhamomyces anomalus on primary postharvest diseases of peach fruit. Int. J. Food Microbiol. 2024, 413, 110575. [Google Scholar] [CrossRef]
- Wei, M.; Dhanasekaran, S.; Ji, Q.; Yang, Q.; Zhang, H. Sustainable and efficient method utilizing N-acetyl-L-cysteine for complete and enhanced ochratoxin A clearance by antagonistic yeast. J. Hazard. Mater. 2023, 448, 130975. [Google Scholar] [CrossRef] [PubMed]
- Droby, S.; Wisniewski, M.; El-Ghaouth, A.; Wilson, C. Biological Control of Postharvest Diseases of Fruit and Vegetables: Current Achievements and Future Challenges. In Proceedings of the XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture, Toronto, ON, Canada, 11–17 August 2002; pp. 1–28. [Google Scholar] [CrossRef]
- Fravel, D.R. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef]
- Dhillon, P.K.; Kaur, M.; Sharma, S.C.; Mahmood, A. Harnessing killer yeast system: From molecular insight to real world biocontrol solution. Arch. Microbiol. 2025, 207, 116. [Google Scholar] [CrossRef]
- Marín, A.; Atarés, L.; Chiralt, A. Improving function of biocontrol agents incorporated in antifungal fruit coatings: A review. Biocontrol Sci. Technol. 2017, 27, 1220–1241. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [Google Scholar] [CrossRef]
- Magan, N. Importance of ecological windows for efficacy of biocontrol agents. In Progress in Biological Control; Springer Nature: London, UK, 2020; pp. 1–14. [Google Scholar]
- Bonaterra, A.; Badosa, E.; Daranas, N.; Francés, J.; Roselló, G.; Montesinos, E. Bacteria as biological control agents of plant diseases. Microorganisms 2022, 10, 1759. [Google Scholar] [CrossRef]
- Duffy, B.; Schouten, A.; Raaijmakers, J.M. Pathogen self-defense: Mechanisms to Counteract Microbial Antagonism. Annu. Rev. Phytopathol. 2003, 41, 501–538. [Google Scholar] [CrossRef]
- Patibanda, A.K.; Ranganathswamy, M. Effect of agrichemicals on biocontrol agents of plant disease control. In Microorganisms for Sustainability; Springer Nature: London, UK, 2018; pp. 1–21. [Google Scholar]
- Kumar, V.; Shankar, R.; Kumar, G. Strategies used for reducing postharvest losses in fruits and vegetables. Int. J. Eng. Res. 2015, 6, 130–137. [Google Scholar]
- Chhetri, R.T.; Magar, P.; Kandel, S.; Gnyawali, P. A review paper on post-harvest loss on fruits and vegetables. Food Agri Econ. Rev. 2023, 3, 1–4. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- Zhang, H.; Mahunu, G.K.; Castoria, R.; Yang, Q.; Apaliya, M.T. Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends Food Sci. Technol. 2018, 78, 180–187. [Google Scholar] [CrossRef]
- Kader, A. Opportunities for International Collaboration in Postharvest Education and Extension Activities. Acta Hortic. 2013, 1012, 1363–1370. [Google Scholar] [CrossRef]
- De, S.; Banerjee, S.; Banerjee, S. Managing Postharvest losses of Vegetables and Fruits: A Methodological review. Recent Adv. Food Nutr. Agric. 2024, 15, 138–162. [Google Scholar] [CrossRef]
- Feng, P.; Zhang, X.; Godana, E.A.; Ngea, G.L.N.; Dhanasekaran, S.; Gao, L.; Li, J.; Zhao, L.; Zhang, H. Control of postharvest soft rot of green peppers by Bacillus subtilis through regulating ROS metabolism. Physiol. Mol. Plant Pathol. 2024, 131, 102280. [Google Scholar] [CrossRef]
- Nan, M.; Xue, H.; Bi, Y. Contamination, detection and control of mycotoxins in fruits and vegetables. Toxins 2022, 14, 309. [Google Scholar] [CrossRef]
- Lastochkina, O.; Seifikalhor, M.; Aliniaeifard, S.; Baymiev, A.; Pusenkova, L.; Garipova, S.; Kulabuhova, D.; Maksimov, I. Bacillus spp.: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 2019, 8, 97. [Google Scholar] [CrossRef]
- Xu, M.; Godana, E.A.; Dhanasekaran, S.; Zhang, X.; Yang, Q.; Zhao, L.; Zhang, H. Comparative proteome and transcriptome analyses of the response of postharvest pears to Penicillium expansum infection. Postharvest Biol. Technol. 2022, 196, 112182. [Google Scholar] [CrossRef]
- Prusky, D.; Romanazzi, G. Induced resistance in fruit and vegetables: A host physiological response limiting postharvest disease development. Annu. Rev. Phytopathol. 2023, 61, 279–300. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Chen, H.; Liu, Y.; Liu, Y. Proteomic Analysis of Kiwifruit in Response to the Postharvest Pathogen, Botrytis cinerea. Front. Plant Sci. 2018, 9, 158. [Google Scholar] [CrossRef]
- Ji, Q.; Yang, Q.; Dhanasekaran, S.; Ma, J.; Zhang, H. Hannaella sinensis, a promising biocontrol agent for combating postharvest pear fruit diseases and patulin degradation. Food Control 2024, 164, 110618. [Google Scholar] [CrossRef]
- Putra, A.I.; Khan, M.N.; Kamaruddin, N.; Khairuddin, R.F.R.; Al-Obaidi, J.R.; Flores, B.J.; Flores, L.F. Proteomic insights into fruit–pathogen interactions: Managing biotic stress in fruit. Plant Cell Rep. 2025, 44, 54. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Godana, E.A.; Wang, K.; Zhang, H. A proteomic analysis of Wickerhamomyces anomalus incubated with chitosan reveals dynamic changes in protein expression and metabolic pathways. Postharvest Biol. Technol. 2024, 211, 112806. [Google Scholar] [CrossRef]
- Zhang, H.; Apaliya, M.T.; Mahunu, G.K.; Chen, L.; Li, W. Control of ochratoxin A-producing fungi in grape berry by microbial antagonists: A review. Trends Food Sci. Technol. 2016, 51, 88–97. [Google Scholar] [CrossRef]
- Wei, M.; Dhanasekaran, S.; Godana, E.A.; Yang, Q.; Sui, Y.; Zhang, X.; Ngea, G.L.N.; Zhang, H. Whole-genome sequencing of Cryptococcus podzolicus Y3 and data-independent acquisition-based proteomic analysis during OTA degradation. Food Control 2022, 136, 108862. [Google Scholar] [CrossRef]
- Udoh, I.P.; Eleazar, C.I.; Ogeneh, B.O.; Ohanu, M.E. Studies on fungi responsible for the Spoilage/Deterioration of some edible fruits and vegetables. Adv. Microbiol. 2015, 5, 285–290. [Google Scholar] [CrossRef]
- Dhanasekaran, S.; Ackah, M.; Yang, Q.; Zhang, H. De novo transcriptome assembly and analysis unveil molecular insights into Cladosporidium rot development in harvested table grapes. Postharvest Biol. Technol. 2025, 225, 113497. [Google Scholar] [CrossRef]
- Wang, K.; Wang, H.; Xu, M.; Godana, E.A.; Lu, Y.; Zhang, H. Functional analysis of apple defense protein MdPL and screening of proteins interaction with Penicillium expansum. Postharvest Biol. Technol. 2025, 219, 113289. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, D.H. Microbial safety of pickled fruits and vegetables and hurdle technology. Internet J. Food Saf. 2004, 4, 21–32. [Google Scholar]
- Umeohia, U.E.; Olapade, A.A. Physiological processes affecting postharvest quality of fresh fruits and vegetables. Asian Food Sci. J. 2024, 23, 1–14. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, Y.; Wang, Y.; Xu, B.; Zhou, C.; Adhikari, B.; Liu, J.; Xu, T.; Wang, B. Atmosphere-controlled high-voltage electrospray for improving conductivity, flexibility, and antibacterial properties of chitosan films. Food Res. Int. 2024, 200, 115450. [Google Scholar] [CrossRef]
- Jain, N.K.; Roy, I. Trehalose and protein stability. Curr. Protoc. Protein Sci. 2010, 59, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, G.; Tzortzakis, N.; Ippolito, A.; Allagui, M.B.; Spadaro, D.; Kinay-Teksur, P.; Pérezgago, M.; Kilic, M.; Montesinos, C.; Xylia, P.; et al. Innovative sustainable technologies to extend the shelf life of perishable mediterranean fresh fruit, vegetables, and aromatic plants and to reduce waste: The experience of prima STOPMEDWASTE project. In Proceedings of the 12th International Congress of Plant Pathology, Lyon, France, 20–25 August 2023; pp. 879–880. [Google Scholar]
- Zhao, Q.; Zhang, Y.; Solairaj, D.; Lu, Y.; Zhang, X.; Zhang, X.; Yang, Q.; Sui, Y.; Zhang, H. Unveiling the role of AcWRKY53: Bioinformatics and functional insights into kiwifruit postharvest resistance. Postharvest Biol. Technol. 2025, 222, 113431. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Q.; Dhanasekaran, S.; Godana, E.A.; Zhang, X.; Yang, Q.; Zhao, L.; Zhang, H. The necrosis-inducing protein (NIP) gene contributes to Penicillium expansum virulence during postharvest pear infection. Food Res. Int. 2022, 158, 111562. [Google Scholar] [CrossRef]
- Nassarawa, S.S.; Xu, Y.; Luo, Z.; Abdelshafy, A.M.; Li, L. Effect of Light-Emitting Diodes (LEDs) on the Quality of Fruits and Vegetables During Postharvest Period: A Review. Food Bioprocess Technol. 2020, 14, 388–414. [Google Scholar] [CrossRef]
- Schirra, M.; D’Aquino, S.; Cabras, P.; Angioni, A. Control of postharvest diseases of fruit by heat and fungicides: Efficacy, residue levels, and residue persistence. A review. J. Agric. Food Chem. 2011, 59, 8531–8542. [Google Scholar] [CrossRef]
- Barkai-Golan, R. Postharvest Diseases of Fruits and Vegetables: Development and Control; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- de Chiara, M.L.V.; Castagnini, J.M.; Capozzi, V. Cutting-edge physical techniques in postharvest for fruits and vegetables: Unveiling their power, inclusion in ‘hurdle’approach, and latest applications. Trends Food Sci. Technol. 2024, 151, 104619. [Google Scholar] [CrossRef]
- Fan, X.; Wang, W. Quality of fresh and fresh-cut produce impacted by nonthermal physical technologies intended to enhance microbial safety. Crit. Rev. Food Sci. Nutr. 2020, 62, 362–382. [Google Scholar] [CrossRef]
- Wu, P.; Chang, H.; Shen, Y. Effects of synthetic and environmentally friendly fungicides on powdery mildew management and the phyllosphere microbiome of cucumber. PLoS ONE 2023, 18, e0282809. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- Fenta, L.; Mekonnen, H.; Kabtimer, N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganismes 2023, 11, 1044. [Google Scholar] [CrossRef]
- Ling, L.; Feng, L.; Li, Y.; Yue, R.; Wang, Y.; Zhou, Y. Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. J. Fungi 2024, 10, 332. [Google Scholar] [CrossRef]
- Li, X.; Zeng, S.; Wisniewski, M.; Droby, S.; Yu, L.; An, F.; Leng, Y.; Wang, C.; Li, X.; He, M.; et al. Current and future trends in the biocontrol of postharvest diseases. Crit. Rev. Food Sci. Nutr. 2022, 64, 5672–5684. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Montiel, L.G.; Droby, S.; Preciado-Rangel, P.; Rivas-García, T.; González-Estrada, R.R.; Gutiérrez-Martínez, P.; Ávila-Quezada, G.D. A sustainable alternative for postharvest disease management and phytopathogens biocontrol in fruit: Antagonistic yeasts. Plants 2021, 10, 2641. [Google Scholar] [CrossRef]
- Ribes, S.; Fuentes, A.; Talens, P.; Barat, J.M. Prevention of fungal spoilage in food products using natural compounds: A review. Crit. Rev. Food Sci. Nutr. 2017, 58, 2002–2016. [Google Scholar] [CrossRef]
- Kupper, K.C.; Cervantes, A.L.L.; Klein, M.N.; Da Silva, A.C. Avaliação De Microrganismos Antagônicos, Saccharomyces cerevisiae E Bacillus subtilis Para O Controle De Penicillium digitatum. Rev. Bras. Frutic. 2013, 35, 425–436. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, X.; Zhao, L.; Apaliya, M.T.; Yang, Q.; Sun, W.; Zhang, X.; Zhang, H. Screening of deoxynivalenol producing strains and elucidation of possible toxigenic molecular mechanism. Toxins 2017, 9, 184. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.; Solairaj, D.; Lin, R.; Ackah, M.; Ngea, G.L.N.; Zhang, H. Transcriptomic analyses reveal robust changes in the defense response of apples induced by Hannaella sinensis. Biol. Control 2023, 182, 105237. [Google Scholar] [CrossRef]
- Droby, S.; Vinokur, V.; Weiss, B.; Cohen, L.; Daus, A.; Goldschmidt, E.E.; Porat, R. Induction of Resistance to Penicillium digitatum in Grapefruit by the Yeast Biocontrol Agent Candida oleophila. Phytopathology 2002, 92, 393–399. [Google Scholar] [CrossRef]
- El-Ghaouth, A.; Wilson, C.L.; Wisniewski, M. Ultrastructural and Cytochemical Aspects of the Biological Control of Botrytis cinerea by Candida saitoana in Apple Fruit. Phytopathology 1998, 88, 282–291. [Google Scholar] [CrossRef]
- Haïssam, J.M. Pichia anomala in biocontrol for apples: 20 years of fundamental research and practical applications. Antonie Leeuwenhoek 2011, 99, 93–105. [Google Scholar] [CrossRef]
- Raynaldo, F.A.; Dhanasekaran, S.; Ngea, G.L.N.; Yang, Q.; Zhang, X.; Zhang, H. Investigating the biocontrol potentiality of Wickerhamomyces anomalus against postharvest gray mold decay in cherry tomatoes. Sci. Hortic. 2021, 285, 110137. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Q.; Godana, E.A.; Huo, Y.; Hu, S.; Zhang, H. Efficacy of Wickerhamomyces anomalus in the biocontrol of black spot decay in tomatoes and investigation of the mechanisms involved. Biol. Control 2023, 186, 105356. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, Q.; Xin, Y.; Yang, Q.; Dhanasekaran, S.; Zhang, X.; Zhang, H. Aureobasidium pullulans S2 controls tomato gray mold and produces volatile organic compounds and biofilms. Postharvest Biol. Technol. 2023, 204, 112450. [Google Scholar] [CrossRef]
- Nunes, C.; Usall, J.; Teixidó, N.; Abadias, M.; Viñas, I. Improved Control of Postharvest Decay of Pears by the Combination of Candida sake (CPA-1) and Ammonium Molybdate. Phytopathology 2002, 92, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Leng, J.; Dai, Y.; Qiu, D.; Zou, Y.; Wu, X. Utilization of the antagonistic yeast, Wickerhamomyces anomalus, combined with UV-C to manage postharvest rot of potato tubers caused by Alternaria tenuissima. Int. J. Food Microbiol. 2022, 377, 109782. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Verma, U.; Awasthi, P. A combination of the yeast Candida utilis and chitosan controls fruit rot in tomato caused by Alternaria alternata (Fr.) Keissler and Geotrichum candidum Link ex Pers. J. Hortic. Sci. Biotechnol. 2006, 81, 1043–1051. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, J.; Tian, R.; Liu, Y. Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Front. Microbiol. 2022, 13, 922450. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Zhang, B. Induced resistance in peach fruit as treated by Pichia guilliermondii and their possible mechanism. Int. J. Food Prop. 2020, 23, 34–51. [Google Scholar] [CrossRef]
- Qiu, J.E.; Zhao, L.; Jiang, S.; Godana, E.A.; Zhang, X.; Zhang, H. Efficacy of Meyerozyma caribbica in the biocontrol of blue mold in kiwifruit and mechanisms involved. Biol. Control 2022, 173, 105000. [Google Scholar] [CrossRef]
- Pan, H.; Zhong, C.; Wang, Z.; Deng, L.; Li, W.; Zhao, J.; Long, C.; Li, L. Biocontrol Ability and Action Mechanism of Meyerozyma guilliermondii 37 on Soft Rot Control of Postharvest Kiwifruit. Microorganismes 2022, 10, 2143. [Google Scholar] [CrossRef] [PubMed]
- Leibinger, W.; Breuker, B.; Hahn, M.; Mendgen, K. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 1997, 87, 1103–1110. [Google Scholar] [CrossRef]
- Haggag, W.M.; Soud, M.A.E. Production and Optimization of Pseudomonas fluorescens Biomass and Metabolites for Biocontrol of Strawberry Grey Mould. Am. J. Plant Sci. 2012, 3, 836–845. [Google Scholar] [CrossRef]
- Tsalgatidou, P.C.; Papageorgiou, A.; Boutsika, A.; Chatzidimopoulos, M.; Delis, C.; Tsitsigiannis, D.I.; Paplomatas, E.; Zambounis, A. Insights into the Interaction between the Biocontrol Agent Bacillus amyloliquefaciens QST 713, the Pathogen Monilinia fructicola and Peach Fruit. Agronomy 2024, 14, 771. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Wang, Y.; Li, B.; Gu, X.; Zhang, X.; Boateng, N.a.S.; Zhang, H. Effect of β-glucan on the biocontrol efficacy of Cryptococcus podzolicus against postharvest decay of pears and the possible mechanisms involved. Postharvest Biol. Technol. 2020, 160, 111057. [Google Scholar] [CrossRef]
- Zivkovic, S.; Stosic, S.; Ristic, D.; Vucurovic, I.; Stevanovic, M. Antagonistic potential of Lactobacillus plantarum against some postharvest pathogenic fungi. Zb. Matice Srp. Prir. Nauk. 2019, 136, 79–88. [Google Scholar] [CrossRef]
- Alijani, Z.; Amini, J.; Karimi, K.; Pertot, I. Characterization of the Mechanism of Action of Serratia rubidaea Mar61-01 against Botrytis cinerea in Strawberries. Plants 2022, 12, 154. [Google Scholar] [CrossRef]
- Allagui, M.B.; Moumni, M.; Romanazzi, G. Antifungal activity of thirty essential oils to control pathogenic fungi of postharvest decay. Antibiotics 2023, 13, 28. [Google Scholar] [CrossRef]
- Sefu, G.; Satheesh, N.; Berecha, G. Antifungal activity of ginger and cinnamon leaf essential oils on mango anthracnose disease causing fungi (C. gloeosporioides). Carpathian J. Food Sci. Technol. 2015, 7, 26–34. [Google Scholar]
- Carmello, C.R.; Magri, M.M.R.; Cardoso, J.C. Cinnamon and clove aqueous extracts promote in vitro and postharvest control of Alternaria alternate in tomato fruit. Eur. J. Plant Pathol. 2025, 172, 261–274. [Google Scholar] [CrossRef]
- Ali, J.; Hussain, A.; Siddique, M.; Rahman, Z.U.; Ikram, M.; Zahoor, M.; Ullah, R.; Gulfam, N.; Shah, A.B. Fungicidal effect of Azadirachta indica extracts against pathogenic fungi Rhizopus stolonifer and Monilinia fructicola in postharvest peaches. Discov. Plants 2025, 2, 126. [Google Scholar] [CrossRef]
- Chime, A.O.; Aiwansoba, R.O. Antifungal Activity of Neem (Azadirachta indica) Leaf Extract against Pathogens Associated with Tomato (Solanum lycopersicum L.) Fruit Spoilage. Afr. Sci. 2023, 24, 297–303. [Google Scholar] [CrossRef]
- Embaby, E.S.M.; Hazaa, M.M.; El-Dougdoug, K.A.; Abdel Monem, M.O.; Elwan, E.E. Control Apple Fruit Fungi Using a Green Biocide Neem (Azadirachta indica A. Juss). J. Basic Environ. Sci. 2017, 4, 253–261. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Cao, J.; Jiang, W. Antifungal activities of neem (Azadirachta indica) seed kernel extracts on postharvest diseases in fruits. Afr. J. Microbiol. Res. 2010, 4, 1100–1104. [Google Scholar]
- Sellamuthu, P.S.; Sivakumar, D.; Soundy, P. Antifungal Activity and Chemical Composition of Thyme, Peppermint and Citronella Oils in Vapor Phase against Avocado and Peach Postharvest Pathogens. J. Food Saf. 2013, 33, 86–93. [Google Scholar] [CrossRef]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 2009, 55, 159–185. [Google Scholar] [CrossRef]
- Chowdhury, N.; Hazarika, D.J.; Goswami, G.; Sarmah, U.; Borah, S.; Boro, R.C.; Barooah, M. Acid tolerant bacterium Bacillus amyloliquefaciens MBNC retains biocontrol efficiency against fungal phytopathogens in low pH. Arch. Microbiol. 2022, 204, 124. [Google Scholar] [CrossRef]
- Adnan, M.; Islam, W.; Shabbir, A.; Khan, K.A.; Ghramh, H.A.; Huang, Z.; Chen, H.Y.; Lu, G. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb. Pathog. 2019, 129, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Zehra, A.; Raytekar, N.A.; Meena, M.; Swapnil, P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Curr. Res. Microb. Sci. 2021, 2, 100054. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zheng, X.; Su, Y.; Lu, Y.; Yang, Q.; Shi, Y.; Lanhuang, B.; Zhang, X.; Zhao, L.; Godana, E.A.; et al. A glycoside hydrolase superfamily gene plays a major role in Penicillium expansum growth and pathogenicity in apples. Postharvest Biol. Technol. 2022, 198, 112228. [Google Scholar] [CrossRef]
- Sharma, R.R.; Reddy, S.V.R. Biological control of postharvest diseases. In II International Organic Fruit Symposium; Apple Academic Press: New York, NY, USA, 2018; pp. 167–212. [Google Scholar]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. Biocontrol of postharvest diseases with antagonistic microorganisms. In Postharvest Pathology of Fresh Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2019; pp. 463–498. [Google Scholar]
- Zhao, L.; Hu, Y.; Liang, L.; Dhanasekaran, S.; Zhang, X.; Yang, X.; Wu, M.; Song, Y.; Zhang, H. WSC1 Regulates the Growth, Development, Patulin Production, and Pathogenicity of Penicillium expansum Infecting Pear Fruits. J. Agric. Food Chem. 2024, 72, 1025–1034. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, Y.; Yue, Q.; Godana, E.A.; Gao, L.; Dou, M.; Zhou, H.; Li, J.; Zhao, L.; Zhang, H. Insight into the mechanisms involved in the improved antagonistic efficacy of Pichia caribbica against postharvest black spot of tomato fruits by combined application with oligochitosan. Postharvest Biol. Technol. 2024, 213, 112968. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Hao, J.; Xu, H.; Yan, P.; Yang, M.; Mintah, B.K.; Dai, C.; Zhang, R.; Ma, H.; He, R. Application of fixed-frequency ultrasound in the cultivation of Saccharomyces cerevisiae for rice wine fermentation. J. Sci. Food Agric. 2024, 104, 6417–6430. [Google Scholar] [CrossRef]
- Sun, J.; Tan, X.; Liu, B.; Battino, M.; Meng, X.; Zhang, F. Blue light inhibits gray mold infection by inducing disease resistance in cherry tomato. Postharvest Biol. Technol. 2024, 215, 113006. [Google Scholar] [CrossRef]
- Sui, Y.; Wisniewski, M.; Droby, S.; Liu, J. Responses of yeast biocontrol agents to environmental stress. Appl. Environ. Microbiol. 2015, 81, 2968–2975. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Yang, Q.; Komla, M.G.; Zhang, X.; Zhu, S. Ascorbic Acid Enhances Oxidative Stress Tolerance and Biological Control Efficacy of Pichia caribbica against Postharvest Blue Mold Decay of Apples. J. Agric. Food Chem. 2014, 62, 7612–7621. [Google Scholar] [CrossRef]
- Crowe, J.H. Trehalose as a “Chemical chaperone”. Adv. Exp. Med. Biol. 2007, 594, 143–158. [Google Scholar]
- Kaushik, J.K.; Bhat, R. Why is trehalose an exceptional protein stabilizer? J. Biol. Chem. 2003, 278, 26458–26465. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Zhang, Z.; Chen, Y.; Tian, S. Antagonistic yeasts: A promising alternative to chemical fungicides for controlling postharvest decay of fruit. J. Fungi 2020, 6, 158. [Google Scholar] [CrossRef]
- Lima, G.; Castoria, R.; Spina, A.; De Curtis, F.; Caputo, L. Improvement of biocontrol yeast activity against postharvest pathogens: Recent experiences. Acta Hortic. 2005, 682, 2035–2040. [Google Scholar] [CrossRef]
- De Simone, N.; Capozzi, V.; Amodio, M.L.; Colelli, G.; Spano, G.; Russo, P. Microbial-based biocontrol solutions for fruits and vegetables: Recent insight, patents, and innovative trends. Recent Pat. Food Nutr. Agric. 2021, 12, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, S.; Liang, L.; Chen, Y.; Chen, J.; Guo, S.; Zhang, X.; Zhao, L.; Zhang, H. Alginate oligosaccharide induces resistance against Penicillium expansum in pears by priming defense responses. Plant Physiol. Biochem. 2025, 220, 109531. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Dawson, A.; Henderson, A.C.; Lockyer, E.J.; Read, E.; Sritharan, G.; Ryan, M.; Sgroi, M.; Ngou, P.M.; Woodruff, R.; et al. Nutrient supplements boost yeast transformation efficiency. Sci. Rep. 2016, 6, 35738. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, L.; Chen, K.; Zhao, L.; Zhang, X. Enhanced biocontrol activity of Rhodotorula mucilaginosa cultured in media containing chitosan against postharvest diseases in strawberries: Possible mechanisms underlying the effect. J. Agric. Food Chem. 2014, 62, 4214–4224. [Google Scholar] [CrossRef]
- Gu, N.; Zhang, X.; Gu, X.; Zhao, L.; Dhanasekaran, S.; Qian, X.; Zhang, H. Proteomic analysis reveals the mechanisms involved in the enhanced biocontrol efficacy of Rhodotorula mucilaginosa induced by chitosan. Biol. Control 2020, 149, 104325. [Google Scholar] [CrossRef]
- He, Y.; Degraeve, P.; Oulahal, N. Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of processed foods. Heliyon 2024, 10, e24929. [Google Scholar] [CrossRef]
- Chantrasri, P.; Sardsud, V.; Sangchote, S.; Sardsud, U. Combining yeasts and chitosan treatment to reduce anthracnose fruit rot in mangoes. Asian J. Biol. Educ. 2007, 3, 40–46. [Google Scholar]
- Zhimo, V.Y.; Bhutia, D.D.; Saha, J.; Panja, B. Exploitation of yeasts as an alternative strategy to control postharvest diseases of fruits-a review. World Appl. Sci. J. 2014, 31, 785–793. [Google Scholar]
- Fernando, I.D.N.S.; Abeysinghe, D.C.; Dharmadasa, R.M. Determination of phenolic contents and antioxidant capacity of different parts of Withania somnifera (L.) Dunal. from three different growth stages. Ind. Crops Prod. 2013, 50, 537–539. [Google Scholar] [CrossRef]
- Liu, H.; Cao, J.; Jiang, W. Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT-Food Sci. Technol. 2015, 63, 1042–1048. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, K.; Su, Y.; Dhanasekaran, S.; Yang, Q.; Zhang, H. Genome-wide investigation and analysis of C2H2 Zinc Finger Protein gene family in apple: Expression profiles during Penicillium expansum infection process. Physiol. Mol. Plant Pathol. 2023, 128, 102172. [Google Scholar] [CrossRef]
- Soto, E.R.; Rus, F.; Mirza, Z.; Ostroff, G.R. Yeast particles for encapsulation of terpenes and essential oils. Molecules 2023, 28, 2273. [Google Scholar] [CrossRef] [PubMed]
- Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2018, 275, 113–122. [Google Scholar] [CrossRef]
- Abano, E.E.; Sam-Amoah, L.K.; Bart-Plange, A. Variation in ultrasonic frequency and time as pre-treatments to air-drying of carrot. J. Agric. Eng. 2012, 43, e23. [Google Scholar] [CrossRef]
- Godana, E.A.; Yang, Q.; Zhao, L.; Zhang, X.; Liu, J.; Zhang, H. Pichia anomala Induced With Chitosan Triggers Defense Response of Table Grapes Against Postharvest Blue Mold Disease. Front. Microbiol. 2021, 12, 704519. [Google Scholar] [CrossRef]
- Deng, Q.; Lei, X.; Zhang, H.; Deng, L.; Yi, L.; Zeng, K. Phenylalanine Promotes Biofilm Formation of Meyerozyma caribbica to Improve Biocontrol Efficacy against Jujube Black Spot Rot. J. Fungi 2022, 8, 1313. [Google Scholar] [CrossRef]
- Boateng, N.a.S.; Ackah, M.; Wang, K.; Dzah, C.S.; Zhang, H. Comparative physiological and transcriptomic analysis reveals an improved biological control efficacy of Sporidiobolus pararoseus Y16 enhanced with ascorbic acid against the oxidative stress tolerance caused by Penicillium expansum in pears. Plant Physiol. Biochem. 2024, 210, 108627. [Google Scholar] [CrossRef]
- Dhanasekaran, S.; Yang, Q.; Godana, E.A.; Liu, J.; Li, J.; Zhang, H. Trehalose supplementation enhanced the biocontrol efficiency of Sporidiobolus pararoseusY16 through increased oxidative stress tolerance and altered transcriptome. Pest Manag. Sci. 2021, 77, 4425–4436. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Li, J.; Cui, J.; Zhang, X.; Ren, X. Enhancement of Biocontrol Efficacy of Pichia carribbica to Postharvest Diseases of Strawberries by Addition of Trehalose to the Growth Medium. Int. J. Mol. Sci. 2012, 13, 3916–3932. [Google Scholar] [CrossRef]
- Xi, Y.; Yang, Q.; Godana, E.A.; Zhang, H. Study on the effect of Debaryomyces hansenii enhanced by alginate oligosaccharide against postharvest blue mold decay of apples and the physiological mechanisms involved. Biol. Control 2022, 176, 105081. [Google Scholar] [CrossRef]
- Chen, X.; Wei, Y.; Zou, X.; Zhao, Z.; Jiang, S.; Chen, Y.; Xu, F.; Shao, X. β-Glucan Enhances the Biocontrol Efficacy of Marine Yeast Scheffersomyeces spartinae W9 against Botrytis cinerea in Strawberries. J. Fungi 2023, 9, 474. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chan, Z.; Xu, Y.; Tian, S. Effect of Pichia membranaefaciens combined with salicylic acid on controlling brown rot in peach fruit and the mechanisms involved. J. Sci. Food Agric. 2008, 88, 1786–1793. [Google Scholar] [CrossRef]
- Gramisci, B.R.; Lutz, M.C.; Lopes, C.A.; Sangorrín, M.P. Enhancing the efficacy of yeast biocontrol agents against postharvest pathogens through nutrient profiling and the use of other additives. Biol. Control 2018, 121, 151–158. [Google Scholar] [CrossRef]
- Abd-Alla, M.A.; Nehal, S.E.-M.; Nadia, G.E.-G. Formulation of Essential Oils and Yeast for Controlling Postharvest Decay of Tomato Fruits. Plant Pathol. Bull. 2009, 18, 23–33. [Google Scholar]
- Wang, Y.; Luo, Y.; Sui, Y.; Xie, Z.; Liu, Y.; Jiang, M.; Liu, J. Exposure of Candida oleophila to sublethal salt stress induces an antioxidant response and improves biocontrol efficacy. Biol. Control 2018, 127, 109–115. [Google Scholar] [CrossRef]
- Oztekin, S.; Dikmetas, D.N.; Devecioglu, D.; Acar, E.G.; Karbancioglu-Guler, F. Recent Insights into the Use of Antagonistic Yeasts for Sustainable Biomanagement of Postharvest Pathogenic and Mycotoxigenic Fungi in Fruits with their Prevention Strategies against Mycotoxins. J. Agric. Food Chem. 2023, 71, 9923–9950. [Google Scholar] [CrossRef]
- Raynaldo, F.A.; Ackah, M.; Ngea, G.L.N.; Yolandani, N.; Rehman, S.A.; Yang, Q.; Wang, K.; Zhang, X.; Zhang, H. The potentiality of Wickerhamomyces anomalus against postharvest black spot disease in cherry tomatoes and insights into the defense mechanisms involved. Postharvest Biol. Technol. 2023, 209, 112699. [Google Scholar] [CrossRef]
- Ming, X.; Wang, Y.; Sui, Y. Pretreatment of the Antagonistic Yeast, Debaryomyces hansenii, With Mannitol and Sorbitol Improves Stress Tolerance and Biocontrol Efficacy. Front. Microbiol. 2020, 11, 601. [Google Scholar] [CrossRef]
- Liu, J.; Wisniewski, M.; Droby, S.; Norelli, J.; Hershkovitz, V.; Tian, S.; Farrell, R. Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol. Ecol. 2012, 80, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Yang, Q.; Xiao, J.; Solairaj, D.; Ngea, G.L.N.; Zhang, H. Study on the biocontrol effect and physiological mechanism of Hannaella sinensis on the blue mold decay of apples. Int. J. Food Microbiol. 2022, 382, 109931. [Google Scholar] [CrossRef]
- Benito, P.; Ligorio, D.; Bellón, J.; Yenush, L.; Mulet, J.M. A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress. Plant Methods 2022, 18, 111. [Google Scholar] [CrossRef]
- González-Orozco, B.D.; Kosmerl, E.; Jiménez-Flores, R.; Alvarez, V.B. Enhanced probiotic potential of Lactobacillus kefiranofaciens OSU-BDGOA1 through co-culture with Kluyveromyces marxianus bdgo-ym6. Front. Microbiol. 2023, 14, 1236634. [Google Scholar] [CrossRef]
- Dou, Y.; Dhanasekaran, S.; Ngea, G.L.N.; Yang, Q.; Zhang, X.; Zhao, L.; Wang, K.; Zhang, H. Transcriptome analysis provides insights into potential mechanisms of epsilon-poly-L-lysine inhibiting Penicillium expansum invading apples. Postharvest Biol. Technol. 2023, 207, 112622. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Racioppo, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Microencapsulation of Saccharomyces cerevisiae into Alginate Beads: A Focus on Functional Properties of Released Cells. Foods 2020, 9, 1051. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wu, M.; Qin, X.; Dong, Q.; Li, Z. Antimicrobial function of yeast against pathogenic and spoilage microorganisms via either antagonism or encapsulation: A review. Food Microbiol. 2023, 112, 104242. [Google Scholar] [CrossRef] [PubMed]
- Gurusamy, S.; Dhanasekaran, S.; Liang, L.; Zhang, Y.; Yang, Q.; Li, Y.; Liu, X.; Zhang, H. Edible Fe2ZnO4 nanocomposite for extending shelf-life and preventing blue mold decay in apples. Food Control 2024, 171, 111111. [Google Scholar] [CrossRef]
- John, R.P.; Tyagi, R.D.; Brar, S.K.; Surampalli, R.Y.; Prévost, D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit. Rev. Biotechnol. 2011, 31, 211–226. [Google Scholar] [CrossRef]
- Coradello, G.; Tirelli, N. Yeast cells in microencapsulation. General features and controlling factors of the encapsulation process. Molecules 2021, 26, 3123. [Google Scholar] [CrossRef]
- Dhanasekaran, S.; Liang, L.; Gurusamy, S.; Godana, E.A.; Yang, Q.; Zhang, H. Efficacy and mechanism of chitosan nanoparticles containing lemon essential oil against blue mold decay of apples. Int. J. Biol. Macromol. 2025, 308, 142633. [Google Scholar] [CrossRef]
- Karaman, K. Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chem. 2020, 313, 126129. [Google Scholar] [CrossRef]
- Dadkhodazade, E.; Mohammadi, A.; Shojaee-Aliabadi, S.; Mortazavian, A.M.; Mirmoghtadaie, L.; Hosseini, S.M. Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: Development, characterization and release properties. Food Biophys. 2018, 13, 404–411. [Google Scholar] [CrossRef]
- Saberi-Riseh, R.; Moradi-Pour, M.; Mohammadinejad, R.; Thakur, V.K. Biopolymers for biological control of plant pathogens: Advances in microencapsulation of beneficial microorganisms. Polymers 2021, 13, 1938. [Google Scholar] [CrossRef]
- Dinu, S. Biocontrol of Postharvest Fungal Diseases by Microbial Antagonists—Minireview. Rom. J. Plant Prot. 2022, 15, 1–14. [Google Scholar] [CrossRef]
- Gogoi, A.R.; Khiangte, L.; Thapa, S.; Baral, D.; Subba, A.B. Antagonistic yeast: Eco-friendly tool for management plant diseases. Int. J. Adv. Biochem. Res. 2024, 8, 906–914. [Google Scholar] [CrossRef]
- Agirman, B.; Carsanba, E.; Settanni, L.; Erten, H. Exploring yeast-based microbial interactions: The next frontier in postharvest biocontrol. Yeast 2023, 40, 457–475. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E.; Baños, S.B.; Sivakumar, D. Shelf-life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 2015, 57, 579–601. [Google Scholar] [CrossRef] [PubMed]
- Rajestary, R.; Landi, L.; Romanazzi, G. Chitosan and postharvest decay of fresh fruit: Meta-analysis of disease control and antimicrobial and eliciting activities. Compr. Rev. Food Sci. Food Saf. 2020, 20, 563–582. [Google Scholar] [CrossRef]
- Herrera-González, J.A.; Bautista-Baños, S.; Serrano, M.; Romanazzi, G.; Gutiérrez-Martínez, P. Non-Chemical treatments for the pre- and Postharvest elicitation of defense mechanisms in the Fungi–Avocado pathosystem. Molecules 2021, 26, 6819. [Google Scholar] [CrossRef]
- Adss, I.; Hamza, H.; Hafez, E.; Heikal, H. Enhancing Tomato Fruits Post-Harvest Resistance by Salicylic Acid and Hydrogen Peroxide Elicitors Against Rot Caused by Alternaria solani. J. Agric. Chem. Biotechnol. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Bi, Y.; Xue, H.; Wang, J. Induced resistance in fruits and vegetables by elicitors to control postharvest diseases. In Postharvest Pathology of Fresh Horticultural Produce; CRC Press: Boca Raton, FL, UAS, 2019; pp. 793–816. [Google Scholar]
- Wang, B.; Bi, Y. The role of signal production and transduction in induced resistance of harvested fruits and vegetables. Food Qual. Saf. 2021, 5, 205–212. [Google Scholar] [CrossRef]
- Chen, P.; Chen, R.; Chou, J. Screening and Evaluation of Yeast Antagonists for Biological Control of Botrytis cinerea on Strawberry Fruits. Mycobiology 2018, 46, 33–46. [Google Scholar] [CrossRef]
- Choińska, R.; Piasecka-Jóźwiak, K.; Chabłowska, B.; Dumka, J.; Łukaszewicz, A. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie Leeuwenhoek 2020, 113, 1135–1146. [Google Scholar] [CrossRef]
No. | Common Fungal Pathogen Species | Fruits and Vegetables Affected | References |
---|---|---|---|
1 | Aspergillus niger, A. flavus, Rhizopus nigra, R. oryzae, Mucor indicus, M. racemosus, Candida albicans, Penicillium oxalicum, P. digitatum, Fusarium accuminatum, Rhizopus stolonifer, and R. nigrican | Pawpaw | [47] |
2 | R. stolonifer, A. niger, F. accuminatum, F. oxysporum, F. eqiuseti, F. moniliforme, and F. solani | Tomato | |
3 | A. niger, A. flavus, A. fumigatus, M. indicus, R. nigrican, R. nigra, and F. accuminatum | Irish potato | |
4 | M. indicus, M. amphibiorum, M. racemosus, A. niger, A. flavus, A. fumigatus, F. accuminatum, F. oxysporum, R. nigrican, R. oligosporus, and R. stolonifer | Carrot | |
5 | F. oxysporum, F. moniliforme, A. niger, A. flavus, A. fumigatus, M. racemosus, M. hiemalis, C. albicans, and P. oxalicum, | Sweet potato | |
6 | F. accuminatum, R. stolonifer, and A. niger | Watermelon | |
7 | P. expansum, M. indicus, R. nigrican, and F. moniliforme | Avocado pear | |
8 | F. oxysporum, F. moniliforme, M. indicus, and R. nigrican | Banana and plantain | |
9 | F. accuminatum, F. moniliforme, F. oxysporum, A. niger, A. flavus, A. fumigatus, M. indicus, M. racemosus, M. hiemalis, R. nigrican, and R. stolonifer | Palm fruit | |
10 | F. oxysporum, F. dimerum, A. niger, M. amphibiorum, M. racemosus, R. oligosporus, and R. stolonifer | Pepper | |
11 | Aspergillus niger | Allium sativum (garlic) | [50] |
12 | Aspergillus fumigatus | Allium cepa (onion) | |
13 | Alternaria sp., Mucor sp., and Rhizopus stolonifer | Solanum tuberosum (potato) | |
14 | Fusarium sp. | Zingiber officinale (ginger) | |
15 | Corynespora sp. | Solanaceae family, including tomato, chili, brinjal (eggplant), and capsicum (bell pepper) | |
16 | Rhizopus sp. | Tomatoes | |
17 | Fusarium sp. | Chili | |
18 | Aspergillus niger. Aspergillus flavus, and Aspergillus | Capsicum | |
19 | Rhizopus microsporus | Phaseolus vulgaris (common bean) | |
20 | Rhizopus sp. | Carrot | |
21 | Fusarium sp. | Radish, Luffa acutangular (ridge gourd), and sapota (sapodilla) | |
22 | Fusarium sp., Rhizopus sp., and Mucor sp. | Cauliflower | |
23 | Rhizopus sp. and Mucor sp. | Papaya |
BCA | Species/Subgroups Used | Crop | Pathogen | Refences |
---|---|---|---|---|
Antagonistic Yeast | Saccharomyces cerevisiae | Orange | Penicillium digitatum | [70] |
Yarrowia lipolytica | Apple | Penicillium expansum | [71] | |
Hannaella sinensis | Apple | Penicillium expansum | [72] | |
Candida oleophila | Grape | Penicillium digitatum | [73] | |
Candida saitoana | Apple | Botrytis cinerea | [74] | |
Pichia anomala | Apple | Botrytis cinerea | [75] | |
Wickerhamomyces anomalus | Cherry tomato | Botrytis cinerea | [76] | |
Wickerhamomyces anomalus | Tomato | Alternaria alternata | [77] | |
Aureobasidium pullulans S2 | Tomato | Botrytis cinerea | [78] | |
Candida sake | Pear | Penicillium expansum, Botrytis cinerea | [79] | |
Wickerhamomyces anomalus | Potato | A. tenuissima | [80] | |
Candida utilis | Tomato | Alternaria alternata | [81] | |
Debaryomyce hansenii | Strawberry | Rhizopus stolonifer | [82] | |
Pichia guilliermondii | Peach | Penicillium expansum | [83] | |
Meyerozyma caribbica | Kiwifruit | Penicillium expansum | [84] | |
Meyerozyma guilliermondii | Kiwifruit | Botryosphaeria dothidea and Diaporthe actinidiae | [85] | |
Antagonistic Bacteria | Bacillus subtilis | Apple | Penicillum expansum, Botrytis cinerea | [86] |
Pseudomonas fluorescens | Strawberry | Botrytis cinerea | [87] | |
Bacillus amyloliquefaciens | Peach | Monilinia fructicola | [88] | |
Cryptococcus podzolicus | Pear | Penicillium expansum | [89] | |
Lactobacillus plantarum | Apple | Penicillium expansum | [90] | |
Serratia rubidaea Mar61-01 | Strawberry | Botrytis cinerea | [91] | |
Essential Oils and Plant Extracts | Different essential oils | In vitro test | Penicillium italicum, Alternaria alternata | [92] |
Cinnamon oil, ginger oil | Mango | Colletotrichum gloeosporioides | [93] | |
Cinnamon and clove extract | Tomato | Alternaria alternata | [94] | |
Neem flower | Peach | Rhizopus stolonifer and Monilinia fructicola | [95] | |
Neem extract | Tomato | Diaporthe and Xylaria species | [96] | |
Neem leaf extract | Apple | Alternaria alternata, Aspergillus niger, and Penicillium expansum | [97] | |
Neem seed kernel extract | Plum fruit | Monilinia fructicola | [98] | |
Garlic extract | Mango | Lasiodiplodia theobromae | [10] | |
Thyme oil | Avocado | Lasiodiplodia theobromae and Colletotrichum gloeosporioides | [99] |
Boosting Reagents | Species or Subgroups of BCA Boosted | Pathogens Targeted | Specific Crops | Major Mechanisms of Action | References |
---|---|---|---|---|---|
Chitosan | P. anomalus | P. expansum | Grapes | Forms a protective film; induces plant defense; antimicrobial properties | [132] |
Chitosan | R. mucilaginosa | B. cinerea | Strawberries | Increases the abundance of numerous proteins, including ATP synthases and cytochrome C oxidases; reduces levels of ROS; increases abundance and secretion of (CTS2), which could be used to hydrolyze pathogen cell walls | [122] |
Phenylethanol | M. caribbica | A. alternata | Jujube fruit | Chelates metals; enhances BCA survival and biofilm production | [133] |
Ascorbic acid | S. pararoseus Y16 | P. expansum | Pears | Antioxidant; reduces oxidative stress; enhances BCA activity | [134] |
Ascorbic acid | P. carribbica | P. expansum | Apples | Antioxidant; reduces oxidative stress; enhances BCA activity | [113] |
Trehalose | S. pararoseus Y16 | A. carbonarius | Grapes | Cryoprotection and stabilization; osmotic stress response; antioxidant properties | [135] |
Trehalose | P. carribbica | R. stolonifer, B. cinerea | Strawberries | Cryoprotection and stabilization; osmotic stress response; antioxidant properties | [136] |
AOS | D. hansenii | P. expansum | Apples | Activates plant defense; enhances BCA efficacy | [137] |
Beta glucans | S. spartinae W9 | B. cinerea | Strawberries | Stimulates plant immune response; enhances BCA colonization | [138] |
Salicylic acid | P. membranaefaciens | M. fructicola | Peaches | Induces systemic acquired resistance (SAR); enhances BCA activity | [139] |
L-Methionine | P. membranaefaciens | B. cinerea | Pears | Nutritional support; enhance antagonistic activity and stress tolerance | [140] |
NH4Mo | P. membranaefaciens | B. cinerea | Pears | Direct antifungal activity by interfering with fungal enzyme systems | |
Cl2Ca | P. membranaefaciens and V. victoriae | Enhance stress tolerance in yeast; direct antifungal activity by disrupting fungal cell walls | |||
L-Serine | V. victoriae | Nutritional support for yeast growth; modulate yeast metabolism | |||
L-Tryptophan | V. victoriae | Nutritional support; precursor for antifungal metabolites; may induce plant resistance | |||
L-Cysteine | P. membranaefaciens and V. victoriae | P. expansum | Pears | Nutritional support; enhance stress tolerance; modulate sulfur metabolism | |
L-Leucine | P. membranaefaciens and V. victoriae | Nutritional support for yeast growth and protein synthesis | [140] | ||
NH4Mo | P.membranaefaciens | Direct antifungal activity by interfering with fungal enzyme systems | |||
Cl2Ca | P. membranaefaciens and V. victoriae | Enhance stress tolerance in yeast; direct antifungal activity by disrupting fungal cell walls | |||
Essential oils (peppermint, melon, and rose oils) | S. cerevisiae, C.tenuis | B. cinerea, R. stolonifera, and A. alternata | Tomatoes | Antimicrobial properties; disrupt pathogen cell membranes | [141] |
Nutrient additives (amino acids) | S.cerevisiae | - | In vitro | Provide essential nutrients; enhance BCA growth and colonization | [120] |
Calcium salts and food-grade antioxidants | R. glutinis, C. laurentii, and A. pullulans | P. expansum | Apples | Stimulation of yeast growth and inhibition of fungal pathogens | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edo, G.S.; Godana, E.A.; Ngolong Ngea, G.L.; Wang, K.; Yang, Q.; Zhang, H. Improving Biocontrol Potential of Antagonistic Yeasts Against Fungal Pathogen in Postharvest Fruits and Vegetables Through Application of Organic Enhancing Agents. Foods 2025, 14, 3075. https://doi.org/10.3390/foods14173075
Edo GS, Godana EA, Ngolong Ngea GL, Wang K, Yang Q, Zhang H. Improving Biocontrol Potential of Antagonistic Yeasts Against Fungal Pathogen in Postharvest Fruits and Vegetables Through Application of Organic Enhancing Agents. Foods. 2025; 14(17):3075. https://doi.org/10.3390/foods14173075
Chicago/Turabian StyleEdo, Gerefa Sefu, Esa Abiso Godana, Guillaume Legrand Ngolong Ngea, Kaili Wang, Qiya Yang, and Hongyin Zhang. 2025. "Improving Biocontrol Potential of Antagonistic Yeasts Against Fungal Pathogen in Postharvest Fruits and Vegetables Through Application of Organic Enhancing Agents" Foods 14, no. 17: 3075. https://doi.org/10.3390/foods14173075
APA StyleEdo, G. S., Godana, E. A., Ngolong Ngea, G. L., Wang, K., Yang, Q., & Zhang, H. (2025). Improving Biocontrol Potential of Antagonistic Yeasts Against Fungal Pathogen in Postharvest Fruits and Vegetables Through Application of Organic Enhancing Agents. Foods, 14(17), 3075. https://doi.org/10.3390/foods14173075