Chemical Composition and Antioxidant Properties of Peels of Five Pumpkin (Cucurbita sp.) Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Proximate Analysis
2.3. Sugar Content
2.4. Determination of Mineral Components
2.5. Determination of Amino Acid Content
2.6. Vitamin Content
2.6.1. Determination of B-Group Vitamins
2.6.2. Determination of Vitamin C
2.6.3. Determination of Vitamins E, K and β-Carotene
2.7. Total Phenolic Content
2.8. Total Flavonoid Content
2.9. Determination of Antioxidant Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Amino Acid Composition
3.3. Mineral Contents
3.4. Vitamin Content in the Peels of the Examined Pumpkin Species
3.5. Polyphenol Content and Antioxidant Properties of Pumpkin Peels
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, A.; Kausar, T.; Din, A.; Murtaza, M.A.; Jamil, M.A.; Noreen, S.; ur Rehman, H.; Hassan Shabbir, H.; Ramzan, M.A. Determination of Total Phenolic, Flavonoid, Carotenoid and Mineral contents in peel, flesh and seeds of Pumpkin (Cucurbita Maxima). J. Food Process. Preserv. 2021, 45, e15542. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, L.J.; Yáñez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S. Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2019, 86, 109–117. [Google Scholar] [CrossRef]
- Dhiman, A.K.; Sharma, K.D.; Surekha, A. Functional constituents and processing of pumpkin: A review. J. Food Sci. Technol. 2009, 46, 411–417. [Google Scholar]
- Song, J.; Yang, Q.; Huang, W.; Xiao, Y.; Li, D.; Liu, C. Optimization of Trans Lutein from Pumpkin (Cucurbita Moschata) Peel by Ultrasound-Assisted Extraction. Food Bioprod. Process. 2018, 107, 104–112. [Google Scholar] [CrossRef]
- Cuco, R.P.; Massa, T.B.; Postaue, N.; Cardozo-Filho, L.; da Silva, C.; Iwassa, I.J. Oil extraction from structured bed of pumpkin seeds and peel using compressed propane as solvent. J. Supercrit. Fluids 2019, 152, 104568. [Google Scholar] [CrossRef]
- Hartmann, G.L.; Marconato, A.M.; Santos, M.M.R.; do Amaral, L.A.; dos Santos, E.F.; Novello, D. Addition of pumpkin peel flour affect physicochemical and sensory characteristics of bovine burger. Int. J. Regul. Gov. 2020, 8, 254–263. [Google Scholar] [CrossRef]
- Nuerbiya, Y.; Ayinuer, R.; Abdulla, A. Optimization of extraction pigment from pumpkin skin product’s stability. Food Ferment. Ind. 2014, 12, 216–222. [Google Scholar]
- Bai, Y.; Zhang, M.; Atluri, S.C.; Chen, J.; Gilbert, R.G. Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocoll. 2020, 106, 105894. [Google Scholar] [CrossRef]
- Salami, A.; Asefi, N.; Kenari, R.E.; Gharekhani, M. Addition of pumpkin peel extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. J. Food Meas. Charact. 2020, 14, 2433–2442. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Farzaei, M.H.; Abdolghaffari, A.H.; Rahimi, R.; Samadi, N.; Heidari, M.; Esfandyari, M.; Baeeri, M.; Hassanzadeh, G.; Abdollahi, M.; et al. Evaluation of phytochemicals, antioxidant and burn wound healing activities of Cucurbita moschata Duchesne fruit peel. Iran. J. Basic Med. Sci. 2017, 20, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.I.; Lee, C.H.; Song, G.S.; Kim, Y.S. Characterization of the pectic polysaccharides from pumpkin peel. LWT-Food Sci. Technol. 2006, 39, 554–561. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Arlington, VA, USA, 1990; Volume 2. [Google Scholar]
- Wang, C.C.; Chang, S.C.; Chen, B.H. Chromatographic determination of polysaccharides in Lycium barbarum Linnaeus. Food Chem. 2009, 116, 595–603. [Google Scholar] [CrossRef]
- Green, F.; Clausen, C.A.; Highley, T.L. Adaptation of the Nelson-Somogyi reducing-sugarassay to a microassay using microtiter plates. Anal. Biochem. 1989, 182, 197–199. [Google Scholar] [CrossRef]
- Abdualrahman, M.A.Y.; Ali, A.O.; Elkhalifa, E.A.; Ma, H. Chemical, minerals, fatty acid and amino acid compositions of sudanese traditional Khemiss-Tweria supplemented with peanut and Bambara ground nuts. Am. J. Food Technol. 2015, 10, 100–108. [Google Scholar] [CrossRef]
- Ekpete, O.A.; Edori, O.S.; Fubara, E.P. Proximate and mineral composition of some Nigerian fruits. Br. J. Appl. Sci. Technol. 2013, 3, 1447–1454. [Google Scholar] [CrossRef]
- Yadav, M.; Jain, S.; Tomar, R.; Prasad, G.B.K.S.; Yadav, H. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 2010, 23, 184–190. [Google Scholar] [CrossRef]
- Sami, R.; Yang, L.; Baokun, Q.; Shengnan, W.; Qiaozhi, Z.; Feifei, H.; Ma, Y.; Jing, J.; Jiang, L. HPLC analysis of water-soluble vitamins (B2, B3, B6, B12, and C) and fat-soluble vitamins (E, K, D, A, and β-Carotene) of Okra (Abelmoschus esculentus). J. Chem. 2014, 2014, 831357. [Google Scholar] [CrossRef]
- Hazra, S.K.; Sarkar, T.; Salauddin, M.; Sheikh, H.I.; Pati, S.; Chakraborty, R. Characterization of phytochemicals, minerals and in vitro medicinal activities of bael (Aeglemarmelos L.) pulp and differently dried edible leathers. Heliyon 2020, 6, 05382. [Google Scholar] [CrossRef]
- Katsa, M.; Papalouka, N.; Mavrogianni, T.; Papagiannopoulou, I.; Kostakis, M.; Proestos, C.; Thomaidis, N.S. Comparative study for the determination of fat-soluble vitamins in rice cereal baby foods using HPLC-DAD and UHPLC-APCI-MS/MS. Foods 2021, 10, 648. [Google Scholar] [CrossRef]
- Melfi, M.T.; Nardiello, D.; Cicco, N.; Candido, V.; Centonze, D. Simultaneous determination of water- and fat-soluble vitamins,lycopene and beta-carotene in tomato samples and pharmaceutical formulations: Double injection single run by reverse-phase liquid chromatography with UV detection. J. Food Compos. Anal. 2018, 70, 9–17. [Google Scholar] [CrossRef]
- Hagos, M.; Redi-Abshiro, M.; Chandravanshi, B.S.; Yaya, E.E. Development of analytical methods for determination of β-carotene in pumpkin (Cucurbita maxima) flesh, peel, and seed powder samples. Int. J. Anal. Chem. 2022, 2022, 9363692. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamun, M.Z.U.; Rashid, M.M.; Begum, M.; Musarrat, M.; Haq, M.A.; Sathee, R.A. Apprisal of vitamin D3 concentration in dietary supplement marketed in bangladesh using HPLC. Orient. J. Chem. 2022, 38, 1440–1444. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Mazza, G. Assessing Antioxidant and Prooxidant Activities of Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Matejić, J.; Džamić, A.; Mihajilov-Krstev, T.; Randelović, V.; Krivošej, Z.; Marin, P. Total phenolic content, flavonoid concentration, antioxidant and antimicrobial activity of methanol extracts from three Seseli L. taxa. Open Life Sci. 2012, 7, 1116–1122. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Benzie, I.F.F.; Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/ antioxidant power assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Królczyk, J.B. Optimization of extraction conditions for the antioxidant potential of different pumpkin varieties (Cucurbita maxima). Sustainability 2020, 12, 1305. [Google Scholar] [CrossRef]
- de Boer, J.; Aiking, H. Strategies towards healthy and sustainable protein consumption: A transition framework at the levels of diets, dishes, and dish ingredients. Food Qual. Prefer. 2019, 73, 171–181. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kim, E.J.; Kim, Y.-N.; Choi Ch Lee, B.-H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012, 6, 21–27. [Google Scholar] [CrossRef]
- Amin, M.Z.; Islam, T.; Mostofa, F.; Uddin, M.J.; Rahman, M.M.; Satter, M.A. Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (Cucurbita maxima Linn.). Heliyon 2019, 5, e02994. [Google Scholar] [CrossRef] [PubMed]
- Adesina, A.J.; Adeyeye, E.I. Amino acid profile of three non-conventional leafy vegetables: Cucurbita maxima, Amaranthus viridis and Basella alba, consumed in Ekiti State, Nigeria. Int. J. Appl. Pharm. Sci. 2013, 3, 1–10. [Google Scholar]
- Rao, K.S.; Dominic, R.; Singh, K.; Kaluwin, C.; Rivett, D.E.; Jones, G.P. Lipid, fatty acid, amino acid, and mineral compositions of five edible plant leaves. J. Agric. Food Chem. 1990, 38, 2137–2139. [Google Scholar] [CrossRef]
- Jahan, F.; Islam, M.B.; Moulick, S.P.; Al Bashera, M.; Hasan, M.S.; Tasnim, N.; Saha, T.; Boby, F.; Waliullah, M.; Saha, A.K.; et al. Nutritional characterization and antioxidant properties of various edible portions of Cucurbita maxima: A potential source of nutraceuticals. Heliyon 2023, 9, e16628. [Google Scholar] [CrossRef]
- Achilonu, M.C.; Nwafor, I.C.; Umesiobi, D.O.; Sedibe, M.M. Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well-being of poultry species. J. Anim. Physiol. Anim. Nutr. 2017, 102, 5–16. [Google Scholar] [CrossRef]
- Howard, B.V.; Aragaki, A.K.; Tinker, L.F.; Allison, M.; Hingle, M.D.; Johnson, K.C.; Manson, J.E.; Shadyab, A.H.; Shikany, J.M.; Snetselaar, L.G.; et al. A low-fat dietary pattern and diabetes: A secondary analysis from the women’s health initiative dietary modification trial. Diabetes Care 2018, 41, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.; Pianta, T.J.; Pussell, B.A.; Endre, Z.; Kiernan, M.C.; Krishnan, A.V. Potassium control in chronic kidney disease: Implications for neuromuscular function. Intern. Med. J. 2019, 49, 817–825. [Google Scholar] [CrossRef]
- Dogan, M.F.; Yildiz, O.; Arslan, S.O.; Ulusoy, K.G. Potassium channels in vascular smooth muscle: A pathophysiological and pharmacological perspective. Fundam. Clin. Pharmacol. 2019, 33, 504–523. [Google Scholar] [CrossRef] [PubMed]
- Kajanus, J.; Antonsson, T.; Carlsson, L.; Jurva, U.; Pettersen, A.; Sundell, J.; Inghardt, T. Potassium channel blocking 1,2-bis(aryl) ethane-1,2-diamines active as antiarrhythmic agents. Bioorg. Med. Chem. Lett. 2019, 29, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Oyeyinka, B.O.; Afolayan, A.J. Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) fruit compartments. Plants 2019, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.F.; O’Dowd, R.; Romano, T.; Muhlhausler, B.S.; Moritz, K.M.; Wlodek, M.E. Reducing pup litter size alters early postnatal calcium homeostasis and programs adverse adult cardiovascular and bone health in male rats. Nutrients 2019, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ramaswamy, H.S.; Li, J.; Gao, Y.; Yangi, C.; Zhang, X.; Irshad, A.; Ren, Y. Nutrient evaluation of the seed, pulp, flesh, and peel of spaghetti squash. Food Sci. Technol. 2021, 42, e70920. [Google Scholar] [CrossRef]
- Dorafshani, M.M.; Nikravesh, M.R.; Jalali, M.; Soukhtanloo, M. Effect of drinking water nitrates and vitamin C on rat liver enzymes and oxidative markers. Iran. Red. Crescent Med. J. 2018, 20, e83094. [Google Scholar] [CrossRef]
- Bouis, H. Reducing mineral and vitamin deficiencies through biofortification: Progress under harvestplus. Indian J. Plant Genet. Resour. 2016, 29, 234–236. [Google Scholar] [CrossRef]
- Dissanayake, D.M.R.H.; Deraniyagala, S.A.; Hettiarachchi, C.M.; Thiripuranathar, G. The study of antioxidant and antibacterial properties of skin, seeds and leaves of the Sri Lankan variety of pumpkin. IOSR J. Pharm. 2018, 8, 43–48. [Google Scholar]
- Wanna, C. Free Radical Scavenging Capacity and Total Phenolic Contents in Peel and Fleshy Crude Extracts of Selected Vegetables. Pharmacogn. J. 2019, 11, 1351–1358. [Google Scholar] [CrossRef]
- Asif, M.; Raza Naqvi, S.A.; Sherazi, T.A.; Ahmad, M.; Zahoor, A.F.; Shahzad, S.A.; Hussain, Z.; Mahmood, H.; Mahmood, N. Antioxidant, antibacterial and antiproliferative activities of pumpkin (cucurbit) peel and puree extracts-an in vitro study. Pak. J. Pharm. Sci. 2017, 30, 1327–1334. [Google Scholar] [PubMed]
Factors | C. maxima | C. pepo | C. moschata | C. ficifolia | C. argyrosperma |
---|---|---|---|---|---|
Moisture | 88.9 ± 0.015 b | 88.7 ± 0.032 c | 88.5 ± 0.025 d | 89.2 ± 0.051 a | 89.0 ± 0.093 b |
Ash | 7.46 ± 0.042 a | 7.28 ± 0.039 b | 7.13 ± 0.028 c | 6.76 ± 0.024 e | 6.93 ± 0.056 d |
Fat | 1.59 ± 0.006 a | 1.44 ± 0.009 b | 1.56 ± 0.030 a | 1.48 ± 0.014 b | 1.35 ± 0.025 c |
Protein | 14.82 ± 0.06 a | 13.28 ± 0.06 c | 14.26 ± 0.08 b | 12.35 ± 0.05 e | 12.79 ± 0.04 d |
Fiber | 15.16 ± 0.05 b | 12.68 ± 0.04 e | 19.04 ± 0.07 a | 13.68 ± 0.1 d | 14.48 ± 0.16 c |
Total Sugar | 8.21 ± 0.04 c | 9.07 ± 0.04 a | 9.17 ± 0.05 b | 7.48 ± 0.06 e | 7.82 ± 0.05 d |
Reducing sugar | 7.64 ± 0.09 c | 8.13 ± 0.05 b | 8.48 ± 0.04 a | 6.29 ± 0.06 e | 6.54 ± 0.04 d |
Amino acid | C. maxima | C. pepo | C. moschata | C. ficifolia | C. argyrosperma |
---|---|---|---|---|---|
Alanine | 1.50 ± 0.03 a | 0.74 ± 0.01 b | 0.57 ± 0.03 c | 0.78 ± 0.02 b | 0.60 ± 0.02 c |
Arginine | 0.53 ± 0.06 b | 1.15 ± 0.03 a | 0.25 ± 0.02 c | 0.25 ± 0.02 c | 0.23 ± 0.01 c |
Aspartic acid | 2.41 ± 0.03 c | 1.60 ± 0.03 d | 2.84 ± 0.02 b | 3.01 ± 0.04 a | 2.83 ± 0.02 b |
Glutamic acid | 4.15 ± 0.05 a | 2.00 ± 0.03 d | 2.24 ± 0.02 c | 2.36 ± 0.03 b | 2.24 ± 0.02 c |
Glycine | 0.50 ± 0.01 c | 0.25 ± 0.02 d | 0.89 ± 0.01 a | 0.80 ± 0.02 b | 0.87 ± 0.02 a |
Histidine | 1.60 ± 0.03 a | 0.78 ± 0.02 d | 1.04 ± 0.02 c | 1.13 ± 0.02 b | 1.10 ± 0.02 bc |
Isoleucine | 1.67 ± 0.06 a | 0.61 ± 0.02 b | 0.55 ± 0.05 b | 0.45 ± 0.02 c | 0.57 ± 0.03 b |
Leucine | 1.74 ± 0.05 a | 0.64 ± 0.01 c | 0.88 ± 0.02 b | 0.93 ± 0.02 b | 0.88 ± 0.01 b |
Lysine | 0.98 ± 0.03 a | 0.47 ± 0.01 d | 0.73 ± 0.02 b | 0.67 ± 0.02 c | 0.72 ± 0.02 bc |
Methionine | 0.28 ± 0.03 a | 0.26 ± 0.01 b | 0.19 ± 0.01 c | 0.16 ± 0.01 c | 0.18 ± 0.02 c |
Phenylalanine | 0.96 ± 0.03 a | 0.42 ± 0.01 c | 0.65 ± 0.01 b | 0.70 ± 0.02 b | 0.67 ± 0.01 b |
Proline | 1.24 ± 0.02 a | 0.38 ± 0.01 d | 1.12 ± 0.03 bc | 1.05 ± 0.01 c | 1.17 ± 0.03 b |
Serine | 0.77 ± 0.03 a | 0.45 ± 0.01 d | 0.59 ± 0.02 bc | 0.54 ± 0.02 c | 0.63 ± 0.02 b |
Threonine | 0.65 ± 0.01 a | 0.29 ± 0.02 d | 0.35 ± 0.01 bc | 0.30 ± 0.02 cd | 0.37 ± 0.01 b |
Tyrosine | 0.47 ± 0.02 a | 0.26 ± 0.01 c | 0.29 ± 0.02 bc | 0.24 ± 0.01 c | 0.32 ± 0.02 b |
Valine | 1.31 ± 0.02 a | 0.59 ± 0.01 c | 0.73 ± 0.02 b | 0.77 ± 0.02 b | 0.54 ± 0.02 c |
Total | 20.76 | 10.89 | 13.91 | 14.14 | 13.92 |
Minerals | C. maxima | C. pepo | C. moschata | C. ficifolia | C. argyrosperma |
---|---|---|---|---|---|
Ca | 1.47 ± 0.03 bc | 1.36 ± 0.03 d | 1.50 ± 0.06 b | 1.74 ± 0.04 a | 1.38 ± 0.03 cd |
Mg | 3.47 ± 0.07 c | 3.74 ± 0.07 b | 4.01 ± 0.02 a | 3.14 ± 0.05 d | 3.26 ± 0.06 d |
Na | 9.46 ± 0.03 c | 10.57 ± 0.36 ab | 11.07 ± 0.06 a | 10.33 ± 0.09 b | 10.69 ± 0.18 ab |
K | 698.24 ± 1.63 c | 749.03 ± 6.27 b | 818.71 ± 5.28 a | 715.17 ± 2.86 c | 695.09 ± 4.31 c |
P | 1.52 ± 0.03 bc | 1.42 ± 0.02 d | 1.58 ± 0.03 b | 1.74 ± 0.04 a | 1.46 ± 0.035 cd |
Fe | 4.55 ± 0.1 e | 5.66 ± 0.05 c | 6.55 ± 0.12 a | 6.22 ± 0.1 b | 4.27 ± 0.04 d |
Zn | 0.17 ± 0.005 cd | 0.16 ± 0.004 d | 0.23 ± 0.017 b | 0.27 ± 0.01 a | 0.19 ± 0.005 c |
Mn | 0.35 ± 0.009 d | 0.45 ± 0.01 c | 0.50 ± 0.01 b | 0.56 ± 0.03 a | 0.52 ± 0.006 b |
Cu | 0.034 ± 0.003 bc | 0.043 ± 0.004 a | 0.026 ± 0.003 c | 0.043 ± 0.004 a | 0.036 ± 0.001 ab |
Vitamin | C. maxima | C. pepo | C. moschata | C. ficifolia | C. argyrosperma |
---|---|---|---|---|---|
β-carotene | 0.481 ± 0.007 b | 0.413 ± 0.002 c | 0.504 ± 0.006 a | 0.375 ± 0.009 d | 0.331 ± 0.006 e |
B1 | 0.070 ± 0.005 b | 0.089 ± 0.004 a | 0.059 ± 0.003 b | 0.040 ± 0.005 c | 0.082 ± 0.004 a |
B2 | 0.14 ± 0.013 c | 0.18 ± 0.006 b | 0.125 ± 0.005 c | 0.227 ± 0.012 a | 0.203 ± 0.012 a |
B3 | 0.71 ± 0.015 c | 0.72 ± 0.006 bc | 0.65 ± 0.01 d | 0.75 ± 0.015 b | 0.81 ± 0.015 a |
B5 | 0.282 ± 0.003 d | 0.298 ± 0.001 c | 0.249 ± 0.002 e | 0.310 ± 0.002 b | 0.320 ± 0.003 a |
B6 | 0.055 ± 0.002 c | 0.064 ± 0.002 b | 0.051 ± 0.0015 c | 0.067 ± 0.001 b | 0.071 ± 0.0021 a |
B9 | 0.019 ± 0.001 b | 0.015 ± 0.002 c | 0.022 ± 0.001 ab | 0.025 ± 0.001 a | 0.023 ± 0.002 ab |
E | 0.91 ± 0.04 cd | 1.06 ± 0.05 b | 0.97 ± 0.02 c | 1.23 ± 0.04 a | 0.85 ± 0.03 d |
K | 0.0017 ± 0.001 a | 0.001 ± 0.0005 a | 0.003 ± 0.001 a | n.d. | n.d. |
C | 10.080 ± 0.033 a | 9.576 ± 0.028 c | 9.316 ± 0.078 d | 8.475 ± 0.043 e | 9.862 ± 0.035 b |
Antioxidants | C. maxima | C. pepo | C. moschata | C. ficifolia | C. argyrosperma |
---|---|---|---|---|---|
Total phenolic (mg GAE 100 g−1 DW) | 97.60 ± 0.09 c | 88.75 ± 0.07 d | 99.24 ± 0.07 a | 82.30 ± 0.14 e | 98.73 ± 0.11 b |
Total flavonoids (mg QE 100 g−1 DW) | 6.84 ± 0.09 c | 6.12 ± 0.10 e | 7.42 ± 0.07 b | 6.54 ± 0.05 d | 7.91 ± 0.05 a |
FRAP (µmol Fe (II) 100 g−1 DW) | 65.84 ± 0.13 c | 54.52 ± 0.12 e | 69.25 ± 0.10 b | 62.48 ± 0.24 d | 76.74 ± 0.70 a |
DPPH (µmol TE 100 g−1 DW) | 18.82 ± 0.12 c | 14.72 ± 0.06 e | 20.37 ± 0.06 b | 17.52 ± 0.07 d | 24.62 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stryjecka, M. Chemical Composition and Antioxidant Properties of Peels of Five Pumpkin (Cucurbita sp.) Species. Foods 2025, 14, 2023. https://doi.org/10.3390/foods14122023
Stryjecka M. Chemical Composition and Antioxidant Properties of Peels of Five Pumpkin (Cucurbita sp.) Species. Foods. 2025; 14(12):2023. https://doi.org/10.3390/foods14122023
Chicago/Turabian StyleStryjecka, Małgorzata. 2025. "Chemical Composition and Antioxidant Properties of Peels of Five Pumpkin (Cucurbita sp.) Species" Foods 14, no. 12: 2023. https://doi.org/10.3390/foods14122023
APA StyleStryjecka, M. (2025). Chemical Composition and Antioxidant Properties of Peels of Five Pumpkin (Cucurbita sp.) Species. Foods, 14(12), 2023. https://doi.org/10.3390/foods14122023