Pressurized Liquid Extraction of Bioactive Compounds from Seeds and Sprouts Trigonella foenum-graecum L. (Fenugreek): Enhanced Antioxidant and Anti-Hyperglycemic Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Raw Fenugreek Seeds
2.3. Determination of the Concentration of Aloe Vera Gel and Germination Time
2.4. Germinated Fenugreek Seeds
2.5. Pressurized Liquid n-Propane Extraction
2.6. Characterization of the Extracts
2.6.1. Antioxidant Activity (ABTS•+ Method)
2.6.2. Determination of Total Phenolic Compounds (TPCs)
2.6.3. UHPLC-ESI-MS Profile of Phenolic Compounds
2.6.4. β-Carotene Content
2.6.5. GC–MS Analysis
2.7. In Vitro Evaluation of Cancer Cell Lines and Cell Viability Evaluation Using the MTT Colorimetric Method
2.8. Enzyme Inhibition Analysis of α-Glucosidase and α-Amylase
2.9. Statistical Analysis
3. Results and Discussion
3.1. Pressurized Liquid Propane Extraction
3.2. Chemical Composition of Fenugreek Seed Extracts
3.2.1. Content of Fatty Acids and Bioactive Compounds in Fenugreek Seed Extracts
Fatty Acids (%) | FGGW | FGGA | FGS/GW 2:1 | FGS/GW 1:2 | FGS/GA 2:1 | FGS/GA 1:2 | FGS | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Palmitic acid | 7.8 | ± | 0.1 | d | 8.3 | ± | 0.1 | cd | 9.8 | ± | 0.1 | bc | 9.2 | ± | 0.2 | bc | 9.2 | ± | 0.0 | ab | 10.8 | ± | 0.7 | a | 11.0 | ± | 0.2 | a |
Stearic acid | 5.2 | ± | 0.0 | b | 5.4 | ± | 0.1 | ab | 5.2 | ± | 0.0 | b | 5.1 | ± | 0.0 | b | 5.2 | ± | 0.1 | b | 5.3 | ± | 0.0 | b | 5.6 | ± | 0.1 | a |
Oleic acid | 14.8 | ± | 0.2 | b | 14.8 | ± | 0.4 | b | 15.4 | ± | 0.0 | b | 15.1 | ± | 0.0 | b | 15.1 | ± | 0.0 | b | 15.4 | ± | 0.1 | b | 17.4 | ± | 0.3 | a |
Linoleic acid | 43.8 | ± | 0.0 | a | 43.7 | ± | 0.2 | a | 41.5 | ± | 0.2 | bc | 42.6 | ± | 0.1 | ab | 43.1 | ± | 0.1 | a | 41.4 | ± | 0.3 | bc | 40.5 | ± | 0.9 | c |
Linolenic acid | 25.3 | ± | 0.2 | ab | 24.9 | ± | 0.2 | b | 25.8 | ± | 0.3 | c | 25.3 | ± | 0.1 | ab | 24.7 | ± | 0.1 | b | 24.5 | ± | 0.2 | b | 23.0 | ± | 0.3 | c |
Heneicosanoic acid | 1.9 | ± | 0.1 | a | 1.7 | ± | 0.3 | a | 1.7 | ± | 0.0 | a | 1.7 | ± | 0.0 | a | 1.7 | ± | 0.1 | a | 1.7 | ± | 0.0 | a | 1.8 | ± | 0.0 | a |
Behenic acid | 1.2 | ± | 0.2 | a | 1.3 | ± | 0.4 | a | 0.7 | ± | 0.0 | a | 1.1 | ± | 0.0 | a | 1.0 | ± | 0.0 | a | 1.0 | ± | 0.0 | a | 0.7 | ± | 0.0 | a |
MUFA1 | 14.8 | ± | 0.2 | b | 14.8 | ± | 0.4 | b | 15.4 | ± | 0.0 | b | 15.1 | ± | 0.0 | b | 15.1 | ± | 0.0 | b | 15.4 | ± | 0.1 | b | 17.4 | ± | 0.3 | a |
PUFA2 | 69.1 | ± | 0.2 | a | 68.6 | ± | 0.1 | ab | 67.2 | ± | 0.0 | c | 67.8 | ± | 0.2 | bc | 67.8 | ± | 0.2 | bc | 65.9 | ± | 0.5 | d | 63.5 | ± | 0.5 | e |
SFA3 | 16.1 | ± | 0.0 | b | 16.6 | ± | 0.4 | b | 17.3 | ± | 0.1 | b | 17.1 | ± | 0.2 | b | 17.1 | ± | 0.2 | b | 18.7 | ± | 0.7 | a | 19.1 | ± | 0.3 | a |
Bioactive compounds (mg 100 g−1 Extract) | ||||||||||||||||||||||||||||
Squalene | 146.7 | ± | 5.6 | a | 132.0 | ± | 3.4 | ab | 98.8 | ± | 8.1 | b | 101.7 | ± | 15.6 | c | 114.5 | ± | 4.2 | bc | 88.4 | ± | 1.7 | c | 102.8 | ± | 4.5 | bc |
α-tocopherol | 287.7 | ± | 11.7 | a | 296.0 | ± | 4.9 | a | 244.6 | ± | 2.4 | b | 271.8 | ± | 12.6 | ab | 273.3 | ± | 3.5 | ab | 253.1 | ± | 19.5 | ab | 99.4 | ± | 18.3 | c |
CampEsterol | 109.8 | ± | 6.4 | ab | 92.4 | ± | 3.4 | b | 144.7 | ± | 13.5 | a | 93.9 | ± | 1.2 | b | 131.9 | ± | 18.5 | ab | 110.8 | ± | 1.3 | ab | 114.5 | ± | 12.1 | ab |
β-Sitosterol | 683.3 | ± | 5.5 | a | 660.9 | ± | 11.5 | bc | 17.2 | ± | 17.2 | b | 624.4 | ± | 31.8 | bc | 644.5 | ± | 9.2 | bc | 627.8 | ± | 2.1 | bc | 522.4 | ± | 18.1 | c |
3.2.2. Free Fatty Acids in the Fenugreek Seed Extracts
3.2.3. α-Tocopherol Content in Fenugreek Seed Extracts
3.2.4. Content of Phytosterols in Fenugreek Seed Extracts
3.2.5. Profile of Phenolic Compounds
3.2.6. Total Phenolic Compounds (TPCs)
3.2.7. β-Carotene Content
3.2.8. Radical Scavenging Activity (ABTS•+)
3.3. Principal Component Analysis
3.4. Increases in Bioactive Compounds Through the Germination Process and the Use of an Aloe Vera Elicitor
3.5. In Vitro Estimation of α-Amylase and α-Glucosidase Inhibitory Activity
3.6. In Vitro Evaluation of Anticancer Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FGGW | Fenugreek seed extract germinated in water |
FGGA | Fenugreek seed extract germinated in Aloe vera |
FGS/GW 2:1 | Extract from a mixture of raw fenugreek seeds and germinated seeds in water in a 2:1 ratio |
FGS/GW 1:2 | Extract from a mixture of raw fenugreek seeds and germinated seeds in water in a 1:2 ratio |
FGS/GA 2:1 | Extract from a mixture of raw fenugreek seeds and germinated seeds in Aloe vera in a 2:1 ratio |
FGS/GA 1:2 | Extract from a mixture of raw fenugreek seeds and germinated seeds in Aloe vera in a 1:2 ratio |
FGS | Raw fenugreek seed extract (ungerminated) |
TPCs | Total phenolic compounds |
ABTS | 2,2′-Azinobis-(3-Ethylbenzthiazolin-6-Sulfonic Acid |
PUFA | Polyunsaturated fatty acid |
MUFA | Monounsaturated fatty acid |
SFA | Saturated fatty acid |
References
- Singh, S.; Chaurasia, P.K.; Bharati, S.L. Hypoglycemic and Hypocholesterolemic Properties of Fenugreek: A Comprehensive Assessment. Appl. Food Res. 2023, 3, 100311. [Google Scholar] [CrossRef]
- Zandi, P.; Basu, S.K.; Cetzal-Ix, W.; Kordrostami, M.; Chalaras, S.K.; Khatibai, L.B. Fenugreek (Trigonella foenum-graecum L.): An Important Medicinal and Aromatic Crop. In Active Ingredients from Aromatic and Medicinal Plants; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Tarasevičienė, Ž.; Viršilė, A.; Danilčenko, H.; Duchovskis, P.; Paulauskienė, A.; Gajewski, M. Effects of Germination Time on the Antioxidant Properties of Edible Seeds. CyTA J. Food 2019, 17, 447–454. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Sun, P.; Su, W.; Qu, Z.; Dong, Y.; Du, S.; Yu, X. Effect of Germination Pretreatment on the Physicochemical Properties and Lipid Concomitants of Flaxseed Oil. RSC Adv. 2023, 13, 3306–3316. [Google Scholar] [CrossRef] [PubMed]
- Salah, H.A.; Elsayed, A.M.; Bassuiny, R.I.; Abdel-Aty, A.M.; Mohamed, S.A. Improvement of Phenolic Profile and Biological Activities of Wild Mustard Sprouts. Sci. Rep. 2024, 14, 10528. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Kim, J.-G.; Lee, Y.-S.; Kang, I.-J. Comparison of the Chemical Components of Buckwheat Seed and Sprout. J. Korean Soc. Food Sci. Nutr. 2005, 34, 81–86. [Google Scholar] [CrossRef]
- khan, F.; Negi, K.; Kumar, T. Effect of Sprouted Fenugreek Seeds on Various Diseases: A Review. J. Diabetes Metab. Disord. Control 2018, 5, 119–125. [Google Scholar] [CrossRef]
- Ojha, P.; Prajapati, P.; Karki, T.B. Soaking and Germination Effect on Bioactive Components of Fenugreek Seeds (Trigonella Foenum Graecum L.). Int. Food Res. J. 2018, 25, 690–694. [Google Scholar]
- Hęś, M.; Dziedzic, K.; Górecka, D.; Jędrusek-Golińska, A.; Gujska, E. Aloe Vera (L.) Webb.: Natural Sources of Antioxidants—A Review. Plant Foods Hum. Nutr. 2019, 74, 255–265. [Google Scholar] [CrossRef]
- Ashraf, W.; Rehman, A.; Hussain, A.; Karim, A.; Sharif, H.R.; Siddiquy, M.; Lianfu, Z. Optimization of Extraction Process and Estimation of Flavonoids from Fenugreek Using Green Extracting Deep Eutectic Solvents Coupled with Ultrasonication. Food Bioprocess Tech. 2024, 17, 887–903. [Google Scholar] [CrossRef]
- Niknam, R.; Mousavi, M.; Kiani, H. New Studies on the Galactomannan Extracted from Trigonella foenum-graecum (Fenugreek) Seed: Effect of Subsequent Use of Ultrasound and Microwave on the Physicochemical and Rheological Properties. Food Bioprocess Tech. 2020, 13, 882–900. [Google Scholar] [CrossRef]
- Bogdanovic, A.; Tadic, V.; Petrovic, S.; Skala, D. Supercritical CO2 Extraction of Steroidal Sapogenins from Fenugreek (Trigonella foenum-graecum L.)Seed. Chem. Ind. Chem. Eng. Q. 2020, 26, 171–182. [Google Scholar] [CrossRef]
- Bogdanovic, A.; Tadic, V.; Stamenic, M.; Petrovic, S.; Skala, D. Supercritical Carbon Dioxide Extraction of Trigonella foenum-graecum L. Seeds: Process Optimization Using Response Surface Methodology. J. Supercrit. Fluids 2016, 107, 44–50. [Google Scholar] [CrossRef]
- de Menezes Rodrigues, G.; Cardozo-Filho, L.; da Silva, C. Pressurized Liquid Extraction of Oil from Soybean Seeds. Can. J. Chem. Eng. 2017, 95, 2383–2389. [Google Scholar] [CrossRef]
- Jaski, J.M.; Abrantes, K.K.B.; Zanqui, A.B.; Stevanato, N.; da Silva, C.; Barão, C.E.; Bonfim-Rocha, L.; Cardozo-Filho, L. Simultaneous Extraction of Sunflower Oil and Active Compounds from Olive Leaves Using Pressurized Propane. Curr. Res. Food Sci. 2022, 5, 531–544. [Google Scholar] [CrossRef]
- Trentini, C.P.; Santos, K.A.; Antonio da Silva, E.; Garcia, V.A.d.S.; Cardozo-Filho, L.; da Silva, C. Oil Extraction from Macauba Pulp Using Compressed Propane. J. Supercrit. Fluids 2017, 126, 72–78. [Google Scholar] [CrossRef]
- Pellegrini, N.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F.; Serafini, M. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: New York, NY, USA, 1999; pp. 152–178. [Google Scholar]
- Ogawa, M.; Maia, E.L.; Fernandes, A.C.; Nunes, M.L.; Oliveira, M.E.B.d.; Freitas, S.T. Resíduos Do Beneficiamento Do Camarão Cultivado: Obtenção de Pigmentos Carotenóides. Ciência Tecnol. Aliment. 2007, 27, 333–337. [Google Scholar] [CrossRef]
- Santos, R.M.; Santos, A.O.; Sussuchi, E.M.; Nascimento, J.S.; Lima, Á.S.; Freitas, L.S. Pyrolysis of Mangaba Seed: Production and Characterization of Bio-Oil. Bioresour. Technol. 2015, 196, 43–48. [Google Scholar] [CrossRef]
- Santos, R.M.; Bispo, D.F.; Granja, H.S.; Sussuchi, E.M.; Ramos, A.L.D.; Freitas, L.S. Pyrolysis of the Caupi Bean Pod (Vigna Unguiculata): Characterization of Biomass and Bio-Oil. J. Braz. Chem. Soc. 2020, 31, 1125–1136. [Google Scholar] [CrossRef]
- Esquissato, G.N.M.; Pereira, T.S.; Pereira, S.L.D.S.; Costa, F.N.D.; Garcia, F.P.; Nakamura, C.V.; Rodrigues, J.H.D.S.; Castro-Prado, M.A.A.D. In Vitro Anticancer and Antifungal Properties of the Essential Oil from the Leaves of Lippia Origanoides Kunth. Nat. Prod. Res. 2023, 39, 1741–1744. [Google Scholar] [CrossRef]
- Ayyash, M.; Al-Nuaimi, A.K.; Al-Mahadin, S.; Liu, S.-Q. In Vitro Investigation of Anticancer and ACE-Inhibiting Activity, α-Amylase and α-Glucosidase Inhibition, and Antioxidant Activity of Camel Milk Fermented with Camel Milk Probiotic: A Comparative Study with Fermented Bovine Milk. Food Chem. 2018, 239, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.F. Sisvar: A Guide for Its Bootstrap Procedures in Multiple Comparisons. Ciência Agrotecnologia 2014, 38, 109–112. [Google Scholar] [CrossRef]
- Luo, X.J.; Liu, J.; Luo, Y.; Zhang, X.L.; Wu, J.P.; Lin, Z.; Chen, S.J.; Mai, B.X.; Yang, Z.Y. Polybrominated Diphenyl Ethers (PBDEs) in Free-Range Domestic Fowl from an e-Waste Recycling Site in South China: Levels, Profile and Human Dietary Exposure. Environ. Int. 2009, 35, 253–258. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Alara, O.R.; Abayomi, O.O. Extraction, Characterization and Antioxidant Activity of Fenugreek (Trigonella-Foenum Graecum) Seed Oil. Mater. Sci. Energy Technol. 2019, 2, 349–355. [Google Scholar] [CrossRef]
- Shakuntala, S.; Pura Naik, J.; Jeyarani, T.; Madhava Naidu, M.; Srinivas, P. Characterisation of Germinated Fenugreek (Trigonella foenum-graecum L.) Seed Fractions. Int. J. Food Sci. Technol. 2011, 46, 2337–2343. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chandrasekaran, M.; Venkatesalu, V.; Hsu, M.J. Antibacterial and Antifungal Activities of Fatty Acid Methyl Esters of the Blind-Your-Eye Mangrove from India. Braz. J. Microbiol. 2007, 38, 739–742. [Google Scholar] [CrossRef]
- Siles, L.; Alegre, L.; Tijero, V.; Munné-Bosch, S. Enhanced Tocopherol Levels during Early Germination Events in Chamaerops Humilis Var. Humilis Seeds. Phytochemistry 2015, 118, 1–8. [Google Scholar] [CrossRef]
- Es-Sai, B.; Wahnou, H.; Benayad, S.; Rabbaa, S.; Laaziouez, Y.; El Kebbaj, R.; Limami, Y.; Duval, R.E. Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Molecules 2025, 30, 653. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14, 157–165. [Google Scholar] [CrossRef]
- Niki, E. Role of Vitamin E as a Lipid-Soluble Peroxyl Radical Scavenger: In Vitro and in Vivo Evidence. Free Radic. Biol. Med. 2014, 66, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Dugas, T.R.; Morel, D.W.; Harrison, E.H. Impact of LDL Carotenoid and α-Tocopherol Content on LDL Oxidation by Endothelial Cells in Culture. J. Lipid Res. 1998, 39, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Ozsoy, N.; Candoken, E.; Akev, N. Implications for Degenerative Disorders Antioxidative Activity, Total Phenols, Flavonoids, Ascorbic Acid, β-Carotene, α-Tocopherol in Aloe Vera. Oxid. Med. Cell Longev. 2009, 2, 99–106. [Google Scholar] [CrossRef]
- da Silva, S.A.; Sampaio, G.R.; da Silva Torres, E.A.F. Phytosterols Content in Vegetable Oils of Brazil: Coconut, Safflower, Linseed and Evening Primrose. Braz. Arch. Biol. Technol. 2020, 63, e20190216. [Google Scholar] [CrossRef]
- Cheng, L.; Ji, T.; Zhang, M.; Fang, B. Recent Advances in Squalene: Biological Activities, Sources, Extraction, and Delivery Systems. Trends Food Sci. Technol. 2024, 146, 104392. [Google Scholar] [CrossRef]
- Yoruk, N.G.; Istanbullu Paksoy, Ö. GC/MS Evaluation of the Composition of the Aloe Vera Gel and Extract. Food Chem. X 2024, 23, 101536. [Google Scholar] [CrossRef]
- Belguith-Hadriche, O.; Bouaziz, M.; Jamoussi, K.; Feki, A.E.L.; Sayadi, S.; Makni-Ayedi, F. Lipid-Lowering and Antioxidant Effects of an Ethyl Acetate Extract of Fenugreek Seeds in High-Cholesterol-Fed Rats. J. Agric. Food Chem. 2010, 58, 2116–2122. [Google Scholar] [CrossRef]
- Gonda, S.; Szűcs, Z.; Plaszkó, T.; Cziáky, Z.; Kiss-Szikszai, A.; Sinka, D.; Bácskay, I.; Vasas, G. Quality-Controlled LC-ESI-MS Food Metabolomics of Fenugreek (Trigonella foenum-graecum) Sprouts: Insights into Changes in Primary and Specialized Metabolites. Food Res. Int. 2023, 164, 112347. [Google Scholar] [CrossRef]
- Faisal, Z.; Irfan, R.; Akram, N.; Manzoor, H.M.I.; Aabdi, M.A.; Anwar, M.J.; Khawar, S.; Saif, A.; Shah, Y.A.; Afzaal, M.; et al. The Multifaceted Potential of Fenugreek Seeds: From Health Benefits to Food and Nanotechnology Applications. Food Sci. Nutr. 2024, 12, 2294–2310. [Google Scholar] [CrossRef]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef]
- He, M.; Min, J.-W.; Kong, W.-L.; He, X.-H.; Li, J.-X.; Peng, B.-W. A Review on the Pharmacological Effects of Vitexin and Isovitexin. Fitoterapia 2016, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Gawade, M.B.; Shejul, D.; Jagtap, S. Trigonella Foenum Graecum (Fenugreek): An Herb with Impressive Health Benefits and Pharmacological Therapeutic Effects. Asian Food Sci. J. 2022, 21, 19–28. [Google Scholar] [CrossRef]
- Naghdi Badi, H.; Mehrafarin, A.; Mustafavi, S.H.; Labbafi, M. Exogenous Arginine Improved Fenugreek Sprouts Growth and Trigonelline Production under Salinity Condition. Ind. Crops Prod. 2018, 122, 609–616. [Google Scholar] [CrossRef]
- SEO, H.-S.; KU, J.M.; CHOI, H.-S.; CHOI, Y.K.; WOO, J.-K.; KIM, M.; KIM, I.; NA, C.H.; HUR, H.; JANG, B.-H.; et al. Quercetin Induces Caspase-Dependent Extrinsic Apoptosis through Inhibition of Signal Transducer and Activator of Transcription 3 Signaling in HER2-Overexpressing BT-474 Breast Cancer Cells. Oncol. Rep. 2016, 36, 31–42. [Google Scholar] [CrossRef]
- Wu, C.-C.; Fang, C.-Y.; Hsu, H.-Y.; Chen, Y.-J.; Chou, S.-P.; Huang, S.-Y.; Cheng, Y.-J.; Lin, S.-F.; Chang, Y.; Tsai, C.-H.; et al. Luteolin Inhibits Epstein-Barr Virus Lytic Reactivation by Repressing the Promoter Activities of Immediate-Early Genes. Antivir. Res. 2016, 132, 99–110. [Google Scholar] [CrossRef]
- Khang, D.; Dung, T.; Elzaawely, A.; Xuan, T. Phenolic Profiles and Antioxidant Activity of Germinated Legumes. Foods 2016, 5, 27. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.; Adiamo, O.Q.; Ghafoor, K.; Babiker, E.E. Optimization of Ultrasonic-Assisted Extraction of Phenolic Compounds from Fenugreek (Trigonella foenum-graecum L.) Seed. CyTA J. Food 2016, 14, 369–374. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-Assisted Extraction and Bioaccessibility of Saponins from Edible Seeds: Quinoa, Lentil, Fenugreek, Soybean and Lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, A.C.; Costa, A.J.; Santos Júnior, O.; da Silva, C. Ultrasound-Assisted Extraction of Sunflower Seed Oil Enriched with Active Compounds from Jambolan Leaf. J. Braz. Chem. Soc. 2024, 36, e-20240116. [Google Scholar] [CrossRef]
- Miglani, H.; Sharma, S. Impact of Germination Time and Temperature on Phenolics, Bioactive Compounds and Antioxidant Activity of Different Coloured Soybean. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 175–184. [Google Scholar] [CrossRef]
- Aguilera, Y.; Liébana, R.; Herrera, T.; Rebollo-Hernanz, M.; Sanchez-Puelles, C.; Benítez, V.; Martín-Cabrejas, M.A. Effect of Illumination on the Content of Melatonin, Phenolic Compounds, and Antioxidant Activity during Germination of Lentils (Lens culinaris L.) and Kidney Beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2014, 62, 10736–10743. [Google Scholar] [CrossRef] [PubMed]
- Syed, Q.A.; Rashid, Z.; Ahmad, M.H.; Shukat, R.; Ishaq, A.; Muhammad, N.; Rahman, H.U.U. Nutritional and Therapeutic Properties of Fenugreek (Trigonella foenum-graecum ): A Review. Int. J. Food Prop. 2020, 23, 1777–1791. [Google Scholar] [CrossRef]
- Yadav, S.K.; Sehgal, S. Effect of Home Processing and Storage on Ascorbic Acid and β-Carotene Content of Bathua (Chenopodium Album) and Fenugreek (Trigonella foenum graecum) Leaves. Plant Foods Hum. Nutr. 1997, 50, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Heinrich, U.; Jungmann, H.; Sies, H.; Tronnier, H. Carotenoids and Carotenoids plus Vitamin E Protect against ultraviolet Light–Induced Erythema in Humans. Am. J. Clin. Nutr. 2000, 71, 795–798. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The Role of Carotenoids in the Prevention of Human Pathologies. Biomed. Pharmacother. 2004, 58, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.-Y.; Song, Y.-L.; Zhang, L. α-Glucosidase Inhibitory and Antioxidant Properties and Antidiabetic Activity of Hypericum ascyron L. Med. Chem. Res. 2011, 20, 809–816. [Google Scholar] [CrossRef]
- Bhatia, A.; Singh, B.; Arora, R.; Arora, S. In Vitro Evaluation of the α-Glucosidase Inhibitory Potential of Methanolic Extracts of Traditionally Used Antidiabetic Plants. BMC Complement. Altern. Med. 2019, 19, 74. [Google Scholar] [CrossRef]
- Suzuki, K.; Ito, Y.; Inoue, T.; Hamajima, N. Inverse Association of Serum Carotenoids with Prevalence of Metabolic Syndrome among Japanese. Clin. Nutr. 2011, 30, 369–375. [Google Scholar] [CrossRef]
- Mandal, S.; DebMandal, M. Fenugreek (Trigonella foenum-graecum L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2015; pp. 421–429. ISBN 9780124166417. [Google Scholar]
- Ashraf, W.; Rehman, A.; Sharif, H.R.; Ali, K.; Hussain, A.; Karim, A.; Lianfu, Z. Ultrasonication-Assisted Deep Eutectic Solvent Extraction of Flavonoids from Pretreated Fenugreek and Their Antidiabetic & Hypo-Lipidemic Potential. J. Food Meas. Charact. 2024, 18, 5397–5410. [Google Scholar] [CrossRef]
- Zancan, K.C.; Marques, M.O.M.; Petenate, A.J.; Meireles, M.A.A. Extraction of Ginger (Zingiber officinale Roscoe) Oleoresin with CO2 and Co-Solvents: A Study of the Antioxidant Action of the Extracts. J. Supercrit. Fluids 2002, 24, 57–76. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.; Qin, L. The Cause of Germination Increases the Phenolic Compound Contents of Tartary Buckwheat (Fagopyrum tataricum). J. Future Foods 2022, 2, 372–379. [Google Scholar] [CrossRef]
- Balouchi, H.; Soltani Khankahdani, V.; Moradi, A.; Gholamhoseini, M.; Piri, R.; Heydari, S.Z.; Dedicova, B. Seed Fatty Acid Changes Germination Response to Temperature and Water Potentials in Six Sesame (Sesamum indicum L.) Cultivars: Estimating the Cardinal Temperatures. Agriculture 2023, 13, 1936. [Google Scholar] [CrossRef]
- Barros, M.; Fleuri, L.F.; Macedo, G.A. Seed Lipases: Sources, Applications and Properties- A Review. Braz. J. Chem. Eng. 2010, 27, 15–29. [Google Scholar] [CrossRef]
- Chatterjee, S.; Variyar, P.S.; Sharma, A. Stability of Lipid Constituents in Radiation Processed Fenugreek Seeds and Turmeric: Role of Phenolic Antioxidants. J. Agric. Food Chem. 2009, 57, 9226–9233. [Google Scholar] [CrossRef] [PubMed]
- Bewleyl, J.D. Seed Germination and Dormancy; American Society of Plant Physiologists: Rockville, MD, USA, 1997; Volume 9. [Google Scholar]
- Baenas, N.; García-Viguera, C.; Moreno, D. Elicitation: A Tool for Enriching the Bioactive Composition of Foods. Molecules 2014, 19, 13541–13563. [Google Scholar] [CrossRef]
- Zeljković, S.; Milojević, L.; Mladenović, E.; Davitkovska, M.; Bogevska, Z. Effect of water extract of Aloe vera on germination and early growth of Dianthus barbatus. J. Agric. Food Environ. Sci. 2022, 76, 62–66. [Google Scholar] [CrossRef]
- Kunduru, S.; Chaudhary, A.; Kamra, A.; Bana, R.S.; Kumar, S.N.; Yalamalle, V.R. Seed Priming with Aloe vera and Trichoderma asperellum Improves Germination in Chickpea under Osmotic and Temperature Stress. Seed Sci. Technol. 2024, 52, 265–281. [Google Scholar] [CrossRef]
- El Sherif, F.; Albotnoor, N.; Yap, Y.-K.; Meligy, A.; Khattab, S. Enhanced Bioactive Compounds Composition in Lavandula Officinalis In-Vitro Plantlets Using NaCl and Moringa oleifera, Aloe vera and Spirulina platensis Extracts. Ind. Crops Prod. 2020, 157, 112890. [Google Scholar] [CrossRef]
- Sakr, W.; Hamouda, A.; Saad El-Deen, F. Response of Pelargonium graveolens L. herit plant to NPK Chemical Fertilization and Spraying with Natural Leaf Extracts of Moringa oleifera and Aloe vera. J. Product. Dev. 2018, 23, 411–428. [Google Scholar] [CrossRef]
- Shawky, E.; Sobhy, A.A.; Ghareeb, D.A.; Shams Eldin, S.M.; Selim, D.A. Comparative Metabolomics Analysis of Bioactive Constituents of the Leaves of Different Trigonella Species: Correlation Study to α-Amylase and α-Glycosidase Inhibitory Effects. Ind. Crops Prod. 2022, 182, 114947. [Google Scholar] [CrossRef]
- Lee, C.H.; Olson, P.; Evans, R.M. Minireview: Lipid Metabolism, Metabolic Diseases, and Peroxisome Proliferator-Activated Receptors. Endocrinology 2003, 144, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- Okyar, A.; Can, A.; Akev, N.; Baktir, G.; Sütlüpinar, N. Effect of Aloe Vera Leaves on Blood Glucose Level in Type I and Type II Diabetic Rat Models. Phytother. Res. 2001, 15, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Bafadam, S.; Beheshti, F.; Khodabakhshi, T.; Asghari, A.; Ebrahimi, B.; Sadeghnia, H.R.; Mahmoudabady, M.; Niazmand, S.; Hosseini, M. Trigonella foenum-graceum Seed (Fenugreek) Hydroalcoholic Extract Improved the Oxidative Stress Status in a Rat Model of Diabetes-Induced Memory Impairment. Horm. Mol. Biol. Clin. Investig. 2019, 39, 20180074. [Google Scholar] [CrossRef]
- Khan, H.; Grewal, A.K.; kumar, M.; Singh, T.G. Pharmacological Postconditioning by Protocatechuic Acid Attenuates Brain Injury in Ischemia–Reperfusion (I/R) Mice Model: Implications of Nuclear Factor Erythroid-2-Related Factor Pathway. Neuroscience 2022, 491, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, Z.; Sadeer, N.B.; Hussain, M.; Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W.; et al. Therapeutical Properties of Apigenin: A Review on the Experimental Evidence and Basic Mechanisms. Int. J. Food Prop. 2023, 26, 1914–1939. [Google Scholar] [CrossRef]
- Devasena, T.; Venugopal Menon, P. Fenugreek Seeds Modulate 1,2-Dimethylhydrazine-Induced Hepatic Oxidative Stress during Colon Carcinogenesis. Ital. J. Biochem. 2007, 56, 28–34. [Google Scholar]
- Manirakiza, A.; Irakoze, L. Aloe and Its Effects on Cancer: A Narrative Literature Review. East Afr. Health Res. J. 2021, 5, 1–16. [Google Scholar] [CrossRef]
Description of Extracts | Sample Codes | Yield (%) | CV (%) | |
---|---|---|---|---|
Fenugreek seed extract germinated in water | FGGW | 3.1 ± 0.8 | a | 25.9 |
Fenugreek seed extract germinated in Aloe vera | FGGA | 3.2 ± 0.1 | a | 4.2 |
Extract from a mixture of raw fenugreek seeds and germinated seeds in water in a 2:1 ratio | FGS/GW 2:1 | 4.4 ± 0.4 | a | 9.3 |
Extract from a mixture of raw fenugreek seeds and germinated seeds in water in a 1:2 ratio | FGS/GW 1:2 | 4.3 ± 0.4 | a | 10.2 |
Extract from a mixture of raw fenugreek seeds and germinated seeds in Aloe vera in a 2:1 ratio | FGS/GA 2:1 | 3.8 ± 0.5 | a | 15.0 |
Extract from a mixture of raw fenugreek seeds and germinated seeds in Aloe vera in a 1:2 ratio | FGS/GA 1:2 | 3.7 ± 0.2 | a | 4.4 |
Raw fenugreek seed extract (ungerminated) | FGS | 4.6 ± 0.7 | a | 15.4 |
FGGW | FGGA | FGS/GW 2:1 | FGS/GW 1:2 | FGS/GA 2:1 | FGS/GA 1:2 | FGS | ||
---|---|---|---|---|---|---|---|---|
Classes | Funcion | Relative area (%) | ||||||
Hexanoic acid | acid | 0.1 | 0.1 | 0.2 | 0.2 | 0.4 | 0.4 | 0.8 |
Hexadecanoic acid | acid | 9.4 | 9.4 | 14.3 | 10.8 | 11.9 | 9.5 | 14.7 |
Heptadecanoic acid | acid | 0.3 | 0.2 | 0.4 | 0.3 | 0.4 | 0.2 | 0.4 |
9,12-Octadecadienoic acid (Z,Z) (ω-6 fatty-acid) | acid | 33.8 | 33.6 | 30.2 | 32.2 | 29.3 | 33.1 | 33.3 |
Oleic acid (ω-3 fatty-acid) | acid | 34.7 | 34.4 | 29.7 | 32.4 | 29.0 | 33.8 | 31.6 |
Linolenic acid | acid | 2.2 | 1.9 | 3.4 | 2.6 | 3.6 | 2.6 | 1.8 |
Octadecanoic acid | acid | 5.0 | 5.3 | 8.7 | 6.0 | 6.9 | 6.2 | 6.7 |
cis-5,8,11-Eicosatrienoic acid | acid | 0.5 | 0.3 | 0.1 | 0.3 | 0.0 | 0.3 | 0.6 |
Eicosanoic acidr (ω-6 fatty-acid) | acid | 1.4 | 1.4 | 1.7 | 1.5 | 2.0 | 1.3 | 1.6 |
Heneicosanoic acid | acid | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 |
Docosanoic acid | acid | 2.6 | 3.0 | 1.8 | 2.2 | 2.0 | 2.0 | 2.2 |
Tricosanoic acid | acid | 0.7 | 0.7 | 0.7 | 0.8 | 0.8 | 0.7 | 0.5 |
Tetracosanoic acid | acid | 2.4 | 2.4 | 2.4 | 3.0 | 3.3 | 2.2 | 1.2 |
Hexacosanoic acid | acid | 2.4 | 3.9 | 5.3 | 4.4 | 5.0 | 3.9 | 1.3 |
Linoleic acid ethyl ester (ω-6 fatty-acid) | esther | 0.02 | 0.0 | 0.00 | 0.02 | 0.0 | 0.00 | 0.4 |
9-Octadecenoic acid, 2-[(trimethylsilyl)oxy]-1-[[(trimethylsilyl)oxy]methyl]ethyl ester | monoglycerides | 3.7 | 2.6 | 0.7 | 2.7 | 0.5 | 3.2 | 2.2 |
Octadecanoic acid, 2,3-bis[(trimethylsilyl)oxy]propyl ester | monoglycerides | 0.5 | 0.6 | 0.2 | 0.5 | 0.5 | 0.6 | 0.4 |
MUFA 1 | 5.9 | 4.5 | 4.1 | 5.2 | 4.1 | 5.8 | 4.0 | |
PUFA 2 | 71.1 | 70.4 | 62.4 | 67.1 | 61.1 | 69.1 | 68.0 | |
SFA 3 | 23.0 | 25.1 | 33.5 | 27.6 | 30.6 | 25.1 | 28.0 | |
Saturated | 23.0 | 25.1 | 33.5 | 27.6 | 30.6 | 25.1 | 28.0 | |
Insaturated | 77.0 | 74.9 | 66.5 | 72.4 | 65.2 | 74.9 | 72.0 | |
1-Monopalmitin | monoglycerides | 0.0 | 0.2 | 0.1 | 0.1 | 0.2 | 0.0 | 17.5 |
1-Monooleoylglycerol | monoglycerides | 0.2 | 0.6 | 0.2 | 0.5 | 0.6 | 0.5 | 0.4 |
Squalene | hydrocarbon | 14.7 | 12.6 | 17.7 | 15.2 | 19.1 | 22.2 | 14.5 |
Nonacosane | hydrocarbon | 23.4 | 28.6 | 25.2 | 27.3 | 17.9 | 22.5 | 22.2 |
Hentriacontane | hydrocarbon | 61.9 | 58.8 | 57.2 | 57.5 | 63.0 | 55.3 | 63.3 |
a-Tocopherol | tocopherol | 11.1 | 8.3 | 13.2 | 10.9 | 11.5 | 8.8 | 0.7 |
Cholesterol | phytosteroids | 6.0 | 5.9 | 7.5 | 7.5 | 5.0 | 5.2 | 7.5 |
Campesterol | phytosteroids | 19.5 | 17.2 | 6.2 | 18.2 | 14.5 | 15.6 | 14.2 |
β-Sitosterol | phytosteroids | 48.8 | 54.2 | 52.3 | 46.9 | 53.1 | 53.0 | 55.4 |
Lupenyl acetate | phytosteroids | 14.6 | 14.5 | 20.8 | 16.5 | 15.9 | 17.4 | 22.3 |
Identification | Molecular Weight | MS (±) | Samples (Intensity Values) | ||||||
---|---|---|---|---|---|---|---|---|---|
FGGW | FGGA | FGS/GW 2:1 | FGS/GW 1:2 | FGS/GA 2:1 | FGS/GA 1:2 | FGS | |||
Caffeoyl glucose | 342 | 341 | 1.4 × 106 | 5.5 × 106 | 7.5 × 106 | 1.0 × 107 | 1.6 × 107 | 1.2 × 107 | 7.2 × 106 |
p-coumaric acid derivative | 164 | 311 | 8.7 × 106 | 2.9 × 107 | 6.1 × 106 | 2.3 × 107 | 9.0 × 106 | 3.6 × 107 | 3.3 × 107 |
Caffeic acid derivative | 180 | 377 | 5.0 × 105 | 1.9 × 106 | 1.7 × 106 | 3.8 × 106 | 5.2 × 106 | 3.0 × 106 | 4.1 × 106 |
Vitexin | 432 | 433 | 2.8 × 105 | 9.8 × 105 | 2.4 × 106 | 2.8 × 106 | 7.4 × 105 | 5.4 × 106 | 1.7 × 106 |
Isovitexin | 432 | 433 | 2.8 × 105 | 9.8 × 105 | 2.4 × 106 | 2.8 × 106 | 7.4 × 105 | 5.4 × 106 | 1.7 × 106 |
Kaempferol-dirhamnoside | 741 | 593 | 6.2 × 105 | 1.2 × 106 | 2.8 × 106 | 1.3 × 106 | 2.8 × 105 | 7.7 × 105 | 1.6 × 106 |
Apigenin-6,8 dipentoside | 534 | 533 | 4.3 × 105 | 2.2 × 106 | 1.7 × 106 | 1.5 × 106 | 1.8 × 106 | 1.8 × 106 | 1.6 × 106 |
Kaempferolrhamnoside | 432 | 432 | 5.3 × 105 | 2.1 × 106 | 1.8 × 106 | 8.0 × 106 | 3.1 × 106 | 1.5 × 106 | 1.1 × 106 |
Apigenin-7-O-rutinoside | 578 | 579 | 5.1 × 104 | 7.7 × 105 | 1.9 × 106 | 5.6 × 105 | 6.8 × 105 | 3.9 × 105 | 1.6 × 106 |
Quercetin | 302 | 301 | 2.5 × 106 | 2.9 × 106 | 6.0 × 106 | 6.2 × 106 | 4.7 × 106 | 4.9 × 106 | 2.0 × 106 |
Luteolin | 286 | 288 | 4.6 × 105 | 6.2 × 105 | 1.7 × 105 | 8.2 × 104 | 1.0 × 105 | 9.1 × 105 | 6.6 × 105 |
Apigenin | 270 | 271 | 2.8 × 106 | 7.5 × 106 | 7.9 × 105 | 6.1 × 106 | 4.7 × 106 | 1.1 × 107 | 4.4 × 106 |
Caffeic acid | 180 | 179 | 2.5 × 106 | 8.0 × 105 | 4.5 × 105 | 2.5 × 106 | 2.1 × 106 | 6.3 ∙ 105 | 3.7 × 106 |
Trigonelline | 137 | - | 3.1 × 105 | 6.8 × 104 | 5.6 × 104 | 2.4 × 105 | ND | 1.8 × 105 | 2.4 × 105 |
4-hydroxyisoleucine | 147 | 130 | 6.4 × 105 | 1.2 × 106 | 2.8 × 105 | 1.2 × 106 | 1.1 × 106 | 4.2 × 105 | 1.3 × 106 |
Sample | TPC | ABTS | β-Carotene | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mg EAG 100 g−1 Extract | µmol de TE g−1 Extract | mg 100 g −1 Extract | ||||||||||
FGGW | 10.2 | ± | 1.5 | a | 6 | ± | 0.2 | a | 45.1 | ± | 0.6 | ab |
FGGA | 11.9 | ± | 0.7 | a | 6 | ± | 0.2 | a | 44.6 | ± | 1.0 | ab |
FGS/GW 2:1 | 8.9 | ± | 0.9 | a | 5 | ± | 0.04 | c | 32.4 | ± | 0.6 | c |
FGS/GW 1:2 | 9.9 | ± | 0.9 | a | 6 | ± | 0.07 | ab | 43.5 | ± | 4.0 | ab |
FGS/GA 2:1 | 11.5 | ± | 0.3 | a | 6 | ± | 0.3 | ab | 47.1 | ± | 0.6 | a |
FGS/GA 1:2 | 11.3 | ± | 0.8 | a | 5 | ± | 0.2 | bc | 39.8 | ± | 0.3 | b |
FGS | 11.2 | ± | 2.6 | a | 3 | ± | 0.3 | d | 29.2 | ± | 0.8 | c |
Sample | α-Glucosidase | α-Amylase | ||||||
---|---|---|---|---|---|---|---|---|
FGGW | 95.5 | ± | 1.0 | a | 27.7 | ± | 2.7 | d |
FGGA | 53.4 | ± | 3.2 | d | 52.7 | ± | 2.7 | c |
FGS/GW 2:1 | 65.1 | ± | 3.8 | c | 15.2 | ± | 0.6 | e |
FGS/GW 1:2 | 68.2 | ± | 1.2 | c | 95 | ± | 3.5 | a |
FGS/GA 2:1 | 82.4 | ± | 0.9 | b | 75.9 | ± | 2.6 | b |
FGS/GA 1:2 | 66.2 | ± | 1.0 | c | 72.6 | ± | 2.0 | b |
FGS | 98.9 | ± | 1.4 | a | 91.5 | ± | 6.6 | a |
Samples | HeLa (μg/mL) | SiHa (μg/mL) |
---|---|---|
FGS/GA 2:1 | 107.7 | 188.5 |
FGS/GA 1:2 | 104.7 | 202.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Comilo, G.; Barbosa Abrantes, K.K.; Miyuki Retamiro, K.; Santos Junior, O.d.O.; Martins Moreira, W.; Machado Giufrida, W.; Vataru Nakamura, C.; Barão, C.E.; dos Santos Freitas, L.; da Silva, C.; et al. Pressurized Liquid Extraction of Bioactive Compounds from Seeds and Sprouts Trigonella foenum-graecum L. (Fenugreek): Enhanced Antioxidant and Anti-Hyperglycemic Activities. Foods 2025, 14, 2021. https://doi.org/10.3390/foods14122021
Silva Comilo G, Barbosa Abrantes KK, Miyuki Retamiro K, Santos Junior OdO, Martins Moreira W, Machado Giufrida W, Vataru Nakamura C, Barão CE, dos Santos Freitas L, da Silva C, et al. Pressurized Liquid Extraction of Bioactive Compounds from Seeds and Sprouts Trigonella foenum-graecum L. (Fenugreek): Enhanced Antioxidant and Anti-Hyperglycemic Activities. Foods. 2025; 14(12):2021. https://doi.org/10.3390/foods14122021
Chicago/Turabian StyleSilva Comilo, Geovanni, Karen Keli Barbosa Abrantes, Karina Miyuki Retamiro, Oscar de Oliveira Santos Junior, Wardleison Martins Moreira, Willyan Machado Giufrida, Celso Vataru Nakamura, Carlos Eduardo Barão, Lisiane dos Santos Freitas, Camila da Silva, and et al. 2025. "Pressurized Liquid Extraction of Bioactive Compounds from Seeds and Sprouts Trigonella foenum-graecum L. (Fenugreek): Enhanced Antioxidant and Anti-Hyperglycemic Activities" Foods 14, no. 12: 2021. https://doi.org/10.3390/foods14122021
APA StyleSilva Comilo, G., Barbosa Abrantes, K. K., Miyuki Retamiro, K., Santos Junior, O. d. O., Martins Moreira, W., Machado Giufrida, W., Vataru Nakamura, C., Barão, C. E., dos Santos Freitas, L., da Silva, C., & Cardozo-Filho, L. (2025). Pressurized Liquid Extraction of Bioactive Compounds from Seeds and Sprouts Trigonella foenum-graecum L. (Fenugreek): Enhanced Antioxidant and Anti-Hyperglycemic Activities. Foods, 14(12), 2021. https://doi.org/10.3390/foods14122021