Efficient and Non-Invasive Grading of Chinese Mitten Crab Based on Fatness Estimated by Combing Machine Vision and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Experimental Samples
2.1.1. Integrity Identification
2.1.2. Sex Identification
2.1.3. Fatness Calculation
2.2. RGB Image Acquisition
2.3. Dataset Creation and Image Labeling
2.4. YOLOv5-Seg+SE Model Construction
2.5. Morphological Feature Extraction
2.6. Evaluation of Model Performance
3. Results
3.1. Sample Statistics
3.2. Model Optimization
3.3. Results of Integrity Identification
3.4. Sex Detection
3.5. Prediction of Carapace Area and Size
3.6. Grading of Chinese Mitten Crab Based on Calculated Fatness
4. Discussion
4.1. Rapid Extraction of Grading-Related Features
4.2. Machine-Vision-Based Grading of Chinese Mitten Crabs
4.3. Limitations of This Study
5. Conclusions
- (1)
- A modified condition factor K′ was developed, which outperformed traditional Fulton and Jones factors. The K-based regression achieved higher R2 values, which enhanced the fatness accuracy assessment.
- (2)
- The YOLOv5-seg+SE model achieved 100% accuracy in sex identification and a 0.995 mAP for carapace segmentation, with an inference speed of 74.9 ms per image, meeting real-time monitoring requirements.
- (3)
- By integrating weight, sex, and carapace area, the proposed fatness-based grading method was fully consistent with manual observations, which validates its practical utility.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, L.; Dai, K.; Qiao, Z.; Qi, X.; Song, Z.; Gu, J.; Lu, Q.; Wang, X.; Yin, M. Comparative analysis of nutritional and non-volatile taste components of the Chinese mitten crab (Eriocheir sinensis). J. Food Compost. Anal. 2024, 133, 106373. [Google Scholar] [CrossRef]
- Liu, R.; Li, Q.; Zhang, H. Rapid Identification of the Geographical Origin of the Chinese Mitten Crab (Eriocheir sinensis) Using Near-Infrared Spectroscopy. Foods 2024, 13, 3226. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Xing, X.; Zhang, K.; Zhang, C. Status and prospects of product processing and sustainable utilization of Chinese mitten crab (Eriocheir sinensis). Heliyon 2024, 10, e32922. [Google Scholar] [CrossRef]
- Wang, J.; Xu, P.; Zhou, G.; Li, X.; Lu, Q.; Liu, X.; Zhou, J.; Wang, C. Genetic improvement and breeding practices for Chinese mitten crab, Eriocheir sinensis. J. World Aquacult. Soc. 2018, 49, 292–301. [Google Scholar] [CrossRef]
- Luo, Z.; Tu, Y.; Li, H.; Qiu, B.; Liu, Y.; Yang, Z. Endocrine-disrupting compounds in the Xiangjiang River of China: Spatio-temporal distribution, source apportionment, and risk assessment. Ecotoxicol. Environ. Saf. 2019, 167, 476–484. [Google Scholar] [CrossRef]
- Chen, D.W.; Zhang, M.; Shrestha, S. Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis). Food Chem. 2007, 103, 1343–1349. [Google Scholar] [CrossRef]
- Liu, X.; Wu, H.; Wang, Y.; Liu, Y.; Zhu, H.; Li, Z.; Shan, P.; Yuan, Z. Comparative assessment of Chinese mitten crab aquaculture in China: Spatiotemporal changes and trade-offs. Environ. Pollut. 2023, 337, 122544. [Google Scholar] [CrossRef]
- Xu, H.; Wu, T.; Budhathoki, M.; Fang, D.S.; Zhang, W.; Wang, X. Consumption Patterns and Willingness to Pay for Sustainable Aquatic Food in China. Foods 2024, 13, 2435. [Google Scholar] [CrossRef]
- Alfatni, M.S.M.; Shariff, A.R.M.; Abdullah, M.Z.; Marhaban, M.H.B.; Saaed, O.M.B. The application of internal grading system technologies for agricultural products–Review. J. Food Eng. 2013, 116, 703–725. [Google Scholar] [CrossRef]
- Nanda, P.K.; Das, A.K.; Dandapat, P.; Dhar, P.; Bandyopadhyay, S.; Dib, A.L.; Lorenzo, J.M.; Gagaoua, M. Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. Trends Food Sci. Technol. 2021, 112, 252–267. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, W.; Cheng, Y.; Wu, X. Comparative study of female Chinese mitten crabs based on their sizes and weights. J. Food Sci. Technol. 2021, 59, 2572–2583. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, H.; Bi, L.; Xu, W.; Song, N.; Zhou, Z.; Ding, L.; Xiao, M. Quality grading of river crabs based on machine vision and GA-BPNN. Sensors 2023, 23, 5317. [Google Scholar] [CrossRef]
- Sterling, B.; Gooch, M.; Dent, B.; Marenick, N.; Miller, A.; Sylvia, G. Assessing the value and role of seafood traceability from an entire value-chain perspective. Compr. Rev. Food. Sci. Food Saf. 2015, 14, 205–268. [Google Scholar] [CrossRef] [PubMed]
- Blasco, J.; Aleixos, N.; Moltó, E. Machine vision system for automatic quality grading of fruit. Biosys. Eng. 2003, 85, 415–423. [Google Scholar] [CrossRef]
- Ruiz-Altisent, M.; Ruiz-Garcia, L.; Moreda, G.P.; Lu, R.; Hernandez-Sanchez, N.; Correa, E.C.; Diezma, B.; Nicolaï, B.; García-Ramos, J. Sensors for product characterization and quality of specialty crops—A review. Comput. Electron. Agric. 2010, 74, 176–194. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, C. Evolution of a development model for fruit industry against background of rising labor cost: Intensive or extensive adjustment? Sustainability 2019, 11, 3864. [Google Scholar] [CrossRef]
- Yu, H.D.; Qing, L.W.; Yan, D.T.; Xia, G.; Zhang, C.; Yun, Y.H.; Zhang, W. Hyperspectral imaging in combination with data fusion for rapid evaluation of tilapia fillet freshness. Food Chem. 2021, 348, 129129. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tang, L.; Wu, X.; Lu, H. Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm. Food Analy. Meth. 2018, 11, 768–780. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, S.; Wei, Z.; Lai, X.; Zeng, Q.; Huang, Y.; Ma, X.; Liu, D.; Qiu, Q.; Wang, J.; et al. Application of K-means clustering and spectroscopic analysis for rapid sorting of inner Shell colors in freshwater pearl mussels Hyriopsis schlegelii. Aquaculture 2025, 599, 742128. [Google Scholar] [CrossRef]
- Hong, H.; Yang, X.; You, Z.; Cheng, F. Visual quality detection of aquatic products using machine vision. Aquacult. Eng. 2014, 63, 62–71. [Google Scholar] [CrossRef]
- Dowlati, M.; de la Guardia, M.; Mohtasebi, S.S. Application of machine-vision techniques to fish-quality assessment. TrAC Trends Anal. Chem. 2012, 40, 168–179. [Google Scholar] [CrossRef]
- He, H.J.; Wu, D.; Sun, D.W. Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products. Crit. Rev. Food Sci. Nutr. 2015, 55, 864–886. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, X.; Xu, D. Research on individual image recognition of river crab based on transfer learning and pyramid convolution network. Fish. Mod. 2022, 49, 52–60. [Google Scholar]
- Shan, N.; Zheng, X. Weight prediction of golden pomfret based on machine vision technology. Fish Mod. 2023, 50, 58–66. [Google Scholar]
- Tang, Y.; Hu, H.; Zhang, G.; Tang, C. Weight prediction of swimming crab using computer vision and GA-SVM. J. Ningbo Univ. 2019, 32, 32–37. [Google Scholar]
- Jiang, S.; Ao, J.; Yang, H.; Xie, F.; Liu, Z.; Yang, S.; Wei, Y.; Deng, X. Fine-grained recognition of bitter gourd maturity based on Improved YOLOv5-seg model. Sci. Rep. 2024, 14, 10856. [Google Scholar] [CrossRef]
- Sun, D.; Li, J.; Li, Z.; Zhou, C.; Lu, Y.; Ye, H. Grading Related Feature Extraction of Chinese Mitten Crab Based on Machine Vision. BIO Web Conf. 2024, 142, 02016. [Google Scholar] [CrossRef]
- Farag, M.A.; Mansour, S.T.; Nouh, R.A.; Khattab, A.R. Crustaceans (shrimp, crab, and lobster): A comprehensive review of their potential health hazards and detection methods to assure their biosafety. J. Food Saf. 2023, 43, e13026. [Google Scholar] [CrossRef]
- Saha, S.; Pradhan, D.; Dash, G. Studies on Diversity of Bacterial Diseases and Occupational Risks through Mudcrab Aquaculture in West Bengal. J. Pure Appl. Microbiol. 2023, 17, 722–731. [Google Scholar] [CrossRef]
- Sutton, S.G.; Bult, T.P.; Haedrich, R.L. Relationships among fat weight, body weight, water weight, and condition factors in wild Atlantic salmon parr. Trans. Am. Fish. Soc. 2000, 129, 527–538. [Google Scholar] [CrossRef]
- Kopparapu, S.K. Lighting design for machine vision application. Image Vis. Comput. 2006, 24, 720–726. [Google Scholar] [CrossRef]
- Mirbod, O.; Choi, D.; Thomas, R.; He, L. Overcurrent-driven LEDs for consistent image colour and brightness in agricultural machine vision applications. Comput. Electron. Agric. 2021, 187, 106266. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Wu, J.; Tian, Y.; Tang, H.; Guo, X. Real-time vehicle detection based on improved yolo v5. Sustainability 2022, 14, 12274. [Google Scholar] [CrossRef]
- Jin, X.; Xie, Y.; Wei, X.S.; Zhao, B.R.; Chen, Z.M.; Tan, X. Delving deep into spatial pooling for squeeze-and-excitation networks. Pattern Recognit. 2022, 121, 108159. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Li, D.; Duan, Q. Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4. Comput. Electron. Agric. 2023, 214, 108318. [Google Scholar] [CrossRef]
- Shao, Y.; Yu, D.W.; Yu, F. Comparison of the taste compounds in different grades of Chinese mitten crab (Eriocheir sinensis). Prog. Fish. Sci. 2021, 42, 192–198. [Google Scholar]
- Brosnan, T.; Sun, D.-W. Inspection and grading of agricultural and food products by computer vision systems—A review. Comput. Electron. Agric. 2002, 36, 193–213. [Google Scholar] [CrossRef]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Z.; Li, Y.; Hua, W.; Wei, X.; Igathinathane, C.; Mhamed, M.; Zhang, W.; Jiao, X.; Yang, L. In-field grading and sorting technology of apples: A state-of-the-art review. Comput. Electron. Agric. 2024, 226, 109383. [Google Scholar] [CrossRef]
- Yu, K.; Zhong, M.; Zhu, W.; Rashid, A.; Han, R.; Virk, M.S.; Duan, K.; Zhao, Y.; Ren, X. Advances in Computer Vision and Spectroscopy Techniques for Non-Destructive Quality Assessment of Citrus Fruits: A Comprehensive Review. Foods 2025, 14, 386. [Google Scholar] [CrossRef] [PubMed]
- Liming, X.; Yanchao, Z. Automated strawberry grading system based on image processing. Comput. Electron. Agric. 2010, 71, S32–S39. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, B.; Li, Z.; Liu, Y.; Zhao, D. Rethinking underwater crab detection via defogging and channel compensation. Fishes 2024, 9, 60. [Google Scholar] [CrossRef]
- Zion, B. The use of computer vision technologies in aquaculture—A review. Comput. Electron. Agric. 2012, 88, 125–132. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, Y.J.; Li, S.S. Design of automatic grading control system of crab and its control program based on image recognition. Food Mach. 2015, 31, 127–129. [Google Scholar]
- Zhou, Z.; Cao, Q.; Zhu, H.; Song, N.; Xiao, M. Design of classification system of Mitten crab based on image processing. China South. Agric. Mach. 2023, 54, 18. [Google Scholar]
- Bagheri, Z.M.; Donohue, C.G.; Partridge, J.C.; Hemmi, J.M. Behavioural and neural responses of crabs show evidence for selective attention in predator avoidance. Sci. Rep. 2022, 12, 10022. [Google Scholar] [CrossRef]
Sex | Number | Weight (g) | Width of Carapace (mm) | Length of Carapace (mm) |
---|---|---|---|---|
Male | 150 | 90.06–250.04 | 48.64–82.14 | 48.32–78.55 |
Female | 150 | 85.05–218.36 | 50.31–77.66 | 45.00–79.07 |
Parameters | Value |
---|---|
Momentum (μ) | 0.937 |
Learning_rate (η) | 0.01 |
Epoch | 300 |
Batch_size | 16 |
Threshold value | 0.5 |
L2 regularization coefficient (λ) | 0.0005 |
Models | P (%) | mAP (%) | Recall (%) |
---|---|---|---|
YOLOv8-seg | 98.7 | 98.4 | 96.3 |
YOLOv5l-seg | 97.3 | 97.6 | 96.4 |
YOLOv5n-seg | 88.6 | 86.1 | 91.1 |
YOLOv5-seg+SE | 99.44 | 99.50 | 100 |
Integrity | Confusion Matrix | Test Accuracy | Average Accuracy | |
---|---|---|---|---|
Intact | Incomplete | |||
Intact | 65 | 5 | 92.86% | 93.10% |
Incomplete | 3 | 42 | 93.33% |
Sex | Confusion Matrix | Test Accuracy | Average Accuracy | |
---|---|---|---|---|
Male | Female | |||
Male | 73 | 0 | 100% | 100% |
Female | 0 | 42 | 100% |
Sample Index | Experimental Method | Manual Methods | |||||
---|---|---|---|---|---|---|---|
Carapace Area (cm2) | Fatness (K) (%) | Grade | Carapace Area (cm2) | Fatness (K) (%) | Grade | ||
Male | M-1 | 30.37 | 75.27 | I | 30.28 | 75.93 | I |
M-2 | 38.74 | 62.04 | II | 38.38 | 63.00 | II | |
M-3 | 32.00 | 56.28 | IV | 32.47 | 55.43 | IV | |
M-4 | 42.76 | 64.94 | II | 43.40 | 64.34 | II | |
M-5 | 47.78 | 61.14 | III | 48.13 | 61.14 | III | |
M-6 | 42.54 | 43.19 | IV | 43.01 | 42.81 | IV | |
M-7 | 44.24 | 61.90 | III | 43.57 | 61.90 | III | |
M-8 | 35.03 | 55.96 | IV | 35.66 | 57.11 | IV | |
M-9 | 41.08 | 63.19 | II | 40.39 | 62.41 | II | |
M-10 | 29.92 | 59.54 | III | 30.59 | 58.67 | III | |
Female | F-1 | 37.44 | 56.73 | II | 37.09 | 57.34 | II |
F-2 | 41.56 | 47.96 | IV | 41.67 | 47.22 | IV | |
F-3 | 59.58 | 50.82 | IV | 59.15 | 50.33 | IV | |
F-4 | 31.40 | 62.18 | I | 31.52 | 62.18 | I | |
F-5 | 36.55 | 63.26 | I | 36.21 | 64.70 | I | |
F-6 | 28.46 | 58.10 | I | 29.38 | 58.10 | I | |
F-7 | 29.93 | 55.38 | II | 30.60 | 55.85 | II | |
F-8 | 31.45 | 46.06 | IV | 30.62 | 45.48 | IV | |
F-9 | 31.73 | 48.09 | IV | 32.47 | 47.45 | IV | |
F-10 | 37.91 | 52.83 | III | 37.03 | 52.41 | III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ye, H.; Zhou, C.; Yang, X.; Li, Z.; Wei, Q.; Li, C.; Sun, D. Efficient and Non-Invasive Grading of Chinese Mitten Crab Based on Fatness Estimated by Combing Machine Vision and Deep Learning. Foods 2025, 14, 1989. https://doi.org/10.3390/foods14111989
Li J, Ye H, Zhou C, Yang X, Li Z, Wei Q, Li C, Sun D. Efficient and Non-Invasive Grading of Chinese Mitten Crab Based on Fatness Estimated by Combing Machine Vision and Deep Learning. Foods. 2025; 14(11):1989. https://doi.org/10.3390/foods14111989
Chicago/Turabian StyleLi, Jiangtao, Hongbao Ye, Chengquan Zhou, Xiaolian Yang, Zhuo Li, Qiquan Wei, Chen Li, and Dawei Sun. 2025. "Efficient and Non-Invasive Grading of Chinese Mitten Crab Based on Fatness Estimated by Combing Machine Vision and Deep Learning" Foods 14, no. 11: 1989. https://doi.org/10.3390/foods14111989
APA StyleLi, J., Ye, H., Zhou, C., Yang, X., Li, Z., Wei, Q., Li, C., & Sun, D. (2025). Efficient and Non-Invasive Grading of Chinese Mitten Crab Based on Fatness Estimated by Combing Machine Vision and Deep Learning. Foods, 14(11), 1989. https://doi.org/10.3390/foods14111989