Characterization of Semolina and Pasta Obtained from Hard Hexaploid Wheat (Triticum aestivum L.) Developed Through Selection Assisted by Molecular Markers
Abstract
1. Introduction
2. Materials and Methods
2.1. Developed Germplasm
- Chinese Spring Red Egyptian line is a hexaploid wheat line that carries a deletion on chromosome 5D, where the main genes related to grain texture, known as puroindolins, PinA-D1, and PinB-D1, are located [13].
- ProINTA Gaucho is an Argentine hexaploid wheat variety that exhibits a translocation on chromosome 7A, carrying a segment of chromosome 7E from Lophopyrum ponticum. In this translocation are located resistance genes to rust Lr19 and the Psy-E1 gene, which imparts yellow coloration to the flour [14].
- BC6F3 line of the Argentinean variety BIOINTA 3000 incorporates a segment containing the GPC-B1 gene from Triticum turgidum ssp. dicoccoides on chromosome 6B. This gene is involved in senescence and nutrient remobilization to the grain, resulting in an increase in protein content [15]. Additionally, the BIOINTA 3000 variety carries the High Molecular Weight Glutenin allele Glu-B1al, also known as the Glu-B1 7 overexpressed allele (Glu-B1 7oe). This allele has been strongly associated with improving gluten strength in genotypes possessing it [16].
2.1.1. Breeding Scheme and Marker-Assisted Selection
2.1.2. Molecular Markers Used in the MAS Process
2.1.3. Field Trials and Agronomic Performance
2.2. Grain Vitreousness and Milling
2.3. Particle Size Distribution
2.4. Chemical Analysis
2.5. Starch Pasting Properties
2.6. Solvent Retention Capacity
2.7. Pasta Making
2.8. Pasta Cooking Properties
2.9. Cooked Pasta Textural Analysis
2.10. Color of Semolina and Pasta
2.11. Statistical Analysis
3. Results and Discussion
3.1. Grain Vitreousness
3.2. Particle Size Distribution
3.3. Chemical Analysis
3.4. Color of Semolina
3.5. Pasting Properties of Semolina Samples
3.6. Solvent Retention Capacity
3.7. Pasta Cooking Properties
3.8. Cooked Pasta Textural Analysis
3.9. Color of Cooked Pasta
3.10. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MAS | Marker-assisted selection |
TAx | Total arabinoxylans |
WEAx | Water-extractable arabinoxylans |
WG | Wet gluten |
DG | Dry gluten |
GI | Gluten index |
PT | Pasting temperature |
PV | Peak viscosity |
FV | Final viscosity |
BV | Breakdown viscosity |
SRCW | Water solvent retention capacity |
SRCSuc | Sucrose solvent retention capacity |
SRSCarb | Sodium carbonate solvent retention capacity |
SRCLac | Lactic acid solvent retention capacity |
OTC | Optimal cooking time |
WA | Water absorption |
SI | Swelling index |
CL | Cooking loss |
PCA | Principal Component Analysis |
References
- Taşci, R.; Karabak, S.; Bolat, M.; Özercan, B.; Candemir, S.; Kaplan Evlice, A.; Şanal, T.; Yazar, S.; Sari, G.; Arslan, S. The Economic Analysis of the Conversion of Wheat to Pasta. Wheat Stud. 2024, 13, 44–53. [Google Scholar]
- Alzuwaid, N.T.; Fellows, C.M.; Laddomada, B.; Sissons, M. Impact of Wheat Bran Particle Size on the Technological and Phytochemical Properties of Durum Wheat Pasta. J. Cereal Sci. 2020, 95, 103. [Google Scholar] [CrossRef]
- Sarkar, A.; Fu, B.X. Impact of Quality Improvement and Milling Innovations on Durum Wheat and End Products. Foods 2022, 11, 1796. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.; Sönmezoğlu, A.; Sayaslan, A.; Kandemir, N.; Gökmen, S. Molecular Breeding of Durum Wheat Cultivars for Pasta Quality. Qual. Assur. Saf. Crops Foods 2019, 11, 15–21. [Google Scholar] [CrossRef]
- Nikolić, V.; Simić, M.; Kandić, V.; Dodevska, M.; Titan, P.; Dodig, D.; Žilić, S. Pasting Properties and the Baking Functionality of Whole-Grain Wheat Flour with Different Amylose and Dietary Fibers Content. J. Food Process. Preserv. 2022, 46, 1–10. [Google Scholar] [CrossRef]
- Labuschagne, M.; Guzmán, C.; Phakela, K.; Wentzel, B.; van Biljon, A. Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress. Plants 2021, 10, 1000. [Google Scholar] [CrossRef] [PubMed]
- Sandeep, S.; Singh, N.; Isono, N.; Noda, T. Relationship of Granule Size Distribution and Amylopectin Structure with Pasting, Thermal, and Retrogradation Properties in Wheat Starch. J. Agric. Food Chem. 2010, 58, 1180–1188. [Google Scholar] [CrossRef]
- Arif, S.; Ahmed, M.; Chaudhry, Q.; Hasnain, A. Effects of Water Extractable and Unextractable Pentosans on Dough and Bread Properties of Hard Wheat Cultivars. LWT 2018, 97, 736–742. [Google Scholar] [CrossRef]
- Mastrangelo, A.M.; Cattivelli, L. What Makes Bread and Durum Wheat Different? Trends Plant Sci. 2021, 26, 677–684. [Google Scholar] [CrossRef]
- Helguera, M.; Battenfield, S.; Bekes, F. Grain Quality in Breeding. In Wheat Quality For Improving Processing And Human Health; Springer Nature: Cham, Switzerland, 2020; pp. 273–307. [Google Scholar]
- Dziki, D. Current Trends in Enrichment of Wheat Pasta: Quality, Nutritional Value and Antioxidant Properties. Processes 2021, 9, 1280. [Google Scholar] [CrossRef]
- Song, L.; Wang, R.; Yang, X.; Zhang, A.; Liu, D. Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum Aestivum L.). Agriculture 2023, 13, 642. [Google Scholar] [CrossRef]
- Tranquilli, G.; Heaton, J.; Chicaiza, O.; Dubcovsky, J. Substitutions and Deletions of Genes Related to Grain Hardness in Wheat and Their Effect on Grain Texture. Crop Sci. 2002, 42, 1812–1817. [Google Scholar] [CrossRef]
- Zhang, W.; Lukaszewski, A.J.; Kolmer, J.; Soria, M.A.; Goyal, S.; Dubcovsky, J. Molecular Characterization of Durum and Common Wheat Recombinant Lines Carrying Leaf Rust Resistance (Lr19) and Yellow Pigment (Y) Genes from Lophopyrum Ponticum. Theor. Appl. Genet. 2005, 111, 573–582. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef]
- Ragupathy, R.; Naeem, H.A.; Reimer, E.; Lukow, O.M.; Sapirstein, H.D.; Cloutier, S. Evolutionary Origin of the Segmental Duplication Encompassing the Wheat GLU-B1 Locus Encoding the Overexpressed Bx7 (Bx7OE) High Molecular Weight Glutenin Subunit. Theor. Appl. Genet. 2008, 116, 283–296. [Google Scholar] [CrossRef]
- Helguera, M.; Vanzetti, L.; Soria, M.; Khan, I.A.; Kolmer, J.; Dubcovsky, J. PCR Markers for Triticum Speltoides Leaf Rust Resistance Gene Lr51 and Their Use to Develop Isogenic Hard Red Spring Wheat Lines. Crop Sci. 2005, 45, 728–734. [Google Scholar] [CrossRef]
- Gautier, M.-F.; Aleman, M.-E.; Guirao, A.; Marion, D.; Joudrier, P. Triticum aestivum Puroindolines, Two Basic Cystine-Rich Seed Proteins: CDNA Sequence Analysis and Developmental Gene Expression. Plant Mol. Biol. 1994, 25, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Butow, B.J.; Gale, K.R.; Ikea, J.; Juhász, A.; BedÖ, Z.; Tamás, L.; Gianibelli, M.C. Dissemination of the Highly Expressed Bx7 Glutenin Subunit (Glu-B1al Allele) in Wheat as Revealed by Novel PCR Markers and RP-HPLC. Theor. Appl. Genet. 2004, 109, 1525–1535. [Google Scholar] [CrossRef]
- Distelfeld, A.; Uauy, C.; Fahima, T.; Dubcovsky, J. Physical Map of the Wheat High-grain Protein Content Gene Gpc-B1 and Development of a High-throughput Molecular Marker. New Phytol. 2006, 169, 753–763. [Google Scholar] [CrossRef]
- Prins, R.; Groenewald, J.Z.; Marais, G.F.; Snape, J.W.; Koebner, R.M.D. AFLP and STS Tagging of Lr19, a Gene Conferring Resistance to Leaf Rust in Wheat. Theor. Appl. Genet. 2001, 103, 618–624. [Google Scholar] [CrossRef]
- Molfese, E.R.; Astiz, V.; Seghesso, M.L. Evaluación de La Calidad Del Trigo Candeal (Triticum turgidum L. Subsp. Durum) En Los Programas de Mejoramiento de Argentina. Rev. Investig. Agropecu. 2017, 43, 303–311. [Google Scholar]
- Instituto Argentino de Racionalización de Materiales (IRAM). Norma IRAM 15864: Trigo y Harina de Trigo. Determinación de Gluten Húmedo, de Gluten Seco y de Índice de Gluten. Método de Lavado Automático; IRAM: Buenos Aires, Argentina, 2007. [Google Scholar]
- Paesani, C.; Moiraghi, M.; Sciarini, L.; Pérez, G.T. Whole-Flours from Hard and Soft Wheat Genotypes: Study of the Ability of Prediction Test to Estimate Whole Flour End-Use. J. Food Sci. Technol. 2021, 58, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- AACC. International Approved Methods, 11th ed.; AACC International, Ed.; AACC International: St Paul, MN, USA, 2010; ISBN 9781891127687. [Google Scholar]
- Hashimoto, S.; Shogren, M.; Pomeranz, Y. Cereal Pentosans: Their Estimation Ans Significance. Pentosans in Wheat and Milled Wheat Products. Cereal Chem. 1987, 64, 30–34. [Google Scholar]
- Gibson, T.S.; Solah, V.A.; McCleary, B.V. A Procedure to Measure Amylose in Cereal Starches and Flours with Concanavalin A. J. Cereal Sci. 1997, 25, 111–119. [Google Scholar] [CrossRef]
- Vignola, M.B.; Bustos, M.C.; Pérez, G.T. Comparison of Quality Attributes of Refined and Whole Wheat Extruded Pasta. LWT 2018, 89, 329–335. [Google Scholar] [CrossRef]
- Tudoricǎ, C.M.; Kuri, V.; Brennan, C.S. Nutritional and Physicochemical Characteristics of Dietary Fiber Enriched Pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Brimelow, C. Colour Measurement of Food by Colour Reflectance. In Colour in Food; MacDougall, D.B., Ed.; Woodhead Publishing: Cambridge, UK, 2002. [Google Scholar]
- Di Rienzo, J.; Casanoves, F.; Balzarini, M.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat, Versión 2020; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. [Google Scholar]
- Kaliniewicz, Z.; Markowska-Mendik, A.; Warechowska, M. An Analysis of the Correlations between the Hardness Index and Selected Physicochemical Properties of Wheat Grain. J. Cereal Sci. 2023, 110, 103643. [Google Scholar] [CrossRef]
- Ei-Khayat, G.H.; Samaan, J.; Brennan, C.S. Evaluation of Vitreous and Starchy Syrian Durum (Triticum durum) Wheat Grains: The Effect of Amylose Content on Starch Characteristics and Flour Pasting Properties. Starch/Staerke 2003, 55, 358–365. [Google Scholar] [CrossRef]
- Fu, B.X.; Wang, K.; Dupuis, B.; Taylor, D.; Nam, S. Kernel Vitreousness and Protein Content: Relationship, Interaction and Synergistic Effects on Durum Wheat Quality. J. Cereal Sci. 2018, 79, 210–217. [Google Scholar] [CrossRef]
- Arriaga, H.; Chidichimo, H.; Sempe, M. El carácter vitreo del grano de trigo. Rev. Fac. Agron. 1980, 1, 47–61. [Google Scholar]
- Chillo, S.; Laverse, J.; Falcone, P.M.; Protopapa, A.; Del Nobile, M.A. Influence of the Addition of Buckwheat Flour and Durum Wheat Bran on Spaghetti Quality. J. Cereal Sci. 2008, 47, 144–152. [Google Scholar] [CrossRef]
- Turnbull, K.; Kuenzli, T.; Willis, M.; Giles, J. Pasta and Semolina Technology. In Advances in Durum Millin; Kill, R., Turnbull, K., Eds.; Blackwell Science Ltd.: Oxford, UK, 2001; pp. 43–85. [Google Scholar]
- Sandberg, E. The Effect of Durum Wheat Bran Particle Size on the Quality of Bran Enriched Pasta. Master’s Thesis, Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2015. Series No. 405. Available online: http://stud.epsilon.slu.se/8198/ (accessed on 14 May 2025).
- FAO. Standard for Durum Wheat Semolina and Durum Wheat Flour; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B178-1991%252FCXS_178e.pdf (accessed on 14 May 2025).
- Yildirim, A.; Atasoy, A. Quality Characteristics of Some Durum Wheat Varieties Grown in Southeastern Anatolia Region of Turkey (GAP). Harran Tarım Gıda Bilim. Derg. 2020, 24, 420–431. [Google Scholar] [CrossRef]
- De Santis, M.A.; Kosik, O.; Passmore, D.; Flagella, Z.; Shewry, P.R.; Lovegrove, A. Data Set of Enzyme Fingerprinting of Dietary Fibre Components (Arabinoxylan and β-Glucan) in Old and Modern Italian Durum Wheat Genotypes. Data Brief. 2018, 16, 1062–1068. [Google Scholar] [CrossRef]
- Maeda, T.; Morita, N. Flour Quality and Pentosan Prepared by Polishing Wheat Grain on Breadmaking. Food Res. Int. 2003, 36, 603–610. [Google Scholar] [CrossRef]
- Hernandez-Espinosa, N.; Laddomada, B.; Payne, T.; Huerta-Espino, J.; Govindan, V.; Ammar, K.; Ibba, M.I.; Pasqualone, A.; Guzman, C. Nutritional Quality Characterization of a Set of Durum Wheat Landraces from Iran and Mexico. LWT 2020, 124, 109198. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Scalfati, G.; Cammerata, A.; Sgrulletta, D. Variations in Content and Extractability of Durum Wheat (Triticum Turgidum L. Var Durum) Arabinoxylans Associated with Genetic and Environmental Factors. Int. J. Mol. Sci. 2011, 12, 4536–4549. [Google Scholar] [CrossRef] [PubMed]
- Barron, C.; Bar-L’Helgouac’h, C.; Champ, M.; Saulnier, L. Arabinoxylan Content and Grain Tissue Distribution Are Good Predictors of the Dietary Fibre Content and Their Nutritional Properties in Wheat Products. Food Chem. 2020, 328, 127111. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Guo, X.; Zhu, K.; Wu, Z. A Review of the Impact of Starch on the Quality of Wheat-Based Noodles and Pasta: From the View of Starch Structural and Functional Properties and Interaction with Gluten. Foods 2024, 13, 1507. [Google Scholar] [CrossRef]
- Guo, P.; Yu, J.; Wang, S.; Wang, S.; Copeland, L. Effects of Particle Size and Water Content during Cooking on the Physicochemical Properties and in Vitro Starch Digestibility of Milled Durum Wheat Grains. Food Hydrocoll. 2018, 77, 445–453. [Google Scholar] [CrossRef]
- Sissons, M.; Abecassis, J.; Marchylo, B.; Cubadda, R. Methods Used to Assess and Predict Quality of Durum Wheat, Semolina, and Pasta. In Durum Wheat; Elsevier: Amsterdam, The Netherlands, 2012; pp. 213–234. [Google Scholar]
- De Cindio, B.; Baldino, N. Pasta: Manufacture and Composition. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 235–241. [Google Scholar]
- Brennan, C.S.; Samaan, J.; El-Khayat, G.H. The Effect of Genotype and Environmental Conditions on Grain Physiochemical Properties of Syrian Durum Wheat Cultivars. Int. J. Food Sci. Technol. 2012, 47, 2627–2635. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, N.; Kaur, S.; Katyal, M.; Virdi, A.S.; Kaur, D.; Ahlawat, A.K.; Singh, A.M. Relationship of Various Flour Properties with Noodle Making Characteristics among Durum Wheat Varieties. Food Chem. 2015, 188, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Heo, H.; Baik, B.-K.; Kang, C.-S.; Choo, B.-K.; Park, C.S. Influence of Amylose Content on Cooking Time and Textural Properties of White Salted Noodles. Food Sci. Biotechnol. 2012, 21, 345–353. [Google Scholar] [CrossRef]
- Gooding, M.J.; Shewry, P.R. Wheat; Wiley: Hoboken, NJ, USA, 2022; ISBN 9781119652557. [Google Scholar]
- Taneva, K.; Bozhanova, V.; Petrova, I. Variability, Heritability and Genetic Advance of Some Grain Quality Traits and Grain Yield in Durum Wheat Genotypes. Bulg. J. Agric. Sci. 2019, 25, 288–295. [Google Scholar]
- Kaplan Evlice, A. The Effect of Durum Wheat Genotypes on Cooking Quality of Pasta. Eur. Food Res. Technol. 2022, 248, 815–824. [Google Scholar] [CrossRef]
- Cecchini, C.; Bresciani, A.; Menesatti, P.; Pagani, M.A.; Marti, A. Assessing the Rheological Properties of Durum Wheat Semolina: A Review. Foods 2021, 10, 2947. [Google Scholar] [CrossRef]
- Gazza, L.; Galassi, E.; Nocente, F.; Natale, C.; Taddei, F. Cooking Quality and Chemical and Technological Characteristics of Wholegrain Einkorn Pasta Obtained from Micronized Flour. Foods 2022, 11, 2905. [Google Scholar] [CrossRef]
- Fanari, F.; Carboni, G.; Grosso, M.; Desogus, F. Thermal Properties of Semolina Doughs with Different Relative Amount of Ingredients. Sustainability 2020, 12, 2235. [Google Scholar] [CrossRef]
- Edwards, N.M.; Gianibelli, M.C.; McCaig, T.N.; Clarke, J.M.; Ames, N.P.; Larroque, O.R.; Dexter, J.E. Relationships between Dough Strength, Polymeric Protein Quantity and Composition for Diverse Durum Wheat Genotypes. J. Cereal Sci. 2007, 45, 140–149. [Google Scholar] [CrossRef]
- Cecchini, C.; Menesatti, P.; Antonucci, F.; Costa, C. Trends in Research on Durum Wheat and Pasta, a Bibliometric Mapping Approach. Cereal Chem. 2020, 97, 581–588. [Google Scholar] [CrossRef]
- Schulthess, A.; Matus, I.; Schwember, A.R. Genotypic and Environmental Factors and Their Interactions Determine Semolina Color of Elite Genotypes of Durum Wheat (Triticum turgidum L. Var. Durum) Grown in Different Environments of Chile. Field Crops Res. 2013, 149, 234–244. [Google Scholar] [CrossRef]
- Oduro-Obeng, H.; Fu, B.X.; Beta, T. Influence of Cooking Duration on Carotenoids, Physical Properties and in Vitro Antioxidant Capacity of Pasta Prepared from Three Canadian Durum Wheat Cultivars. Food Chem. 2021, 363, 130016. [Google Scholar] [CrossRef] [PubMed]
- Güller, S.; Koksel, H.; Ng, P.K.W. Effects of Industrial Pasta Drying Temperatures on Starch Properties and Pasta Quality. Food Res. Int. 2002, 35, 421–427. [Google Scholar] [CrossRef]
- Lai, H.-M. Effects of Hydrothermal Treatment on the Physicochemical Properties of Pregelatinized Rice Flour. Food Chem. 2001, 72, 455–463. [Google Scholar] [CrossRef]
- Maache-Rezzoug, Z.; Allaf, K. Study of the Effect of Hydrothermal Process Conditions on Pasta Quality. J. Cereal Sci. 2005, 41, 267–275. [Google Scholar] [CrossRef]
- Laurent, M.; Barbar, R.; Beaudoux, C.; Soubirou, E.; Lhomond, L.; Reau, A.; Cuq, B. Changes in Physico-Chemical Properties and Water Status of Durum Wheat Constituents in Pasta Due to Processing and Cooking. J. Cereal Sci. 2023, 112, 103707. [Google Scholar] [CrossRef]
- Wood, J.A. Texture, Processing and Organoleptic Properties of Chickpea-Fortified Spaghetti with Insights to the Underlying Mechanisms of Traditional Durum Pasta Quality. J. Cereal Sci. 2009, 49, 128–133. [Google Scholar] [CrossRef]
- Zi, Y.; Shen, H.; Dai, S.; Ma, X.; Ju, W.; Wang, C.; Guo, J.; Liu, A.; Cheng, D.; Li, H.; et al. Comparison of Starch Physicochemical Properties of Wheat Cultivars Differing in Bread- and Noodle-Making Quality. Food Hydrocoll. 2019, 93, 78–86. [Google Scholar] [CrossRef]
- Boukid, F.; Vittadini, E.; Prandi, B.; Mattarozzi, M.; Marchini, M.; Sforza, S.; Sayar, R.; Seo, Y.W.; Yacoubi, I.; Mejri, M. Insights into a Century of Breeding of Durum Wheat in Tunisia: The Properties of Flours and Starches Isolated from Landraces, Old and Modern Genotypes. LWT 2018, 97, 743–751. [Google Scholar] [CrossRef]
- Li, J.; Ye, F.; Lei, L.; Zhao, G. Combined Effects of Octenylsuccination and Oregano Essential Oil on Sweet Potato Starch Films with an Emphasis on Water Resistance. Int. J. Biol. Macromol. 2018, 115, 547–553. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M. Pasting Properties of Starch and Protein in Selected Cereals and Quality of Their Food Products. Food Chem. 2006, 95, 9–18. [Google Scholar] [CrossRef]
- Gaines, C. Collaborative Study of Methods for Solvent Retention Capacity Profiles (AACC Method 56-11). Cereal Foods World 2000, 45, 303–306. [Google Scholar]
- Dexter, J.E.; Matsuo, R.R.; Kosmolak, F.G.; Leisle, D.; Marchylo, B.A. The suitability of the sds-sedimentation test for assessing gluten strength in durum wheat. Can. J. Plant Sci. 1980, 60, 25–29. [Google Scholar] [CrossRef]
- Bokić, J.; Škrobot, D.; Tomić, J.; Šeregelj, V.; Abellán-Victorio, Á.; Moreno, D.A.; Ilić, N. Broccoli Sprouts as a Novel Food Ingredient: Nutritional, Functional and Sensory Aspects of Sprouts Enriched Pasta. LWT 2022, 172, 114203. [Google Scholar] [CrossRef]
- Suo, X.; Pompei, F.; Bonfini, M.; Mustafa, A.M.; Sagratini, G.; Wang, Z.; Vittadini, E. Quality of Wholemeal Pasta Made with Pigmented and Ancient Wheats. Int. J. Gastron. Food Sci. 2023, 31, 100665. [Google Scholar] [CrossRef]
- Padalino, L.; Mastromatteo, M.; Lecce, L.; Spinelli, S.; Contò, F.; Del Nobile, M.A. Effect of Durum Wheat Cultivars on Physico-Chemical and Sensory Properties of Spaghetti. J. Sci. Food Agric. 2014, 94, 2196–2204. [Google Scholar] [CrossRef]
- Martinez, C.S.; Ribotta, P.D.; León, A.E.; Añón, M.C. Physical, Sensory and Chemical Evaluation of Cooked Spaghetti. J. Texture Stud. 2007, 38, 666–682. [Google Scholar] [CrossRef]
- Cabas-Lühmann, P.A.; Manthey, F.A. Environment during Grain Filling Affects Pasta Color. Cereal Chem. 2020, 97, 967–980. [Google Scholar] [CrossRef]
Parent Hexaploid Wheats Lines | Control Durum Wheats Varieties | Hard Hexaploid Wheats Lines |
---|---|---|
BIOINTA 3000 GPC Linea Lr19 PIN Prointa Gaucho | ACA 1801 F Bonaerense INTA Cariló Bonaerense INTA Facón Bonaerense INTA Quillén | SD 31 SD 34 SD 39 SD 55 |
D(10) (µm) | D(50) (µm) | D(90) (µm) | d[4.3] (µm) | Span | Vitreousness (%) | |
---|---|---|---|---|---|---|
Control durum wheats | 26.68 a | 303.88 a | 752.22 a | 342.74 a | 2.33 b | 85.13 b |
SD 31 | 38.00 b | 310.46 a | 1646.26 b | 547.70 b | 5.07 a | 0 a |
SD 34 | 30.82 a | 290.96 a | 562.39 a | 302.13 a | 1.83 b | 0 a |
SD 39 | 31.01 a | 305.49 a | 593.63 a | 318.13 a | 1.84 b | 0 a |
SD 55 | 31.35 a | 283.60 a | 557.11 a | 295.14 a | 1.86 b | 0 a |
BIOINTA 3000 GPC | ** | ** | ** | ** | ** | 1 a |
Prointa Gaucho | ** | ** | ** | ** | ** | 4.25 a |
Linea Lr19 PIN | ** | ** | ** | ** | ** | 18.88 a |
Ash (%) | TAx (%) | WEAx (%) | Total Starch (%) | Amylose (%) | Protein Content (%) | WG (%) | DG (%) | GI | |
---|---|---|---|---|---|---|---|---|---|
Control durum wheats | 1.21 ± 0.03 a | 7.22 ± 0.3 a | 0.40 ± 0.05 a | 72.95 ± 0.7 a | 26.64 ± 0.52 b | 9.80 ± 0.12 a | 29.63 ± 1.5 a | 10.64 ± 0.4 a | 88.02 ± 1.2 a |
SD 31 | 1.14 ± 0.05 a | 6.58 ± 0.6 a | 0.50 ± 0.05 a | 69.90 ± 1.5 a | 26.96 ± 0.90 b | 11.80 ± 0.24 c | 29.70 ± 2.1 a | 11.49 ± 0.8 a | 94.47 ± 2.3 a |
SD 34 | 1.12 ± 0.09 a | 6.63 ± 0.8 a | 0.46 ± 0.06 a | 71.08 ± 1.8 a | 20.84 ± 0.95 a | 10.94 ± 0.34 b | 30.73 ± 2.5 a | 11.58 ± 1.0 a | 90.47 ± 2.8 a |
SD 39 | 1.03 ± 0.07 a | 8.24 ± 0.6 a | 0.50 ± 0.05 a | 71.66 ± 1.4 a | 23.05 ± 0.96 a | 10.96 ± 0.24 b | 27.06 ± 2.5 a | 10.45 ± 0.9 a | 93.29 ± 2.5 a |
SD 55 | 1.10 ± 0.07 a | 6.95 ± 0.6 a | 0.40 ± 0.03 a | 70.13 ± 1.4 a | 27.55 ± 1.00 b | 10.60 ± 0.24 b | 31.76 ± 2.5 a | 12.09 ± 0.9 a | 93.93 ± 2.5 a |
BIOINTA 3000 GPC | ** | ** | ** | ** | ** | 10.83 ± 0.40 b | 25.96 ± 2.0 a | 9.53 ± 0.60 a | 94.10 ± 2.6 a |
PV | Trough | BV | FV | Setback | PT | |
---|---|---|---|---|---|---|
Control durum wheats | 2261.13 ± 63 a | 1699.94 ± 43.5 b | 561.19 ± 22.4 a | 3552.88 ± 83.4 b | 1852.94 ± 40.6 b | 5.56 ± 0.02 a |
SD 31 | 2866.00 ± 120 b | 1704.25 ± 87.1 b | 1161.75 ± 44.9 c | 3691.75 ± 160 b | 1987.50 ± 81.8 b | 5.68 ± 0.05 b |
SD 34 | 2382.50 ± 150 a | 1464.50 ± 120 a | 918.00 ± 63 b | 3187.00 ± 150 a | 1722.50 ± 90.1 a | 5.67 ± 0.05 b |
SD 39 | 2188.50 ± 123 a | 1316.75 ± 87.1 a | 871.75 ± 44.1 b | 2917.75 ± 166 a | 1601.00 ± 81.3 a | 5.64 ± 0.05 b |
SD 55 | 2558.75 ± 125 a | 1736.75 ± 87.1 b | 822.00 ± 44.2 b | 3635.00 ± 166 b | 1898.25 ± 81.4 b | 5.77 ± 0.05 b |
SRSCarb | SRCSuc | SRCLac | SRCW | |
---|---|---|---|---|
Control durum wheats | 78.92 ± 0.60 b | 91.05 ± 1.33 b | 76.04 ± 1.12 b | 69.38 ± 0.73 b |
SD 31 | 76.34 ± 1.19 b | 78.54 ± 2.67 a | 73.17 ± 2.23 b | 65.36 ± 1.40 a |
SD 34 | 72.49 ± 1.68 a | 76.48 ± 3.77 a | 66.87 ± 3.10 a | 64.09 ± 2.10 a |
SD 39 | 72.43 ± 1.19 a | 71.74 ± 2.67 a | 67.93 ± 2.23 a | 63.23 ± 1.40 a |
SD 55 | 70.47 ± 1.19 a | 76.48 ± 3.77 a | 67.75 ± 2.23 a | 63.29 ± 1.40 a |
OCT (min) | CL (%) | SI (%) | WA (%) | Hardness (N) | Chewiness (N) | L* | a* | b* | |
---|---|---|---|---|---|---|---|---|---|
P-Control durum wheats | 7 a | 5.91 ± 0.15 a | 1.82 ± 0.05 a | 162.02 ± 3.10 a | 12.99 ± 0.28 c | 7.57 ± 0.21 c | 70.78 ± 0.40 c | 4.5 ± 0.16 a | 26.74 ± 0.30 b |
P-SD 31 | 12 c | 5.65 ± 0.29 a | 2.13 ± 0.11 a | 182.55 ± 4.30 b | 9.06 ± 0.53 b | 4.70 ± 0.39 a | 59.95 ± 0.80 a | 7.47 ± 0.32 c | 17.36 ± 0.60 a |
P-SD 34 | 13 d | 7.03 ± 0.23 b | 1.98 ± 0.15 a | 197.14 ± 5.20 b | 10.01 ± 0.72 b | 5.91 ± 0.53 b | 58.02 ± 0.90 a | 7.81 ± 0.45 c | 17.52 ± 0.80 a |
P-SD 39 | 13 d | 6.43 ± 0.29 b | 2.06 ± 0.11 a | 202.61 ± 5.03 b | 7.66 ± 0.48 a | 4.53 ± 0.36 a | 60.25 ± 0.80 a | 7.91 ± 0.32 c | 18.89 ± 0.60 a |
P-SD 55 | 13 d | 6.02 ± 0.29 a | 2.03 ± 0.11 a | 185.63 ± 4.50 b | 9.33 ± 0.51 b | 5.80 ± 0.37 b | 62.73 ± 0.80 b | 6.61 ± 0.32 b | 16.64 ± 0.60 a |
P-B | 9 b | 5.32 ± 0.15 a | 1.80 ± 0.05 a | 162.38 ± 3.10 a | 12.64 ± 0.23 c | 6.84 ± 0.41 c | ** | ** | ** |
P-PG | ** | ** | ** | ** | ** | ** | 59.08 ± 0.60 a | 7.42 ± 0.32 c | 17.61 ± 0.60 a |
Variables | e1 | e2 |
---|---|---|
D(10) | −0.29 | 0.19 |
D(50) | −0.06 | 0.44 |
D(90) | −0.13 | 0.42 |
d[4,3] | −0.14 | 0.42 |
WG | 0.09 | −0.19 |
DG | −0.08 | −0.20 |
SI | −0.33 | 0.06 |
CL | −0.04 | −0.39 |
WA | −0.27 | −0.27 |
Chewiness | 0.34 | −0.03 |
Hardness | 0.32 | 0.09 |
L* | 0.32 | 0.17 |
a* | −0.33 | −0.15 |
b* | 0.30 | 0.20 |
Semolina protein | −0.33 | 0.11 |
Pasta protein | −0.23 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vignola, M.B.; Bustos, M.C.; Vanzetti, L.; Andreatta, A.E.; Pérez, G.T. Characterization of Semolina and Pasta Obtained from Hard Hexaploid Wheat (Triticum aestivum L.) Developed Through Selection Assisted by Molecular Markers. Foods 2025, 14, 1990. https://doi.org/10.3390/foods14111990
Vignola MB, Bustos MC, Vanzetti L, Andreatta AE, Pérez GT. Characterization of Semolina and Pasta Obtained from Hard Hexaploid Wheat (Triticum aestivum L.) Developed Through Selection Assisted by Molecular Markers. Foods. 2025; 14(11):1990. https://doi.org/10.3390/foods14111990
Chicago/Turabian StyleVignola, María B., Mariela C. Bustos, Leonardo Vanzetti, Alfonsina E. Andreatta, and Gabriela T. Pérez. 2025. "Characterization of Semolina and Pasta Obtained from Hard Hexaploid Wheat (Triticum aestivum L.) Developed Through Selection Assisted by Molecular Markers" Foods 14, no. 11: 1990. https://doi.org/10.3390/foods14111990
APA StyleVignola, M. B., Bustos, M. C., Vanzetti, L., Andreatta, A. E., & Pérez, G. T. (2025). Characterization of Semolina and Pasta Obtained from Hard Hexaploid Wheat (Triticum aestivum L.) Developed Through Selection Assisted by Molecular Markers. Foods, 14(11), 1990. https://doi.org/10.3390/foods14111990