Novel Applications of Lactic Acid and Acetic Acid Bacteria Preparations in Shaping the Technological and Microbiological Quality of Ready-to-Cook Minced Pork
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Culture Media, and Growth Conditions
2.2. Meat Sample Preparation and Experimental Design
2.3. Physicochemical Analyses
2.3.1. The pH Measurement
2.3.2. Oxidation Reduction Potential (ORP) Measurement
2.3.3. Color Measurement
2.4. Microbiological Analysis
2.5. Lipid Oxidation and Fatty Acid Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Determination of pH and Oxidation Reduction Potential (ORP) Measurement
3.2. Color Assessment
3.3. Microbiological Quality
3.4. TBARS and Lipid Oxidation Measurements
3.5. Fatty Acid Profile
3.6. Exploratory Factor Analysis (EFA)
3.7. Functional Principal Component Analysis (FPCA)
4. Conclusions
- (1)
- Microbiological safety by inhibiting spoilage-related microbial growth;
- (2)
- Oxidative stability, through a reduction in lipid oxidation;
- (3)
- Technological quality, by maintaining parameters such as pH and color during refrigerated storage.
- (1)
- Sensory evaluation (flavor, aroma, texture) and consumer acceptance;
- (2)
- Validation under industrial conditions, including logistical stressors;
- (3)
- Broader formulation testing to confirm scalability and robustness.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arokiyaraj, S.; Dinakarkumar, Y.; Shin, H. A comprehensive overview on the preservation techniques and packaging of processed meat products: Emphasis on natural derivatives. J. King Saud Univ.-Sci. 2024, 36, 103032. [Google Scholar] [CrossRef]
- Xu, M.M.; Kaur, M.; Pillidge, C.J.; Torley, P.J. Evaluation of the potential of protective cultures to extend the microbial shelf-life of chilled lamb meat. Meat Sci. 2021, 181, 108613. [Google Scholar] [CrossRef]
- Trabelsi, I.; Ben Slima, S.; Ktari, N.; Triki, M.; Abdehedi, R.; Abaza, W.; Moussa, H.; Abdeslam, A.; Ben Salah, R. Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Sci. 2019, 154, 29–36. [Google Scholar] [CrossRef]
- Śmiecińska, K.; Daszkiewicz, T.; Krajewska, A.; Kubiak, D. Effect of the addition of different forms of rosemary (Rosmarinus officinalis L.) on the quality of vacuum-packed minced pork. J. Vet. Res. 2024, 68, 419–426. [Google Scholar] [CrossRef]
- Sharafi, H.; Divsalar, E.; Rezaei, Z.; Liu, S.Q.; Moradi, M. The potential of postbiotics as a novel approach in food packaging and biopreservation: A systematic review of the latest developments. Crit. Rev. Food Sci. Nutr. 2023, 64, 12524–12554. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, S.; Echegaray, N.; Kumar, M.; Chaari, M.; D’Amore, T.; Shariati, M.A.; Rebezov, M.; Lorenzo, J.M. Beyond conventional meat preservation: Saddling the control of bacteriocin and lactic acid bacteria for clean label and functional meat products. Appl. Biochem. Biotechnol. 2024, 196, 3604–3635. [Google Scholar] [CrossRef] [PubMed]
- Sionek, B.; Szydłowska, A.; Kołożyn-Krajewska, D. The Role of Microorganisms and Their Antibacterial Compounds in Food Biopreservation. Appl. Sci. 2024, 14, 5557. [Google Scholar] [CrossRef]
- Marcelli, V.; Osimani, A.; Aquilanti, L. Research progress in the use of lactic acid bacteria as natural biopreservatives against Pseudomonas spp. in meat and meat products: A review. Food Res. Int. 2024, 196, 115129. [Google Scholar] [CrossRef]
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2022, 183, 108661. [Google Scholar] [CrossRef]
- Abedin, M.; Chourasia, R.; Phukon, L.C.; Sarkar, P.; Ray, R.C.; Singh, S.P.; Rai, A.K. Lactic acid bacteria in the functional food industry: Biotechnological properties and potential applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 10730–10748. [Google Scholar] [CrossRef]
- Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yılmaz, N.; Lotfi, A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef] [PubMed]
- Padureanu, C.; Maier, A.; Padureanu, V.; Nedelcu, A.; Lupu, M.; Badarau, C. The total content of polyphenols and the antioxidant properties of several berry vinegars. Bull. Transilv. Univ. Bras. Ser. II For. Wood Ind. Agric. Food Eng. 2022, 15, 145–156. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Kulczyński, B.; Xindi, Y.; Gumienna, M. Research on the effect of culture time on the kombucha tea beverage? s antiradical capacity and sensory value. Acta Sci. Pol. Technol. Aliment. 2016, 15, 447–457. [Google Scholar] [CrossRef]
- Neffe-Skocinska, K.; Karbowiak, M.; Kolozyn-Krajewska, D.; Zielinska, D. Polyphenol and antioxidant properties of food obtained by the activity of acetic acid bacteria (AAB)—A systematic review. J. Funct. Foods 2023, 107, 105691. [Google Scholar] [CrossRef]
- Okoń, A.; Łepecka, A.; Szymański, P.; Neffe-Skocińska, K. The Effect of the Use of the Beneficial Acetic Acid Bacteria Starter Cultures on the Microbiological and Physicochemical Quality of Raw Ripening Sausages. Appl. Sci. 2024, 15, 263. [Google Scholar] [CrossRef]
- Abouloifa, H.; Hasnaoui, I.; Ben Slima, S.; Rokni, Y.; Gaamouche, S.; Trabelsi, I.; Bellaouchi, R.; Ghabbour, N.; Ben Salah, R.; Jaouadi, B.; et al. Bio-preservation Effect of Probiotic Lactiplantibacillus plantarum S61 Against Rhodotorula glutinis and Listeria monocytogenes in Poultry Meat. Curr. Microbiol. 2022, 79, 232. [Google Scholar] [CrossRef]
- Moradi, M.; Tajik, H.; Mardani, K.; Ezati, P. Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beef. Vet. Res. Forum 2019, 10, 193–198. [Google Scholar] [PubMed]
- Liang, M.; Wang, H.; Zhou, Z.; Huang, Y.; Suo, H. Antibacterial mechanism of Lactiplantibacillus plantarum SHY96 cell-free supernatant against Listeria monocytogenes revealed by metabolomics and potential application on chicken breast meat preservation. Food Chem. X 2025, 25, 102078. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Gu, L.; Lv, Y.; Li, J.; Yang, Y.; Meng, X. Cell-Free Supernatant of Lactiplantibacillus plantarum 90: A Clean Label Strategy to Improve the Shelf Life of Ground Beef Gel and Its Bacteriostatic Mechanism. Foods 2023, 12, 4053. [Google Scholar] [CrossRef]
- de Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A review of substrates, regulations, composition, and biological properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Długosz, E.; Szulc-Dąbrowska, L.; Zielińska, D. Novel Gluconobacter oxydans strains selected from Kombucha with potential postbiotic activity. Appl. Microbiol. Biotechnol. 2024, 108, 27. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Rzepkowska, A.; Radawska, A.; Zieliński, K. In Vitro screening of selected probiotic properties of Lactobacillus strains isolated from traditional fermented cabbage and cucumber. Curr. Microbiol. 2015, 70, 183–194. [Google Scholar] [CrossRef]
- Zielińska, D.; Długosz, E.; Zawistowska-Deniziak, A. Functional Properties of Food Origin Lactobacillus in the Gastrointestinal Ecosystem—In Vitro Study. Probiotics Antimicrob. Proteins 2019, 11, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Łepecka, A.; Ołdak, A.; Długosz, E.; Kołożyn-Krajewska, D. Growth and adhesion inhibition of pathogenic bacteria by live and heat-killed food-origin Lactobacillus strains or their supernatants. FEMS Microbiol. Lett. 2021, 368, fnab024. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Reig, M. Innovations for healthier processed meats. Trends Food Sci. Technol. 2011, 22, 517–522. [Google Scholar] [CrossRef]
- Łaszkiewicz, B.; Szymański, P.; Zielińska, D.; Kołożyn-Krajewska, D. Application of Lactiplantibacillus plantarum SCH1 for the bioconservation of cooked sausage made from mechanically separated poultry meat. Appl. Sci. 2021, 11, 1576. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Szymański, P.; Okoń, A.; Zielińska, D.; Łaszkiewicz, B.; Kołożyn-Krajewska, D.; Dolatowski, Z.J. Use of Selected Environmental Lactic Acid Bacteria During Industrial Production of Heat-Treated Nitrite-Free Organic Sausage. Foods 2025, 14, 1028. [Google Scholar] [CrossRef]
- Tomasevic, I.; Djekic, I.; Font-I-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent advances in meat color research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- ISOP 12966-1: 2014; Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. International Organization for Standardization: Geneva, Switzerland, 2014.
- Wojnar, J.; Zieliński, W. Analiza wskaźnika zatrudnienia w krajach nowej UE z wykorzystaniem FPCA. Metod. Ilościowe W Badaniach Ekon. 2018, 19, 183–191. [Google Scholar] [CrossRef]
- Okoye, C.O.; Gao, L.; Wu, Y.; Li, X.; Wang, Y.; Jiang, J. Identification, characterization and optimization of culture medium conditions for organic acid-producing lactic acid bacteria strains from Chinese fermented vegetables. Prep. Biochem. Biotechnol. 2024, 54, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Tanwar, V.K. Effects of incorporation of ground mustard on quality attributes of chicken nuggets. J. Food Sci. Technol. 2011, 48, 759–762. [Google Scholar] [CrossRef]
- Barbut, S. Measuring water holding capacity in poultry meat. Poult. Sci. 2024, 103, 103577. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.D. The eating quality of meat: IV—Water holding capacity and juiciness. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 457–508. [Google Scholar]
- Zduńczyk, W.; Modzelewska-Kapituła, M.; Tkacz, K. Influence of Oxygen and Carbon Dioxide Content in Modified Atmosphere Packaging on the Colour and Water-Holding Capacity of Pork Loin. Appl. Sci. 2024, 14, 3420. [Google Scholar] [CrossRef]
- Łepecka, A.; Szymański, P.; Okoń, A.; Zielińska, D. Antioxidant activity of environmental lactic acid bacteria strains isolated from organic raw fermented meat products. LWT 2023, 174, 114440. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Bohrer, B.; Lorenzo, J.M. Protein oxidation in muscle foods: A comprehensive review. Antioxidants 2021, 11, 60. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Muzolf-Panek, M.; Kaczmarek, A.; Tomaszewska-Gras, J.; Cegielska-Radziejewska, R.; Majcher, M. Oxidative and microbiological stability of raw ground pork during chilled storage as affected by Plant extracts. Int. J. Food Prop. 2019, 22, 111–129. [Google Scholar] [CrossRef]
- Mitacek, R.; Ramanathan, R.; VanOverbeke, D.; Mafi, G.; Brennecke, K.; Poulson, J. Effects of Packaging, Antioxidants, and Nadh on Ground Beef Color and Oxidation Reduction Potential. Meat Muscle Biol. 2018, 1, 163. [Google Scholar] [CrossRef]
- Kaczmarek, A.M.; Muzolf-Panek, M. Predictive modelling of TBARS changes in the intramuscular lipid fraction of raw ground pork enriched with plant extracts. J. Food Sci. Technol. 2022, 59, 1756–1768. [Google Scholar] [CrossRef]
- Stadnik, J.; Kęska, P.; Gazda, P.; Siłka, Ł.; Kołożyn-Krajewska, D. Influence of LAB fermentation on the color stability and oxidative changes in dry-cured meat. Appl. Sci. 2022, 12, 11736. [Google Scholar] [CrossRef]
- Yang, H.; Luo, X.; Zhu, L.; Liang, R.; Mao, Y.; Yang, X.; Niu, L.; Zhang, Y.; Dong, P. The biological effect of a beef-derived Latilactobacillus sakei on beef steaks during chilled storage. Food Sci. Nutr. 2023, 11, 1059–1072. [Google Scholar] [CrossRef] [PubMed]
- İncili, G.K.; Karatepe, P.; Akgöl, M.; Güngören, A.; Koluman, A.; İlhak, O.I.; Kanmaz, H.; Kaya, B.; Hayaloğlu, A.A. Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiol. 2022, 104, 104001. [Google Scholar] [CrossRef]
- Cardona, M.; Izquierdo, D.; Barat, J.M.; Fernández-Segovia, I. Intrinsic and extrinsic attributes that influence choice of meat and meat products: Techniques used in their identification. Eur. Food Res. Technol. 2023, 249, 2485–2514. [Google Scholar] [CrossRef]
- Feuz, R.; Norwood, F.B.; Ramanathan, R. Do consumers have an appetite for discolored beef? Agribusiness 2020, 36, 631–652. [Google Scholar] [CrossRef]
- Hultman, J.; Johansson, P.; Björkroth, J. Longitudinal metatranscriptomic analysis of a meat spoilage microbiome detects abundant continued fermentation and environmental stress responses during shelf life and beyond. Appl. Environ. Microbiol. 2020, 86, e01575-20. [Google Scholar] [CrossRef]
- Xu, M.M.; Kaur, M.; Pillidge, C.J.; Torley, P.J. Culture-dependent and culture-independent evaluation of the effect of protective cultures on spoilage-related bacteria in vacuum-packaged beef mince. Food Bioprocess Technol. 2023, 16, 382–394. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef]
- Tong, Y.; Abbas, Z.; Zhang, J.; Wang, J.; Zhou, Y.; Si, D.; Wei, X.; Zhang, R. Antimicrobial activity and mechanism of novel postbiotics against foodborne pathogens. LWT 2025, 217, 117464. [Google Scholar] [CrossRef]
- Arrioja-Bretón, D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control 2020, 115, 107286. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat. Food Chem. 2022, 376, 131881. [Google Scholar] [CrossRef]
- Wazir, H.; Chay, S.Y.; Ibadullah, W.Z.W.; Zarei, M.; Mustapha, N.A.; Saari, N. Lipid oxidation and protein co-oxidation in ready-to-eat meat products as affected by temperature, antioxidant, and packaging material during 6 months of storage. RSC Adv. 2021, 11, 38565–38577. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Tatiyaborworntham, N.; Oz, F.; Richards, M.P.; Wu, H. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chem. X 2022, 14, 100317. [Google Scholar] [CrossRef]
- Papadochristopoulos, A.; Kerry, J.P.; Fegan, N.; Burgess, C.M.; Duffy, G. Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021, 10, 1598. [Google Scholar] [CrossRef]
- Yu, H.H.; Chin, Y.W.; Paik, H.D. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021, 10, 2418. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Richards, M.P.; Undeland, I. Lipid oxidation and antioxidant delivery systems in muscle food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1275–1299. [Google Scholar] [CrossRef]
- Coombs, C.E.O.; Holman, B.W.B.; Ponnampalam, E.N.; Morris, S.; Friend, M.A.; Hopkins, D.L. Effects of chilled and frozen storage conditions on the lamb M. longissimus lumborum fatty acid and lipid oxidation parameters. Meat Sci. 2018, 136, 116–122. [Google Scholar] [CrossRef]
- Horbańczuk, O.K.; Moczkowska, M.; Marchewka, J.; Atanasov, A.G.; Kurek, M.A. The Composition of Fatty Acids in Ostrich Meat Influenced by the Type of Packaging and Refrigerated Storage. Molecules 2019, 24, 4128. [Google Scholar] [CrossRef]
- Ercolini, D.; Russo, F.; Torrieri, E.; Masi, P.; Villani, F. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl. Environ. Microbiol. 2006, 72, 4663–4671. [Google Scholar] [CrossRef] [PubMed]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 96–123. [Google Scholar] [CrossRef] [PubMed]
- Akhter, R.; Masoodi, F.; Wani, T.A.; Rather, S.A.; Hussain, P.R. Synergistic effect of low dose γ-irradiation, natural antimicrobial and antioxidant agents on quality of meat emulsions. Radiat. Phys. Chem. 2021, 189, 109724. [Google Scholar] [CrossRef]
- Ricardo-Rodrigues, S.; Rouxinol, M.I.; Agulheiro-Santos, A.C.; Potes, M.E.; Laranjo, M.; Elias, M. The antioxidant and antibacterial potential of thyme and clove essential oils for meat preservation—An overview. Appl. Biosci. 2024, 3, 87–101. [Google Scholar] [CrossRef]
- Rood, L. Shelf-Life Extension, Spoilage Community, High Spoilage Potential, Meat pH. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 2022. [Google Scholar]
- Zhu, Y.; Wang, W.; Li, M.; Zhang, J.; Ji, L.; Zhao, Z.; Zhang, R.; Cai, D.; Chen, L. Microbial diversity of meat products under spoilage and its controlling approaches. Front. Nutr. 2022, 9, 1078201. [Google Scholar] [CrossRef] [PubMed]
- Cañeque, V.; Pérez, C.; Velasco, S.; Dıaz, M.T.; Lauzurica, S.; Álvarez, I.; De Huidobro, F.R.; Onega, E.; De la Fuente, J. Carcass and meat quality of light lambs using principal component analysis. Meat Sci. 2004, 67, 595–605. [Google Scholar] [CrossRef]
- Hu, Y.; Suzuki, T.; Noguchi, G.; Li, Y.; Kitamura, Y.; Satake, T. Study on evaluation of carcass traits and pork quality using principal component analysis. J. Soc. Agric. Struct. Japan 2007, 37, 173–182. [Google Scholar]
- Kopuzlu, S.; Onenc, A.; Bilgin, O.; Esenbuga, N. Determination of meat quality through principal components analysis. J. Anim. Plant Sci. 2011, 21, 151–156. [Google Scholar]
Parameter | Time [Days] | Treatment | ||
---|---|---|---|---|
T1 | T2 | C | ||
pH | 0 | 6.02 ± 0.03 aA | 6.00 ± 0.04 aA | 6.03 ± 0.07 aA |
3 | 5.91 ± 0.04 bA | 5.91 ± 0.06 bA | 5.91 ± 0.02 bA | |
6 | 5.54 ± 0.04 cA | 5.38 ± 0.02 cB | 5.65 ± 0.10 cA | |
9 | 5.56 ± 0.09 cA | 5.55 ± 0.02 cA | 5.54 ± 0.10 cA | |
ORP (mV) | 0 | 333.50 ± 9.63 aA | 331.50 ± 8.00 aA | 335.50 ± 11.50 aA |
3 | 336.50 ± 7.88 aA | 334.00 ± 9.63 aA | 339.50 ± 12.75 abA | |
6 | 358.00 ± 21.63 bA | 362.00 ± 29.50 bA | 348.00 ± 15.38 bA | |
9 | 349.50 ± 16.25 cA | 336.50 ± 9.88 cA | 374.50 ± 32.75 cA |
Color Parameters | Time [Days] | Treatment | ||
---|---|---|---|---|
T1 | T2 | C | ||
L* | 0 | 56.37 ± 0.85 aA | 57.89 ± 1.18 aA | 56.74 ± 0.59 aA |
3 | 56.10 ± 1.24 bA | 56.46 ± 1.98 bA | 55.88 ± 1.39 aA | |
6 | 58.44 ± 0.50 cA | 56.92 ± 0.59 cAB | 56.49 ± 0.77 aB | |
9 | 58.07 ± 0.51 dA | 57.45 ± 0.50 acA | 57.81 ± 1.02 bA | |
a* | 0 | 3.96 ± 0.35 aA | 4.05 ± 0.36 aA | 4.69 ± 0.77 aA |
3 | 6.61 ± 0.33 bA | 6.41 ± 0.72 bAB | 5.83 ± 0.34 bB | |
6 | 6.12 ± 0.32 cA | 6.46 ± 0.29 bA | 5.90 ± 0.41 cB | |
9 | 6.13 ± 0.18 cA | 5.45 ± 0.64 cA | 6.01 ± 0.32 cA | |
b* | 0 | 9.15 ± 0.16 aA | 9.25 ± 0.36 aA | 8.16 ± 0.31 aB |
3 | 9.40 ± 0.28 bA | 9.15 ± 0.25 bA | 8.43 ± 0.28 bB | |
6 | 10.19 ± 0.26 cA | 10.25 ± 0.28 cA | 9.32 ± 0.23 cB | |
9 | 9.87 ± 0.26 dA | 10.06 ± 0.12 dA | 9.72 ± 0.42 dA |
Analyses | Time [Days] | Treatment | ||
---|---|---|---|---|
T1 | T2 | C | ||
TVC (log CFU/g) | 0 | 2.48 ± 0.15 aA | 2.43 ± 0.10 aB | 3.03 ± 0.12 aC |
3 | 2.50 ± 0.12 bA | 2.63 ± 0.17 bB | 2.92 ± 0.17 bC | |
6 | 2.80 ± 0.19 cA | 2.95 ± 0.15 cB | 3.28 ± 0.15 cC | |
9 | 2.98 ± 0.11 dA | 3.11 ± 0.19 dB | 4.55 ± 0.12 dC | |
LAB (log CFU/g) | 0 | 1.52 ± 0.15 aA | 1.31 ± 0.15 aB | 2.05 ± 0.11 aC |
3 | 1.52 ± 0.12 abA | 1.93 ± 0.14 bB | 1.44 ± 0.19 AC | |
6 | 1.95 ± 0.13 cA | 1.91 ± 0.16 cB | 2.40 ± 0.18 cC | |
9 | 2.45 ± 0.15 dA | 2.34 ± 0.11 dB | 4.26 ± 0.14 dC | |
ENT (log CFU/g) | 0 | 2.31 ± 0.107 aA | 2.28 ± 0.20 aB | 2.69 ± 0.17 aC |
3 | 2.29 ± 0.132 bA | 2.46 ± 0.16 bB | 2.78 ± 0.14 bC | |
6 | 2.52 ± 0.16 cA | 2.84 ± 0.13 cB | 3.13 ± 0.14 cC | |
9 | 2.83 ± 0.19 dA | 3.01 ± 0.13 dB | 4.01 ± 0.17 dC | |
EC (log CFU/g) | 0 | <2.00 | <2.00 | 2.13 ± 0.13 aC |
3 | <2.00 | <2.00 | 2.11 ± 0.12 bC | |
6 | 2.11 ± 0.11 cA | 2.18 ± 0.14 cB | 2.41 ± 0.11 cC | |
9 | <2.00 | <2.00 | <2.00 | |
STA (log CFU/g) | 0 | <2.00 | <2.00 | <2.00 |
3 | <2.00 | <2.00 | <2.00 | |
6 | <2.00 | <2.00 | <2.00 | |
9 | <2.00 | <2.00 | <2.00 | |
LM (log CFU/g) | 0 | nd | nd | nd |
3 | nd | nd | nd | |
6 | nd | nd | nd | |
9 | nd | nd | nd | |
SAL (log CFU/g) | 0 | nd | nd | nd |
3 | nd | nd | nd | |
6 | nd | nd | nd | |
9 | nd | nd | nd |
Parameter | Time | Treatment | ||
---|---|---|---|---|
T1 | T2 | C | ||
TBARS (mg MDA/kg of product) | 0 | 0.52 ± 0.13 aA | 0.46 ± 0.13 aA | 0.49 ± 0.09 aA |
3 | 0.69 ± 0.17 bA | 0.69 ± 0.19 bA | 0.70 ± 0.21 bA | |
6 | 0.40 ± 0.14 cA | 0.45 ± 0.10 cA | 0.40 ± 0.09 cA | |
9 | 0.34 ± 0.05 dA | 0.37 ± 0.03 cA | 0.43 ± 0.09 dA | |
Cholesterol (mg/100 g) | 0. | 53.22 ± 1.03 aA | 53.95 ± 1.45 aA | 53.42 ± 0.35 aA |
9 | 41.80 ± 0.40 bA | 40.22 ± 0.04 bB | 43.50 ± 1.11 bC | |
Peroxide value (mg/100 g) | 0 | 0.55 ± 0.10 aA | 0.62 ± 0.09 aA | 0.94 ± 0.18 aA |
9 | 5.10 ± 0.41 bA | 2.35 ± 0.32 bAB | 1.29 ± 0.24 aB | |
Acid value (mg/100 g) | 0 | 0.91 ± 0.06 aA | 1.35 ± 0.15 aA | 0.70 ± 0.04 aA |
9 | 1.20 ± 0.05 bA | 1.11 ± 0.09 aA | 1.01 ± 0.07 bA |
Category | Fatty Acids | Time [Days] | Treatment | |||
---|---|---|---|---|---|---|
T1 | T2 | C | ||||
SFA | Capric acid | 10:0 | 0 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA |
9 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | |||
SFA | Lauric acid | 12:0 | 0 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA |
9 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | |||
SFA | Myristic acid | 14:0 | 0 | 1.25 ± 0.01 aA | 1.27 ± 0.02 aAB | 1.32 ± 0.01 aC |
9 | 1.28 ± 0.01 bA | 1.27 ± 0.02 aA | 1.28 ± 0.01 bA | |||
SFA | Pentadecanoic acid | 15:0 | 0 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA |
9 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | |||
SFA | Palmitic acid | 16:0 | 0 | 23.42 ± 0.11 aA | 23.35 ± 0.14 aA | 23.55 ± 0.11 aA |
9 | 23.58 ± 0.10 bA | 23.53 ± 0.14 aA | 23.58 ± 0.11 bA | |||
MUFA | Palmitoleic acid | 16:1 | 0 | 2.70 ± 0.01 aA | 2.62 ± 0.04 aA | 2.65 ± 0.03 aA |
9 | 2.68 ± 0.01 bA | 2.65 ± 0.03 bA | 2.73 ± 0.03 bA | |||
SFA | Heptadecanoic acid | 17:0 | 0 | 0.35 ± 0.01 aA | 0.35 ± 0.01 aA | 0.33 ± 0.02 aA |
9 | 0.35 ± 0.01 aA | 0.32 ± 0.01 bA | 0.31 ± 0.01 bA | |||
MUFA | Heptadecenoic acid | 17:1 | 0 | 0.30 ± 0.00 aA | 0.30 ± 0.00 aA | 0.30 ± 0.00 aA |
9 | 0.30 ± 0.00 aA | 0.30 ± 0.00 aA | 0.30 ± 0.00 aA | |||
SFA | Stearic acid | 18:0 | 0 | 12.52 ± 0.03 aA | 12.52 ± 0.10 aA | 12.65 ± 0.03 aA |
9 | 12.83 ± 0.14 aA | 12.78 ± 0.11 bA | 12.67 ± 0.06 bA | |||
MUFA | Elaidic acid (trans isomer of oleic) | 18:1trans | 0 | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA |
9 | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | |||
MUFA | Oleic acid | 18:1cis9 | 0 | 39.03 ± 0.18 aA | 39.34 ± 0.10 aAB | 38.70 ± 0.03 aAC |
9 | 38.83 ± 0.11 aA | 39.07 ± 0.04 bA | 39.22 ± 0.02 bA | |||
MUFA | Vaccenic acid | 18:1cis11 | 0 | 2.97 ± 0.02 aA | 2.93 ± 0.02 aA | 2.90 ± 0.01 aA |
9 | 2.95 ± 0.01 aA | 2.85 ± 0.03 aA | 3.00 ± 0.01 aA | |||
MUFA | Other positional isomers of oleic acid | 18:1 c other | 0 | 0.23 ± 0.02 aA | 0.22 ± 0.01 aA | 0.23 ± 0.02 aA |
9 | 0.22 ± 0.01 bA | 0.22 ± 0.09 aA | 0.23 ± 0.02 aA | |||
PUFA | Linoleic acid (n-6) | 18:2 | 0 | 13.05 ± 0.03 aA | 13.41 ± 0.16 aA | 13.17 ± 0.11 aA |
9 | 12.83 ± 0.12 aA | 12.87 ± 0.21 bA | 12.58 ± 0.16 aA | |||
PUFA | Alpha-linolenic acid (ALA, n-3) | 18:3 n3 | 0 | 0.92 ± 0.03 aA | 0.95 ± 0.03 aA | 0.95 ± 0.03 aA |
9 | 0.93 ± 0.05 aA | 0.95 ± 0.06 aA | 0.90 ± 0.05 bA | |||
PUFA | Conjugated linoleic acid (CLA, PUFA variant) | 18:2c9t11 | 0 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA |
9 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | |||
SFA | Arachidic acid | 20:0 | 0 | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA |
9 | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | |||
MUFA | Gadoleic acid | 20:1 | 0 | 0.90 ± 0.00 aA | 0.90 ± 0.00 aA | 0.90 ± 0.00 aA |
9 | 0.90 ± 0.00 aA | 0.90 ± 0.00 aA | 0.90 ± 0.00 aA | |||
PUFA | Eicosadienoic acid | 20:2 | 0 | 0.62 ± 0.01 aA | 0.633 ± 0.017 aBA | 0.58 ± 0.01 aC |
9 | 0.58 ± 0.01 bA | 0.567 ± 0.017 bA | 0.57 ± 0.02 bA | |||
PUFA | Dihomo-γ-linolenic acid (DGLA, n-6) | 20:3n6 | 0 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA |
9 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | |||
PUFA | Arachidonic acid (AA, n-6) | 20:4n6 | 0 | 0.43 ± 0.03 aA | 0.37 ± 0.03 aA | 0.42 ± 0.06 aA |
9 | 0.38 ± 0.01 aA | 0.40 ± 0.00 bB | 0.40 ± 0.00 aBC | |||
PUFA | Adrenic acid (n-6) | 22:4n6 | 0 | 0.12 ± 0.01 aA | 0.12 ± 0.01 aA | 0.12 ± 0.01 aA |
9 | 0.12 ± 0.01 bA | 0.12 ± 0.01 aA | 0.12 ± 0.01 bA | |||
PUFA | Docosapentaenoic acid (DPA, n-3) | 22:5n3 | 0 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA |
9 | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA | 0.10 ± 0.00 aA |
Components [Day 0] | Factors | Specificity Factor | ||
---|---|---|---|---|
1 | 2 | 3 | ||
ENT | 1.005 | −0.014 | ||
TVC | 0.974 | 0.041 | ||
LAB | 0.900 | 0.180 | ||
EC | 0.779 | 0.384 | ||
b* | −0.778 | 0.537 | 0.086 | |
STA | −0.579 | 0.657 | ||
ORP | 0.919 | 0.172 | ||
TBARS | 0.902 | 0.187 | ||
a* | 0.826 | 0.202 | ||
L* | 0.787 | 0.266 | ||
pH | 0.747 | 0.385 | ||
cholesterol | 0.885 | 0.235 | ||
peroxide value | 0.783 | 0.297 | ||
acid value | −0.717 | 0.368 |
Factors | Total | % of Variance | Cumulative % |
---|---|---|---|
1 | 4.603 | 32.877 | 32.877 |
2 | 3.861 | 27.576 | 60.453 |
3 | 2.089 | 14.922 | 75.375 |
Components [Day 9] | Factors | Specificity Factor | ||
---|---|---|---|---|
1 | 2 | 3 | ||
ENT | −0.689 | 0.531 | ||
TVC | 0.924 | 0.105 | ||
LAB | 0.804 | 0.217 | ||
EC | 0.922 | 0.040 | ||
b* | 0.753 | 0.445 | ||
STA | 0.758 | 0.250 | ||
ORP | 0.997 | −0.004 | ||
TBARS | 0.978 | 0.027 | ||
a* | 0.992 | 0.007 | ||
L* | 0.988 | 0.016 | ||
pH | 0.931 | 0.112 | ||
cholesterol | 0.664 | 0.362 | ||
peroxide value | 0.727 | 0.235 | ||
acid value | 0.682 | 0.434 |
Factors | Total | % of Variance | Cumulative % |
---|---|---|---|
1 | 5.570 | 39.787 | 39.787 |
2 | 4.006 | 28.615 | 68.402 |
3 | 1.648 | 11.768 | 80.170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbowiak, M.; Okoń, A.; Łaszkiewicz, B.; Szymański, P.; Zielińska, D. Novel Applications of Lactic Acid and Acetic Acid Bacteria Preparations in Shaping the Technological and Microbiological Quality of Ready-to-Cook Minced Pork. Foods 2025, 14, 1934. https://doi.org/10.3390/foods14111934
Karbowiak M, Okoń A, Łaszkiewicz B, Szymański P, Zielińska D. Novel Applications of Lactic Acid and Acetic Acid Bacteria Preparations in Shaping the Technological and Microbiological Quality of Ready-to-Cook Minced Pork. Foods. 2025; 14(11):1934. https://doi.org/10.3390/foods14111934
Chicago/Turabian StyleKarbowiak, Marcelina, Anna Okoń, Beata Łaszkiewicz, Piotr Szymański, and Dorota Zielińska. 2025. "Novel Applications of Lactic Acid and Acetic Acid Bacteria Preparations in Shaping the Technological and Microbiological Quality of Ready-to-Cook Minced Pork" Foods 14, no. 11: 1934. https://doi.org/10.3390/foods14111934
APA StyleKarbowiak, M., Okoń, A., Łaszkiewicz, B., Szymański, P., & Zielińska, D. (2025). Novel Applications of Lactic Acid and Acetic Acid Bacteria Preparations in Shaping the Technological and Microbiological Quality of Ready-to-Cook Minced Pork. Foods, 14(11), 1934. https://doi.org/10.3390/foods14111934