A Multifunctional Double-Network Hydrogel Based on Bullfrog Skin Collagen: High-Value Utilization of Aquaculture By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optimization of Collagen Extraction from Bullfrog Skin
2.2.1. Effect of Acid Concentration on Collagen Extraction Yield
2.2.2. Effect of Bullfrog Skin–Citric Acid Solution Ratio on Collagen Extraction Yield
2.2.3. Effect of Extraction Time on Collagen Extraction Yield
2.3. Synthesis and Quantification of OHA
2.4. Preparation of Composite Hydrogels (Gel–CO and Gel–CO@Zn)
2.5. Physicochemical Characterization of Gel–CO and Gel–CO@Zn
2.6. Swelling and Degradation Analysis of Gel–CO and Gel–CO@Zn
2.7. Analysis of Rheological Property
2.8. Self-Healing and Adhesiveness Evaluation
2.9. In Vitro Antimicrobial Analysis
2.10. Blood Compatibility and Hemostatic Properties
2.10.1. Hemocompatibility of Hydrogels
2.10.2. Blood Clotting Assessment
2.10.3. In Vivo Hemostasis Evaluation
2.11. Statistical Analysis
3. Results
3.1. Optimization of the Extraction Condition of Collagen from Bullfrog Skin
3.2. Characterization of Col and OHA
3.3. Preparation and Characterization of Gel–CO and Gel–CO@Zn Hydrogels
3.4. Self-Healing and Tissue Adhesiveness Properties of Gel–CO@Zn Hydrogel
3.5. Evaluation of Antibacterial and Hemostatic Effects
3.5.1. In Vitro Evaluation of Hemocompatibility and Hemostatic Properties
3.5.2. In Vivo Hemostatic Evaluation of Hydrogels by Mice Liver Injury and Tail Amputation Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Col | Collagen |
OHA | Oxidized hyaluronic acid |
HA | Hyaluronic acid |
BCI | Blood clotting index |
CMCS | Carboxymethyl chitosan |
References
- Zhu, Y.; Bao, M.; Chen, C.; Yang, X.; Yan, W.; Ren, F.; Wang, P.; Wen, P. Comparison of the Nutritional Composition of Bullfrog Meat from Different Parts of the Animal. Food Sci. Anim. Resour. 2021, 41, 1049. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zheng, X.; Kumar, V.; Liang, X.; Dong, H.; Huang, J.; Zhang, J. Effects of Nitrite Exposure on Biochemical Parameters and Liver Histopathology in American Bullfrogs (Aquarana catesbeiana). Aquacult. Int. 2024, 32, 9873–9889. [Google Scholar] [CrossRef]
- Cimenoglu, C. Waste-to-Wealth: American Bullfrog Skin-Derived Collagen for Wound Dressing Applications. Ph.D. Thesis, Nanyang Technological University, Singapore, 2021. [Google Scholar]
- Nan, J.; Zou, M.; Wang, H.; Xu, C.; Zhang, J.; Wei, B.; He, L.; Xu, Y. Effect of Ultra-High Pressure on Molecular Structure and Properties of Bullfrog Skin Collagen. Int. J. Biol. Macromol. 2018, 111, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.K.; Çimenoğlu, Ç.; Cheam, N.M.J.; Hu, X.; Tay, C.Y. Sustainable Aquaculture Side-Streams Derived Hybrid Biocomposite for Bone Tissue Engineering. Mater. Sci. Eng. C 2021, 126, 112104. [Google Scholar] [CrossRef]
- Govindharaj, M.; Roopavath, U.K.; Rath, S.N. Valorization of Discarded Marine Eel Fish Skin for Collagen Extraction as a 3D Printable Blue Biomaterial for Tissue Engineering. J. Clean. Prod. 2019, 230, 412–419. [Google Scholar] [CrossRef]
- Ma, W.; Yang, M.; Wu, D.; Li, Y.; Wang, L.-S.; El-Seedi, H.R.; Wu, C.; Du, M. Fish Skin Gelatin-Based Adhesive Hydrogels Loading Cod Peptides with Osteogenic Activity for Bone Tissue Engineering. Colloids Surf. 2023, 673, 131695. [Google Scholar] [CrossRef]
- Naenni, N.; Walter, P.; Hämmerle, C.H.; Jung, R.E.; Thoma, D.S. Augmentation of Soft Tissue Volume at Pontic Sites: A Comparison between a Cross-Linked and a Non-Cross-Linked Collagen Matrix. Clin. Oral. Investig. 2021, 25, 1535–1545. [Google Scholar] [CrossRef]
- Gu, L.; Shan, T.; Ma, Y.; Tay, F.R.; Niu, L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019, 37, 464–491. [Google Scholar] [CrossRef]
- Menezes, M.d.L.L.R.; Ribeiro, H.L.; Flávia de Oliveira, M.; de Andrade Feitosa, J.P.; de S. Filho, M.d.S.M. Optimization of the Collagen Extraction from Nile Tilapia Skin (Oreochromis niloticus) and Its Hydrogel with Hyaluronic Acid. Colloids Surf. 2020, 189, 110852. [Google Scholar] [CrossRef]
- Yin, Y.; Gu, Q.; Liu, X.; Liu, F.; McClements, D.J. Double Network Hydrogels: Design, Fabrication, and Application in Biomedicines and Foods. Adv. Colloid. Interface Sci. 2023, 320, 102999. [Google Scholar] [CrossRef]
- Kang, D.; Wang, W.; Li, Y.; Ma, Y.; Huang, Y.; Wang, J. Biological Macromolecule Hydrogel Based on Recombinant Type I Collagen/Chitosan Scaffold to Accelerate Full-Thickness Healing of Skin Wounds. Polymers 2023, 15, 3919. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wu, D.; Ma, W.; Wu, C.; Liu, J.; Du, M. Strong Fish Gelatin Hydrogels Double Crosslinked by Transglutaminase and Carrageenan. Food Chem. 2022, 376, 131873. [Google Scholar] [CrossRef]
- Sivakumar, P.M.; Yetisgin, A.A.; Sahin, S.B.; Demir, E.; Cetinel, S. Bone Tissue Engineering: Anionic Polysaccharides as Promising Scaffolds. Carbohydr. Polym. 2022, 283, 119142. [Google Scholar] [CrossRef]
- Agarwal, G.; Agiwal, S.; Srivastava, A. Hyaluronic Acid Containing Scaffolds Ameliorate Stem Cell Function for Tissue Repair and Regeneration. Int. J. Biol. Macromol. 2020, 165, 388–401. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Peng, D.; Nie, X.; Wang, J.; Yu, C.-Y.; Wei, H. Hyaluronic Acid-Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. Adv. NanoBiomed Res. 2022, 2, 2200124. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Zhang, T. Mechanism Study of BMSC-Exosomes Combined with Hyaluronic Acid Gel in the Treatment of Posttraumatic Osteoarthritis. Heliyon 2024, 10, e34192. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, Q.; He, X.; Wang, X.; Wen, Y.; Zeng, L.; Yu, W.; Hu, P.; Chen, H. A Multifunctional Hydrogel Based on Nature Polysaccharide Fabricated by Schiff Base Reaction. Eur. Polym. J. 2023, 197, 112330. [Google Scholar] [CrossRef]
- Tan, Y.; Ma, L.; Chen, X.; Ran, Y.; Tong, Q.; Tang, L.; Li, X. Injectable Hyaluronic Acid/Hydroxyapatite Composite Hydrogels as Cell Carriers for Bone Repair. Int. J. Biol. Macromol. 2022, 216, 547–557. [Google Scholar] [CrossRef]
- Enyu, X.; Xinbo, L.; Xuelian, C.; Huimin, C.; Yin, C.; Yan, C. Construction and Performance Evaluation of pH-Responsive Oxidized Hyaluronic Acid Hollow Mesoporous Silica Nanoparticles. Int. J. Biol. Macromol. 2024, 257, 128656. [Google Scholar] [CrossRef]
- Zhang, M.; Qiao, X.; Han, W.; Jiang, T.; Liu, F.; Zhao, X. Alginate-Chitosan Oligosaccharide-ZnO Composite Hydrogel for Accelerating Wound Healing. Carbohydr. Polym. 2021, 266, 118100. [Google Scholar] [CrossRef]
- Ma, L.; Su, W.; Ran, Y.; Ma, X.; Yi, Z.; Chen, G.; Chen, X.; Deng, Z.; Tong, Q.; Wang, X.; et al. Synthesis and Characterization of Injectable Self-Healing Hydrogels Based on Oxidized Alginate-Hybrid-Hydroxyapatite Nanoparticles and Carboxymethyl Chitosan. Int. J. Biol. Macromol. 2020, 165, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Zhang, S.; Zhang, Q.; Gao, W.; Wang, B.; Mu, S. Fabrication of pH-Stimuli Hydrogel as Bioactive Materials for Wound Healing Applications. Heliyon 2024, 10, e32864. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hao, Y.; Francesco, S.; Mao, X.; Huang, W.-C. A Chitosan-Based Antibacterial Hydrogel with Injectable and Self-Healing Capabilities. Mar. Life Sci. Technol. 2024, 6, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, J.; Liu, G.; Gao, S.; Wu, D.; Yang, L.; Luo, R.; Zhang, F.; Wang, Y. Hemocompatibility Multi-in-One Hydrogel Coating with ROS-Triggered Inflammation Suppression and Anti-Infection Properties for Blood-Contacting Device. Biomacromolecules 2022, 23, 4357–4369. [Google Scholar] [CrossRef]
- Yang, J.; Wang, T.; Zhang, L.; Fan, P.; Zhao, J.; Zheng, X.; Lai, Y.; Liu, H.; Wang, S. Injectable Hemostatic Hydrogel Adhesive with Antioxidant, Antibacterial and Procoagulant Properties for Hemorrhage Wound Management. J. Colloid. Interface Sci. 2024, 673, 395–410. [Google Scholar] [CrossRef]
- Qiao, Z.; Lv, X.; He, S.; Bai, S.; Liu, X.; Hou, L.; He, J.; Tong, D.; Ruan, R.; Zhang, J.; et al. A Mussel-Inspired Supramolecular Hydrogel with Robust Tissue Anchor for Rapid Hemostasis of Arterial and Visceral Bleedings. Bioact. Mater. 2021, 6, 2829–2840. [Google Scholar] [CrossRef]
- Zhang, D.; Mei, L.; Hao, Y.; Yi, B.; Hu, J.; Wang, D.; Zhao, Y.; Wang, Z.; Huang, H.; Xu, Y.; et al. A Hydrogel-Based First-Aid Tissue Adhesive with Effective Hemostasis and Anti-Bacteria for Trauma Emergency Management. Biomater. Res. 2023, 27, 56. [Google Scholar] [CrossRef]
- Shaik, M.I.; Rahman, S.H.A.; Yusri, A.S.; Ismail-Fitry, M.R.; Kumar, N.S.S.; Sarbon, N.M. A Review on the Processing Technique, Physicochemical, and Bioactive Properties of Marine Collagen. J. Food Sci. 2024, 89, 5205–5229. [Google Scholar] [CrossRef]
- Di, Y.; Chang-Feng, C.; Bin, W.; Guo-Fang, D.; Zhong-Rui, L. Characterization of Acid-and Pepsin-Soluble Collagens from Spines and Skulls of Skipjack Tuna (Katsuwonus pelamis). Chin. J. Nat. Med. 2014, 12, 712–720. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Chen, L.; Chen, L.; Zhou, C.; Hong, P.; Deng, C. Characterization and Comparison of Collagen Extracted from the Skin of the Nile Tilapia by Fermentation and Chemical Pretreatment. Food Chem. 2021, 340, 128139. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Shapawi, R.; Mokhtar, R.A.M.; Noordin, W.N.M.; Huda, N. Characterization of Acid-and Pepsin-Soluble Collagen Extracted from the Skin of Purple-Spotted Bigeye Snapper. Gels 2022, 8, 665. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, D.; Guo, S. Studies on Collagen from the Skin of Channel Catfish (Ictalurus punctaus). Food Chem. 2007, 101, 621–625. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, R. Characterisation of Acid-Soluble and Pepsin-Solubilised Collagen from Frog (Rana nigromaculata) Skin. Int. J. Biol. Macromol. 2017, 101, 638–642. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.; Zhang, J.; Su, T. Extraction and Characterization of Collagen Hydrolysates from the Skin of Rana chensinensis. 3 Biotech 2018, 8, 181. [Google Scholar] [CrossRef]
- Zhao, W.-H.; Chi, C.-F.; Zhao, Y.-Q.; Wang, B. Preparation, Physicochemical and Antioxidant Properties of Acid-and Pepsin-Soluble Collagens from the Swim Bladders of Miiuy Croaker (Miichthys miiuy). Mar. Drugs 2018, 16, 161. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, L.; Wan, W.; Zhang, C.; Liu, Y.; Luo, L.; Zhu, T.; Zhang, W. Preparation and Characterization of Mussel-Inspired Dual-Crosslinked Hydrogels Based on Hydroxypropyl Chitosan. J. Porous Mater. 2024, 31, 611–624. [Google Scholar] [CrossRef]
- Zhou, L.; Dai, C.; Fan, L.; Jiang, Y.; Liu, C.; Zhou, Z.; Guan, P.; Tian, Y.; Xing, J.; Li, X.; et al. Injectable Self-Healing Natural Biopolymer-Based Hydrogel Adhesive with Thermoresponsive Reversible Adhesion for Minimally Invasive Surgery. Adv. Funct. Mater. 2021, 31, 2007457. [Google Scholar] [CrossRef]
- Taboada, G.M.; Yang, K.; Pereira, M.J.; Liu, S.S.; Hu, Y.; Karp, J.M.; Artzi, N.; Lee, Y. Overcoming the Translational Barriers of Tissue Adhesives. Nat. Rev. Mater. 2020, 5, 310–329. [Google Scholar] [CrossRef]
- Pourshahrestani, S.; Zeimaran, E.; Kadri, N.A.; Mutlu, N.; Boccaccini, A.R. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv. Healthc. Mater. 2020, 9, 2000905. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X.; Li, J. Recent Advances in Adhesive Materials Used in the Biomedical Field: Adhesive Properties, Mechanism, and Applications. J. Mater. Chem. B 2023, 11, 3338–3355. [Google Scholar] [CrossRef]
- Tang, S.; Feng, K.; Yang, R.; Cheng, Y.; Chen, M.; Zhang, H.; Shi, N.; Wei, Z.; Ren, H.; Ma, Y. Multifunctional Adhesive Hydrogels: From Design to Biomedical Applications. Adv. Healthc. Mater. 2025, 14, 2403734. [Google Scholar] [CrossRef]
- Yuen, H.Y.; Bei, H.P.; Zhao, X. Underwater and Wet Adhesion Strategies for Hydrogels in Biomedical Applications. Chem. Eng. J. 2022, 431, 133372. [Google Scholar] [CrossRef]
- Du, D.; Chen, X.; Shi, C.; Zhang, Z.; Shi, D.; Kaneko, D.; Kaneko, T.; Hua, Z. Mussel-Inspired Epoxy Bioadhesive with Enhanced Interfacial Interactions for Wound Repair. Acta Biomater. 2021, 136, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Calabrese, E.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W.; Michael, P.; Rana, S. Self-Healing Epoxy Nanocomposites via Reversible Hydrogen Bonding. Compos. Part B Eng. 2019, 157, 1–13. [Google Scholar] [CrossRef]
- Quan, L.; Xin, Y.; Wu, X.; Ao, Q. Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers 2022, 14, 2184. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, L.; Wang, G.; Han, L.; Chen, K.; Liu, P.; Xu, S.; Li, D.; Xie, Z.; Mo, X.; et al. Biocompatibility, Hemostatic Properties, and Wound Healing Evaluation of Tilapia Skin Collagen Sponges. J. Bioact. Compat. Polym. 2021, 36, 44–58. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, D.K.; Khanna, K.; Rai, Y.; Yadav, A.K.; Ansari, M.S.; Bhatt, A.N. A Calcium and Zinc Composite Alginate Hydrogel for Pre-Hospital Hemostasis and Wound Care. Carbohydr. Polym. 2023, 299, 120186. [Google Scholar] [CrossRef]
- Hong, Y.; Zhou, F.; Hua, Y.; Zhang, X.; Ni, C.; Pan, D.; Zhang, Y.; Jiang, D.; Yang, L.; Lin, Q.; et al. A Strongly Adhesive Hemostatic Hydrogel for the Repair of Arterial and Heart Bleeds. Nat. Commun. 2019, 10, 2060. [Google Scholar] [CrossRef]
- Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial Adhesive Injectable Hydrogels with Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing. Biomaterials 2018, 183, 185–199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Zheng, X.; Lu, Y. A Multifunctional Double-Network Hydrogel Based on Bullfrog Skin Collagen: High-Value Utilization of Aquaculture By-Products. Foods 2025, 14, 1926. https://doi.org/10.3390/foods14111926
Song C, Zheng X, Lu Y. A Multifunctional Double-Network Hydrogel Based on Bullfrog Skin Collagen: High-Value Utilization of Aquaculture By-Products. Foods. 2025; 14(11):1926. https://doi.org/10.3390/foods14111926
Chicago/Turabian StyleSong, Chunyu, Xiaoshan Zheng, and Ying Lu. 2025. "A Multifunctional Double-Network Hydrogel Based on Bullfrog Skin Collagen: High-Value Utilization of Aquaculture By-Products" Foods 14, no. 11: 1926. https://doi.org/10.3390/foods14111926
APA StyleSong, C., Zheng, X., & Lu, Y. (2025). A Multifunctional Double-Network Hydrogel Based on Bullfrog Skin Collagen: High-Value Utilization of Aquaculture By-Products. Foods, 14(11), 1926. https://doi.org/10.3390/foods14111926