Structure–Property Relevance of Two Pairs of Isomeric Steviol Rebaudiosides and the Underlying Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of α-1,6-Glycosylated Rebaudioside A
2.3. Determination of Solubility and Calculation of Solvation Free Energy of the SGs
2.4. Crystal Properties Measurement
2.5. Solution Interfacial Properties Determination and Calculation
2.6. Sensory Evaluation
2.7. Estimation of Interaction Energy Between Each SG with Receptor Proteins Toward Edulcorant Property
2.8. Determination of Stability of the SGs in Digestion Fluids
2.9. Statistical Analysis
3. Results
3.1. Preparation and Characterization of the Isomer of RD (RA1G)
3.2. Polarity, Solubility, Solution Interfacial Activity of the Isomeric Steviol Glycosides
3.3. Crystal Properties, Thermal and pH Stability
3.4. Sensory Features of the Isomer Pairs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARD | Average relative deviation |
CMC | Critical micelle concentrations |
DSC | Differential scanning calorimetry |
NVT | Constant number of particles, volume, and temperature ensemble |
NPT | Constant number of particles, pressure, and temperature ensemble |
RA | Rebaudioside A |
RE | Rebaudioside E |
RD | Rebaudioside D |
RA1G | Mono-glucosyl RA |
RMSD | Root mean square deviation |
SG | Steviol glycoside |
St | Stevioside |
TGA | Thermogravimetric analysis |
T/K | Temperature in Kelvin |
VFTD | Venus flytrap domain |
XRD | X-ray diffraction |
References
- Chai, L.J.; Lan, T.; Cheng, Z.; Zhang, J.; Deng, Y.; Wang, Y.; Li, Y.; Wang, F.; Piao, M. Stevia rebaudiana leaves fermented by Lactobacillus plantarum exhibit resistance to microorganisms and cancer cell lines in vitro: A potential sausage preservative. Food Chem. 2024, 432, 137187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tang, R.; Bi, J.; Shen, S.; Wu, Q.; Chen, Q.; Li, Y. Efficient bioconversion of stevioside and rebaudioside A to glucosylated steviol glycosides using an Alkalihalobacillus oshimesis-derived cyclodextrin glucanotransferase. Molecules 2023, 28, 1245. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ping, Q.; Yuan, Z.; Jiang, J.; Guo, B.; Liu, C.; Rao, Y.; Shi, J.; Zhang, Y. Highly efficient synthesis of mono-β-1,6-glucosylated rebaudioside A derivative catalyzed by glycosyltransferase YjiC. Carbohydr. Res. 2023, 523, 108737. [Google Scholar] [CrossRef] [PubMed]
- Santana, N.D.S.; Monteiro, S.N.; Silva, T.C.D.; Mothé, M.G. Investigation and determination of kinetic parameters of sweeteners based on steviol glycosides by isoconversional methods. Foods 2025, 14, 1233. [Google Scholar] [CrossRef]
- Gerwig, G.J.; te Poele, E.M.; Dijkhuizen, L.; Kamerling, J.P. Stevia glycosides: Chemical and enzymatic modifications of their carbohydrate moieties to improve the sweet-tasting quality. Adv. Carbohyd. Chem. Biochem. 2016, 73, 1–72. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, Q.; Xia, Y.; Zhang, Y.; Myint, K.z.; Wu, J. Steviol glycosides, an edible sweet surfactant that can modulate the interfacial and emulsifying properties of soy protein isolate solution. J. Food Eng. 2021, 289, 110264. [Google Scholar] [CrossRef]
- Yuan, Y.; Yiasmin, M.N.; Tristanto, N.A.; Chen, Y.; Liu, Y.; Guan, S.; Wang, Z.; Hua, X. Computational simulations on the taste mechanism of steviol glycosides based on their interactions with receptor proteins. Int. J. Biol. Macromol. 2024, 255, 128110. [Google Scholar] [CrossRef]
- Lee, T. Method to Improve Water Solubility of Rebaudioside D. U.S. Patent 870,322,422, 22 April 2014. [Google Scholar]
- Abelyan, V.; Markosyan, A.; Abelyan, L. High-Purity Rebaudioside D. U.S. Patent 8299224, 30 October 2012. [Google Scholar]
- Urai, S.; Takiyama, H. Improvement in Rebaudioside D Solubility by Preparing a Solid Phase with Erythritol Using Melt Crystallization Technology. J. Chem. Eng. Jpn. 2021, 54, 12–17. [Google Scholar] [CrossRef]
- Carakostas, M.C.; Curry, L.L.; Boileau, A.C.; Brusick, D.J. Overview: The history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem. Toxicol. 2008, 46, S1–S10. [Google Scholar] [CrossRef]
- Gerwig, G.J.; te Poele, E.M.; Dijkhuizen, L.; Kamerling, J.P. Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation. Carbohydr. Res. 2017, 440–441, 51–62. [Google Scholar] [CrossRef]
- Poele, E.M.t.; Devlamynck, T.; Jäger, M.; Gerwig, G.J.; Walle, D.V.d.; Dewettinck, K.; Hirsch, A.K.H.; Kamerling, J.P.; Soetaert, W.; Dijkhuizen, L. Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Sci. Rep. 2018, 8, 1516–1527. [Google Scholar] [CrossRef]
- Lee, S.-H.; Ko, J.-A.; Kim, H.; Jo, M. Enzymatic synthesis of glucosyl rebaudioside A and its characterization as a sweetener. J. Food Sci. 2019, 84, 3186–3193. [Google Scholar] [CrossRef]
- Musa, A.; Miao, M.; Zhang, T.; Jiang, B. Biotransformation of stevioside by Leuconostoc citreum SK24.002 alternansucrase acceptor reaction. Food Chem. 2014, 146, 23–29. [Google Scholar] [CrossRef]
- Musa, A.; Gasmalla, M.A.A.; Miao, M.; Zhang, T.; Aboshora, W.; Eibaid, A.; Jiang, B. Separation and Structural Characterization of Tri-Glucosyl-Stevioside. J. Acad. Ind. Res. 2014, 2, 593–598. [Google Scholar]
- Devlamynck, T.; Poele, E.M.t.; Quataert, K.; Gerwig, G.J.; Walle, D.V.d.; Dewettinck, K.; Kamerling, J.P.; Soetaert, W. Trans-alpha-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-Delta N-Q1140E improves its taste profile. Food Chem. 2019, 272, 653–662. [Google Scholar] [CrossRef]
- Wölwer-Rieck, U.; Wüst, M.; Perret, J.; Kuhnert, N.; Zimmermann, B.; Testai, L.; Frentzen, M.; Vennekens, R. Steviol Glycosides: Cultivation, Processing, Analysis and Applications in Food, 1st ed.; Royal Society of Chemistry: London, UK, 2019; Volume 7. [Google Scholar]
- Guo, Q.; Zhang, T.; Wang, N.; Xia, Y.; Zhou, Z.; Wang, J.; Mei, X. RQ3, a natural rebaudioside D isomer, was obtained from glucosylation of rebaudioside A catalyzed by the CGTase Toruzyme 3.0 L. J. Agric. Food Chem. 2019, 67, 8020–8028. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, J.; Guo, Q.; Xia, Y.; Hu, X.; Liu, X.; Wu, J. Production of rubusoside from high concentration of stevioside with or without rebaudioside A and its performance in micelle solubilization. Ind. Crops Prod. 2021, 162, 113245. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, W.; Wang, H.; Xia, Y. A Computational Approach to Understanding and Predicting the Edulcorant Profile of Glucosyl Steviol Glycosides. Foods 2024, 13, 1798. [Google Scholar] [CrossRef]
- Celaya, L.S.; Kolb, E.; Kolb, N. Solubility of stevioside and rebaudioside A in water, ethanol and their binary mixtures. Int. J. Food Stud. 2016, 5, 158–166. [Google Scholar] [CrossRef]
- Pereyaslavets, L.; Kamath, G.; Butin, O.; Illarionov, A.; Olevanov, M.; Kurnikov, I.; Sakipov, S.; Leontyev, I.; Voronina, E.; Gannon, T.; et al. Accurate determination of solvation free energies of neutral organic compounds from first principles. Nat. Commun. 2022, 13, 414. [Google Scholar] [CrossRef]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef]
- Côté, G.L.; Robyt, J.F. Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1→6), (1→3)-α-d-glucan ☆. Carbohydr. Res. 1982, 101, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.; Moulis, C.; Monties, N.; Pizzut-Serin, S.; Guieysse, D.; Morel, S.; Cioci, G.; Remaud-Simeon, M. Deciphering an Undecided Enzyme: Investigations of the Structural Determinants Involved in the Linkage Specificity of Alternansucrase. ACS Catal. 2019, 9, 2222–2237. [Google Scholar] [CrossRef]
- Yang, Z.; Uhler, B.; Zheng, T.; Adams, K.M. Enzymatic Synthesis and Characterization of a Novel α-1→6-Glucosyl Rebaudioside C Derivative Sweetener. Biomolecules 2019, 9, 27. [Google Scholar] [CrossRef]
- Watson, A.; Hackbusch, S.; Franz, A.H. NMR solution geometry of saccharides containing the 6-O-(α-D-glucopyranosyl)-α/β-D-glucopyranose (isomaltose) or 6-O-(α-D-galactopyranosyl)-α/β-D-glucopyranose (melibiose) core. Carbohydr. Res. 2019, 473, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Dowd, M.K.; Reilly, P.J.; French, A.D. Relaxed-residue conformational mapping of the three linkage bonds of isomaltose and gentiobiose with MM3 (92). Biopolym. Orig. Res. Biomol. 1994, 34, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Kinghorn, A.D. Stevia: The Genus Stevia; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Acevedo, W.; Gonzalez-Nilo, F.; Agosin, E. Docking and Molecular Dynamics of Steviol Glycoside-Human Bitter Receptor Interactions. J. Agric. Food Chem. 2016, 64, 7585–7596. [Google Scholar] [CrossRef]
- Kim, S.-K.; Chen, Y.; Abrol, R.; Goddard, W.A., III; Guthrie, B. Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists. Proc. Natl. Acad. Sci. USA 2017, 114, 2568–2573. [Google Scholar] [CrossRef]
- Valdes-Tresanco, M.S.; Valdes-Tresanco, M.E.; Valiente, P.A.; Moreno, E. AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol. Direct 2020, 15, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wang, W.; Guo, Q.; Wang, H.; Xia, Y. Structure–Property Relevance of Two Pairs of Isomeric Steviol Rebaudiosides and the Underlying Mechanism. Foods 2025, 14, 1917. https://doi.org/10.3390/foods14111917
Zhou Z, Wang W, Guo Q, Wang H, Xia Y. Structure–Property Relevance of Two Pairs of Isomeric Steviol Rebaudiosides and the Underlying Mechanism. Foods. 2025; 14(11):1917. https://doi.org/10.3390/foods14111917
Chicago/Turabian StyleZhou, Zhuoyu, Wanjie Wang, Qinbing Guo, Haijun Wang, and Yongmei Xia. 2025. "Structure–Property Relevance of Two Pairs of Isomeric Steviol Rebaudiosides and the Underlying Mechanism" Foods 14, no. 11: 1917. https://doi.org/10.3390/foods14111917
APA StyleZhou, Z., Wang, W., Guo, Q., Wang, H., & Xia, Y. (2025). Structure–Property Relevance of Two Pairs of Isomeric Steviol Rebaudiosides and the Underlying Mechanism. Foods, 14(11), 1917. https://doi.org/10.3390/foods14111917