Screening and Validation: AI-Aided Discovery of Dipeptidyl Peptidase-4 Inhibitory Peptides from Hydrolyzed Rice Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Questions
2.2. Machine Learning Model Training
2.2.1. Dataset Construction
2.2.2. Descriptor Construction
2.2.3. Machine Learning Model Construction
2.2.4. Model Evaluation
2.3. Data Acquisition and Protein Hydrolysis
2.4. Virtual Analysis and Prediction
2.5. Molecular Docking and Binding Analysis
2.6. Molecular Dynamics Simulations
2.7. Materials
2.8. Determination of DPP-IV-Inhibitory Activity
2.9. Statistical and Correlation Analysis
3. Results
3.1. Machine Learning Integration
3.2. Physicochemical Properties of Rice Peptides and Their Correlation
3.3. Docking Visualization and Peptide Analysis
3.4. Integrated Characterization of Structural Stability, Flexibility, and Ligand Binding Properties in Four Molecular Systems
3.4.1. Structural Stability and Global Conformational Features Across Five Molecular Systems
3.4.2. Residue-Specific Flexibility and Solvent Accessibility Dynamics
3.4.3. Conformational Landscape Evolution and Secondary Structure Stability
3.4.4. Thermodynamic Profiling of Ligand Binding Interactions
3.5. DPP-4 Inhibitory Profiles of Four Synthetic Peptides
4. Discussion
4.1. Structural and Physicochemical Determinants of DPP-4 Inhibition
4.2. Conformational Dynamics and Peptide Binding
4.3. Analysis of Rice-Derived Peptide Inhibitors Relative to IPI
4.4. Limitations and Future Directions
4.5. Possible Clinical Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Accuracy |
AUC | Area under the ROC curve |
BA | Balanced accuracy |
DELTA Ggas | Gas-phase binding free energy |
DELTA Gsolv | Solvation free energy change |
DELTA TOTAL | Total binding free energy |
DPP-4 | Dipeptidyl peptidase-4 |
DSSP | Definition of Secondary Structure of Proteins |
EEL | Electrostatic energy (Coulombic interactions) |
EPB | Electrostatic contribution to solvation (Poisson–Boltzmann) |
F1 | F1 score |
GIP | Glucose-dependent insulin polypeptide |
GLP-1 | Glucagon-like peptide-1 |
HPLC | High-performance liquid chromatography |
LCA | Lowest common ancestor |
MCC | Matthews correlation coefficient |
MD | Molecular dynamics |
ML | Machine learning |
MM/PBSA | Molecular mechanics/Poisson–Boltzmann surface area |
P | Precision |
PB | Poisson–Boltzmann |
PCA | Principal component analysis |
PDB | Protein Data Bank |
Pdbqt | Protein Data Bank, Partial Charge (Q), and Atom Type (T) |
pI | Isoelectric point |
RF | Random forest |
Rg | Radius of gyration |
RMSD | Root mean square deviation |
RMSF | Root mean square fluctuation |
SARs | Structure–activity relationships |
SASA | Solvent-accessible surface area |
SE | Sensitivity |
SP | Specificity |
SVM | Support vector machine |
VDWAALS | Van der Waals interactions |
References
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Ji, L.; Jia, W.; Lu, J.; Zhou, Z.; Zou, D.; Zhu, D.; Chen, L.; Chen, L.; Guo, L.; et al. Standards of care for type 2 diabetes in China. Diabetes/Metab. Res. Rev. 2016, 32, 442–458. [Google Scholar] [CrossRef]
- Ma, R.C.; Lin, X.; Jia, W. Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol. 2014, 2, 980–991. [Google Scholar] [CrossRef]
- Committee, A.D.A.P.P. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2025. Diabetes Care 2024, 48, S181–S206. [Google Scholar] [CrossRef]
- Shao, D.-W.; Zhao, L.-J.; Sun, J.-F. Synthesis and clinical application of representative small-molecule dipeptidyl Peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes mellitus (T2DM). Eur. J. Med. Chem. 2024, 272, 116464. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Miller, S.; St Onge, E.L. Sitagliptin: A dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Ann. Pharmacother. 2006, 40, 1336–1343. [Google Scholar] [CrossRef]
- Neumiller, J.J.; Wood, L.; Campbell, R.K. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Pharmacotherapy 2010, 30, 463–484. [Google Scholar] [CrossRef]
- Bassendine, M.F.; Bridge, S.H.; McCaughan, G.W.; Gorrell, M.D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J. Diabetes 2020, 12, 649–658. [Google Scholar] [CrossRef]
- Vankadari, N.; Wilce, J.A. Emerging WuHan (COVID-19) coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020, 9, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Pantanetti, P.; Cangelosi, G.; Ambrosio, G. Potential role of incretins in diabetes and COVID-19 infection: A hypothesis worth exploring. Intern. Emerg. Med. 2020, 15, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Green Jennifer, B.; Bethel, M.A.; Armstrong Paul, W.; Buse John, B.; Engel Samuel, S.; Garg, J.; Josse, R.; Kaufman Keith, D.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Rahman, M.E.; Faruqe, M.O.; Saif, A.; Suhi, S.; Zaman, R.; Hirad, A.H.; Matin, M.N.; Rabbee, M.F.; Baek, K.H. Characterization of Plant-Derived Natural Inhibitors of Dipeptidyl Peptidase-4 as Potential Antidiabetic Agents: A Computational Study. Pharmaceutics 2024, 16, 483. [Google Scholar] [CrossRef]
- Antony, P.; Vijayan, R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 9059. [Google Scholar] [CrossRef]
- Turdu, G.; Gao, H.; Jiang, Y.; Kabas, M. Plant Dipeptidyl Peptidase-IV Inhibitors as Antidiabetic Agents: A Brief Review. Future Med. Chem. 2018, 10, 1229–1239. [Google Scholar] [CrossRef]
- Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Peptides Derived from Soy and Lupin Protein as Dipeptidyl-Peptidase IV Inhibitors: In Vitro Biochemical Screening and in Silico Molecular Modeling Study. J. Agric. food Chem. 2016, 64, 9601–9606. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Hennemann, M.; Paolella, S.; FitzGerald, R.J. Generation of wheat gluten hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Food Funct 2017, 8, 2249–2257. [Google Scholar] [CrossRef]
- Uraipong, C.; Zhao, J. Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities. J. Sci. Food Agric. 2016, 96, 1101–1110. [Google Scholar] [CrossRef]
- Lemisova, L.V.; Braudo, E.E.; Vaĭnerman, E.S.; Tsyriapkin, V.A.; Vol’nova, A.I. Study of the biological value of rice groats proteins. Vopr Pitan 1977, 4, 76–81. [Google Scholar]
- Ishikawa, Y.; Hira, T.; Inoue, D.; Harada, Y.; Hashimoto, H.; Fujii, M.; Kadowaki, M.; Hara, H. Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Food Funct. 2015, 6, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers 2021, 25, 1315–1360. [Google Scholar] [CrossRef] [PubMed]
- Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine Learning Methods in Drug Discovery. Molecules 2020, 25, 5277. [Google Scholar] [CrossRef]
- Yu, Z.; Cao, Y.; Kan, R.; Ji, H.; Zhao, W.; Wu, S.; Liu, J.; Shiuan, D.J.F.S.; Wellness, H. Identification of egg protein-derived peptides as xanthine oxidase inhibitors: Virtual hydrolysis, molecular docking, and in vitro activity evaluation. Food Sci. Hum. Wellness 2022, 11, 1591–1597. [Google Scholar] [CrossRef]
- Filipe, H.A.L.; Loura, L.M.S. Molecular Dynamics Simulations: Advances and Applications. Molecules 2022, 27, 2105. [Google Scholar] [CrossRef]
- Nakamura, A.; Suzuki, Y.; Sakamoto, Y.; Roppongi, S.; Kushibiki, C.; Yonezawa, N.; Takahashi, M.; Shida, Y.; Gouda, H.; Nonaka, T.; et al. Structural basis for an exceptionally strong preference for asparagine residue at the S2 subsite of Stenotrophomonas maltophilia dipeptidyl peptidase 7. Sci. Rep. 2021, 11, 7929. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Bao, X.; Dai, Z.; Shen, Q.; Wang, L.; Xue, Y. Mining Bovine Milk Proteins for DPP-4 Inhibitory Peptides Using Machine Learning and Virtual Proteolysis. Research 2024, 7, 0391. [Google Scholar] [CrossRef]
- Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.E.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.-L.; Hussain, N.; Joy Ujiroghene, O.; Pang, X.-Y.; Zhang, S.-W.; Lu, J.; Liu, L.; Lv, J.-P. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins. Food Chem. 2020, 318, 126333. [Google Scholar] [CrossRef]
- Zhang, L. Study on the hypoglycemic effect and insulin secretion promotion of DPP-IV inhibitor Yimup glycoside in type 2 diabetic model mice. Ph.D. Thesis, China National Knowledge Infrastructure (CNKI), Beijing, China, 2013. (In Chinese). [Google Scholar]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Ann. Intern. Med. 2015, 162, 55–63. [Google Scholar] [CrossRef]
- Florentin, M.; Kostapanos, M.S.; Papazafiropoulou, A.K. Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. World J. Diabetes 2022, 13, 85–96. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, L.; Zhang, Y.; Sheng, N.J.; Wang, Z.K.; Wu, T.Z.; Wang, X.Z.; Wu, H. Rapid Identification of Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides from Ruditapes philippinarum Hydrolysate. Molecules 2017, 22, 1714. [Google Scholar] [CrossRef]
- Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun. 2013, 434, 191–196. [Google Scholar] [CrossRef]
- Aertgeerts, K.; Ye, S.; Tennant, M.G.; Kraus, M.L.; Rogers, J.; Sang, B.C.; Skene, R.J.; Webb, D.R.; Prasad, G.S. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci. Publ. Protein Soc. 2004, 13, 412–421. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Dellafiora, L.; Paolella, S.; Galaverna, G.; Cozzini, P.; FitzGerald, R.J. In Silico Approaches Applied to the Study of Peptide Analogs of Ile-Pro-Ile in Relation to Their Dipeptidyl Peptidase IV Inhibitory Properties. Front. Endocrinol. 2018, 9, 329. [Google Scholar] [CrossRef]
- Umezawa, H.; Aoyagi, T.; Ogawa, K.; Naganawa, H.; Hamada, M.; Takeuchi, T. Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. J. Antibiot. 1984, 37, 422–425. [Google Scholar] [CrossRef]
- Committee, A.D.A.P.P. 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes–2025. Diabetes Care 2024, 48, S167–S180. [Google Scholar]
- Solerte, S.B.; Di Sabatino, A.; Galli, M.; Fiorina, P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020, 57, 779–783. [Google Scholar] [CrossRef]
PEPTIDE | PPPPPPPPA | PPPSPPPV | PPPPPY | CPPPPAAY | IPI |
---|---|---|---|---|---|
TOTAL | −856.83 ± 1.60 | −804.88 ± 2.94 | −626.21 ± 1.36 | −904.46 ± 1.02 | −130.51 ± 0.81 |
VDWAALS | −14.98 ± 1.64 | −31.63 ± 1.24 | −23.39 ± 1.51 | −9.99 ± 1.85 | −35.79 ± 0.79 |
EEL | −176.99 ± 4.99 | −123.82 ± 4.03 | −111.43 ± 8.87 | −89.09 ± 14.64 | −54.15 ± 3.41 |
EPB | 171.33 ± 4.58 | 126.24 ± 4.10 | 112.07 ± 6.48 | 88.96 ± 14.32 | 71.30 ± 3.54 |
DELTA G gas | −191.97 ± 6.11 | −155.45 ± 4.12 | −134.83 ± 9.34 | −99.08 ± 15.96 | −89.94 ± 3.71 |
DELTA G solv | 171.33 ± 4.58 | 126.24 ± 4.10 | 112.07 ± 6.48 | 88.96 ± 14.32 | 71.30 ± 3.54 |
DELTA TOTAL | −20.64 ± 1.65 | −29.22 ± 0.92 | −22.75 ± 3.23 | −10.12 ± 1.75 | −18.64 ± 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Cui, H.; Yu, X.; Li, W. Screening and Validation: AI-Aided Discovery of Dipeptidyl Peptidase-4 Inhibitory Peptides from Hydrolyzed Rice Proteins. Foods 2025, 14, 1916. https://doi.org/10.3390/foods14111916
Cheng C, Cui H, Yu X, Li W. Screening and Validation: AI-Aided Discovery of Dipeptidyl Peptidase-4 Inhibitory Peptides from Hydrolyzed Rice Proteins. Foods. 2025; 14(11):1916. https://doi.org/10.3390/foods14111916
Chicago/Turabian StyleCheng, Cheng, Huizi Cui, Xiangyu Yu, and Wannan Li. 2025. "Screening and Validation: AI-Aided Discovery of Dipeptidyl Peptidase-4 Inhibitory Peptides from Hydrolyzed Rice Proteins" Foods 14, no. 11: 1916. https://doi.org/10.3390/foods14111916
APA StyleCheng, C., Cui, H., Yu, X., & Li, W. (2025). Screening and Validation: AI-Aided Discovery of Dipeptidyl Peptidase-4 Inhibitory Peptides from Hydrolyzed Rice Proteins. Foods, 14(11), 1916. https://doi.org/10.3390/foods14111916