Effect of Rice Protein on the Gelatinization and Retrogradation of Rice Starch with Different Moisture Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Rice Protein
2.3. Differential Scanning Calorimetry (DSC)
2.4. Dynamic Rheometer
2.5. Sample Preparation for the Retrogradation of Rice Protein, Moisture, and Rice Starch Mixtures
2.6. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.7. Low-Field Magnetic Resonance Imaging (LF-MRI)
2.8. Scanning Electron Microscope (SEM)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Thermodynamic Properties of Rice Starch with Rice Protein and Moisture
3.2. Rheological Properties of Rice Starch with Rice Protein and Moisture
3.3. Rice Protein and Moisture on the Microstructure of Rice Starch During Retrogradation
3.4. Rice Protein and Moisture on the Transverse Relaxation Time of Rice Starch During Retrogradation
3.5. Rice Protein and Moisture on Moisture Distribution of Rice Starch During Retrogradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakamura, S.; Katsura, J.; Maruyama, Y.; Ohtsubo, K. Evaluation of Hardness and Retrogradation of Cooked Rice Based on Its Pasting Properties Using a Novel RVA Testing. Foods 2021, 10, 987. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.N.; Huang, Z.H.; Sun, Z.Y.; Tang, Q.Z.; Zhao, G.W.; Zhu, X.H.; Zhang, C. Rice seed vigor detection based on near-infrared hyperspectral imaging and deep transfer learning. Front. Plant Sci. 2023, 14, 1283921. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.R.; Jin, Z.Y.; Wang, F.; Tian, Y.Q. Contribution of starch to the flavor of rice-based instant foods. Crit. Rev. Food Sci. Nutr. 2022, 62, 8577–8588. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Matsuki, J.; Yoza, K.; Sugiyama, J.; Maeda, H.; Shigemune, A.; Tokuyasu, K. Comparison of textural properties and structure of gels prepared from cooked rice grain under different conditions. Food Sci. Nutr. 2019, 7, 721–729. [Google Scholar] [CrossRef]
- Li, C.; Gong, B. Insights into chain-length distributions of amylopectin and amylose molecules on the gelatinization property of rice starches. Int. J. Biol. Macromol. 2020, 155, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Mahmood, K.; Kamilah, H.; Shang, P.L.; Sulaiman, S.; Ariffin, F.; Alias, A.K. A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Biosci. 2017, 19, 110–120. [Google Scholar] [CrossRef]
- Feng, Q.; Lin, J.; Niu, Z.; Wu, T.; Shen, Q.; Hou, D.; Zhou, S. A Comparative Analysis between Whole Chinese Yam and Peeled Chinese Yam: Their Hypolipidemic Effects via Modulation of Gut Microbiome in High-Fat Diet-Fed Mice. Nutrients 2024, 16, 977. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, W.; Yang, L.; Li, Y.; Zheng, H.; Dou, H. Flow field-flow fractionation coupled with multidetector: A robust approach for the separation and characterization of resistant starch. Food Chem.-X 2024, 22, 101267. [Google Scholar] [CrossRef]
- Gan, L.; Huang, B.S.; Song, Z.J.; Zhang, Y.C.; Zhang, Y.J.; Chen, S.; Tong, L.Q.; Wei, Z.S.; Yu, L.X.; Luo, X.B.; et al. Unique Glutelin Expression Patterns and Seed Endosperm Structure Facilitate Glutelin Accumulation in Polyploid Rice Seed. Rice 2021, 14, 61. [Google Scholar] [CrossRef]
- Teo, C.H.; Abd, A.; Cheah, P.B.; Norziah, M.H.; Seow, C.C. On the roles of protein and starch in the aging of non-waxy rice flour. Food Chem. 2000, 69, 229–236. [Google Scholar] [CrossRef]
- Wu, C.; Gong, X.; Zhang, J.; Zhang, C.; Qian, J.-Y.; Zhu, W. Effect of rice protein on the gelatinization and retrogradation properties of rice starch. Int. J. Biol. Macromol. 2023, 242, 125061. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.; Blanchard, C.; Zhao, J. Effects of prolamin on the textural and pasting properties of rice flour and starch. J. Cereal Sci. 2004, 40, 205–211. [Google Scholar] [CrossRef]
- Lu, X.X.; Chang, R.R.; Lu, H.; Qiu, L.Z.; Tian, Y.Q. Effect of amino acids composing rice protein on rice starch digestibility. LWT-Food Sci. Technol. 2021, 146, 111417. [Google Scholar] [CrossRef]
- Saleh, M.; Meullenet, J.F. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling. J. Food Sci. Technol.-Mysore 2015, 52, 1602–1609. [Google Scholar] [CrossRef]
- Yan, B.W.; Shen, H.J.; Fan, D.M.; Tao, Y.; Wu, Y.J.; Wang, M.F.; Zhao, J.X.; Zhang, H. Microwave treatment regulates the free volume of rice starch. Sci. Rep. 2019, 9, 3876. [Google Scholar] [CrossRef]
- Yang, Z.L.; Hao, H.N.; Wu, Y.W.; Liu, Y.G.; Ouyang, J. Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. Int. J. Biol. Macromol. 2021, 168, 656–662. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Wang, L.J.; Li, D.; Zhou, Y.G.; Adhikari, B. The effect of partial gelatinization of corn starch on its retrogradation. Carbohydr. Polym. 2013, 97, 512–517. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, B.; Tan, C.P.; Fu, X.; Huang, Q. Effects of limited moisture content and storing temperature on retrogradation of rice starch. Int. J. Biol. Macromol. 2019, 137, 1068–1075. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chen, C.; Chen, Y.; Chen, Y. Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation. Food Hydrocoll. 2019, 91, 136–142. [Google Scholar] [CrossRef]
- Zhan, Q.; Ye, X.; Zhang, Y.; Kong, X.; Bao, J.; Corke, H.; Sui, Z. Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocoll. 2020, 101, 105504. [Google Scholar] [CrossRef]
- Lu, S.; Li, J.; Xu, M.; Mu, Y.; Wen, Y.; Li, H.; Wang, J.; Sun, B. The textural properties of cooked convenience rice upon repeated freeze-thaw treatments are largely affected by water mobility at grain level. Food Res. Int. 2023, 163, 112254. [Google Scholar] [CrossRef]
- Chen, J.J.; Lii, C.Y.; Lu, S. Physicochemical and morphological analyses on damaged rice starches. J. Food Drug Anal. 2003, 11, 283–289. [Google Scholar] [CrossRef]
- Chen, C.; Fu, W.; Chang, Q.; Zheng, B.; Zhang, Y.; Zeng, H. Moisture distribution model describes the effect of water content on the structural properties of lotus seed resistant starch. Food Chem. 2019, 286, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Keetels, C.J.A.M.; Van Vliet, T.; Waslstra, P. Gelation and retrogradation of concentrated starch systems: 1. Gelation. Food Hydrocoll. 1996, 10, 343–353. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Sodhi, N.S. Morphological, thermal, rheological and noodle-making properties of potato and corn starch. J. Sci. Food Agric. 2002, 82, 1376–1383. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Z. The role of starch granule-associated proteins in enhancing the strength of indica rice starch gels. Food Hydrocoll. 2022, 131, 107826. [Google Scholar] [CrossRef]
- Shamekh, S.; Forssell, P.; Suortti, T.; Autio, K.; Poutanen, K. Fragmentation of oat and barley starch granules during heating. J. Cereal Sci. 1999, 30, 173–182. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.; Zhou, J.; Yu, J.; Wang, J.; Qiang, S.; Wang, Y.; Li, S.; Chen, Y. Effect of Water Content on Rice Starch Gel during Retrogradation. Starch-Starke 2024, 76, 2200268. [Google Scholar] [CrossRef]
- Pang, Z.; Bourouis, I.; Sun, M.; Cao, J.; Liu, P.; Sun, R.; Chen, C.; Li, H.; Liu, X. Physicochemical properties and microstructural behaviors of rice starch/soy proteins mixtures at different proportions. Int. J. Biol. Macromol. 2022, 209, 2061–2069. [Google Scholar] [CrossRef]
- Luo, G.; Xiao, L.; Luo, S.; Liao, G.; Shao, R. A study on multi-exponential inversion of nuclear magnetic resonance relaxation data using deep learning. J. Magn. Reson. 2023, 346, 107358. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tian, Y.; Tong, Q.; Zhang, Z.; Jin, Z. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage. Food Chem. 2017, 214, 702–709. [Google Scholar] [CrossRef] [PubMed]
To (°C) | Tp (°C) | Te (°C) | △H (J/g) | |
---|---|---|---|---|
Without protein | ||||
1:6 | 63.09 ± 0.52 a | 70.10 ± 0.38 a | 76.67 ± 0.62 c | 8.88 ± 1.39 a |
1:4 | 63.03 ± 0.52 a | 70.25 ± 0.12 a | 77.74 ± 0.77 bc | 9.06 ± 0.86 a |
1:2 | 62.95 ± 0.05 a | 70.02 ± 0.24 a | 79.38 ± 0.49 b | 8.81 ± 0.33 a |
1:1 | 62.64 ± 0.01 a | 70.08 ± 0.05 a | 84.84 ± 1.58 a | 7.52 ± 0.27 a |
With 10% protein | ||||
1:6 | 62.47 ± 1.01 a | 70.22 ± 0.67 a | 77.54 ± 0.88 b | 8.51 ± 1.52 a |
1:4 | 62.23 ± 0.60 a | 69.64 ± 0.24 a | 76.43 ± 0.45 b | 7.98 ± 0.56 a |
1:2 | 62.95 ± 0.15 a | 70.25 ± 0.31 a | 79.18 ± 0.43 b | 7.86 ± 0.71 a |
1:1 | 63.44 ± 0.43 a | 70.03 ± 0.35 a | 84.57 ± 2.00 a | 6.95 ± 0.24 a |
T2/ms | |||
---|---|---|---|
T21 | T22 | T23 | |
1:6 | |||
0d | 0.3824 ± 0.0295 ab | 11.0108 ± 0.4153 a | 223.9982 ± 2.5439 a |
1d | 0.4554 ± 0.0337 a | 10.1096 ± 0.7805 a | 223.9982 ± 2.5439 a |
3d | 0.3525 ± 0.0554 ab | 10.1096 ± 0.7805 a | 196.4972 ± 2.1769 b |
7d | 0.3719 ± 0.0891 ab | 9.2637 ± 0.6847 a | 196.4972 ± 2.1769 b |
14d | 0.3092 ± 0.0486 b | 9.2637 ± 0.6847 a | 196.4972 ± 2.1769 b |
21d | 0.3355 ± 0.0259 ab | 9.6589 ± 0.3652 a | 196.4972 ± 2.1769 b |
1:4 | |||
0d | 0.3824 ± 0.0295 a | 8.8684 ± 0.6847 a | 151.2099 ± 1.0654 a |
1d | 0.3675 ± 0.0480 a | 8.4731 ± 0.8374 a | 151.2099 ± 1.0654 a |
3d | 0.3845 ± 0.0554 a | 8.1263 ± 0.6006 a | 132.6453 ± 2.7356 b |
7d | 0.3504 ± 0.0259 a | 8.1263 ± 0.6006 a | 132.6453 ± 2.7356 b |
14d | 0.4240 ± 0.1015 a | 8.4731 ± 0.8374 a | 132.6453 ± 2.7356 b |
21d | 0.3719 ± 0.0891 a | 8.8684 ± 0.6847 a | 132.6453 ± 2.7356 b |
1:2 | |||
0d | 0.3355 ± 0.0259 a | 4.8122 ± 0.3557 a | 60.4454 ± 3.7712 a |
1d | 0.3373 ± 0.0486 a | 4.8122 ± 0.3557 a | 60.4454 ± 3.7712 a |
3d | 0.3525 ± 0.0554 a | 4.4015 ± 1.0779 a | 53.0243 ± 0.5133 b |
7d | 0.3205 ± 0.0315 a | 4.0412 ± 0.3120 a | 53.0243 ± 0.5133 b |
14d | 0.3504 ± 0.0259 a | 3.7031 ± 0.2737 a | 53.0243 ± 0.5133 b |
21d | 0.3355 ± 0.0259 a | 3.8611 ± 1.3404 a | 53.0243 ± 0.5133 b |
1:1 | |||
0d | 1.3540 ± 0.4213 a | 21.1962 ± 0.5228 a | —— |
1d | 1.2431 ± 0.0960 ab | 21.1962 ± 0.5228 a | —— |
3d | 0.8818 ± 0.1386 ab | 21.1962 ± 0.5228 a | —— |
7d | 0.9192 ± 0.1202 ab | 21.1962 ± 0.5228 a | —— |
14d | 0.9777 ± 0.2485 ab | 21.1962 ± 0.5228 a | —— |
21d | 0.6118 ± 0.1927 b | 21.1962 ± 0.5228 a | —— |
A2/% | |||
---|---|---|---|
A21 | A22 | A23 | |
1:6 | |||
0d | 4.8058 ± 0.3097 ab | 5.1030 ± 0.1078 a | 90.0912 ± 0.4084 b |
1d | 4.4463 ± 0.4630 ab | 4.9499 ± 0.1344 ab | 90.6037 ± 0.3885 ab |
3d | 4.8584 ± 0.2874 a | 4.8026 ± 0.1531 abc | 90.3389 ± 0.1365 b |
7d | 3.8560 ± 0.5008 b | 4.7487 ± 0.0237 bc | 91.3953 ± 0.4960 a |
14d | 4.7843 ± 0.1313 ab | 4.7075 ± 0.0930 bc | 90.5083 ± 0.2185 ab |
21d | 5.3737 ± 0.3638 a | 4.5310 ± 0.1191 c | 90.0953 ± 0.3229 b |
1:4 | |||
0d | 5.2930 ± 0.7888 a | 6.4974 ± 0.1934 a | 88.2096 ± 0.6276 a |
1d | 5.6067 ± 0.9439 a | 6.2040 ± 0.0740 ab | 88.1893 ± 0.9888 a |
3d | 5.3605 ± 0.7136 a | 6.0597 ± 0.1765 b | 88.5797 ± 0.5728 a |
7d | 5.2619 ± 0.2906 a | 6.0459 ± 0.1415 b | 88.6921 ± 0.4191 a |
14d | 4.3559 ± 0.5869 a | 6.0468 ± 0.1505 b | 89.5973 ± 0.5023 a |
21d | 4.9284 ± 0.7086 a | 5.5566 ± 0.1346 c | 89.5150 ± 0.8431 a |
1:2 | |||
0d | 7.3689 ± 0.7700 a | 9.3160 ± 0.3006 a | 83.3150 ± 0.5506 d |
1d | 5.6508 ± 0.5872 a | 8.8685 ± 0.2216 ab | 85.4807 ± 0.4424 cd |
3d | 5.2138 ± 0.9606 a | 8.4077 ± 0.0228 b | 86.3785 ± 0.9802 bc |
7d | 4.3722 ± 0.9514 a | 7.5922 ± 0.0680 c | 88.0355 ± 0.8955 abc |
14d | 4.8632 ± 0.7073 a | 6.3388 ± 0.3690 d | 88.7981 ± 0.5444 ab |
21d | 5.5151 ± 2.1314 a | 5.4532 ± 0.4364 e | 89.0317 ± 1.6958 a |
1:1 | |||
0d | 22.3288 ± 0.4770 a | 77.6712 ± 0.4770 b | —— |
1d | 17.0742 ± 0.5061 b | 82.9258 ± 0.5061 a | —— |
3d | 15.1173 ± 0.7298 b | 84.8827 ± 0.7298 a | —— |
7d | 14.7081 ± 0.8399 b | 85.2919 ± 0.8399 a | —— |
14d | 14.4424 ± 1.2396 b | 85.5576 ± 1.2396 a | —— |
21d | 14.5642 ± 1.7666 b | 85.4358 ± 1.7666 a | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, J.; Wang, Z.; Fan, L.; Chen, Y. Effect of Rice Protein on the Gelatinization and Retrogradation of Rice Starch with Different Moisture Content. Foods 2024, 13, 3734. https://doi.org/10.3390/foods13233734
Zhang Y, Zhang J, Wang Z, Fan L, Chen Y. Effect of Rice Protein on the Gelatinization and Retrogradation of Rice Starch with Different Moisture Content. Foods. 2024; 13(23):3734. https://doi.org/10.3390/foods13233734
Chicago/Turabian StyleZhang, Yifu, Jiawang Zhang, Zeyu Wang, Longxiang Fan, and Ye Chen. 2024. "Effect of Rice Protein on the Gelatinization and Retrogradation of Rice Starch with Different Moisture Content" Foods 13, no. 23: 3734. https://doi.org/10.3390/foods13233734
APA StyleZhang, Y., Zhang, J., Wang, Z., Fan, L., & Chen, Y. (2024). Effect of Rice Protein on the Gelatinization and Retrogradation of Rice Starch with Different Moisture Content. Foods, 13(23), 3734. https://doi.org/10.3390/foods13233734