Marker Peptides for Indicating the Spoilage of Milk—Sample Preparation and Chemometric Approaches for Yielding Potential Peptides in a Raw Milk Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Proteins
2.3. Sample Material
2.4. Sample Preparation and Extraction
2.4.1. Study Design
2.4.2. Sample Preparation
2.4.3. SDS-PAGE Analysis
2.4.4. Enzymatic In-Gel Hydrolysis
2.4.5. Enzymatic Hydrolysis of the Whole Milk (“In-Solution” Hydrolysis)
2.5. UPLC-IMS-QToF Analysis
2.6. Data Conversion and Computational Framework
2.7. Data Analysis of the In-Solution Hydrolysis
2.8. Data Analysis of the In-Gel Hydrolysis
2.9. Identification of the Separated Protein Bands
2.10. Identification of Peptides
3. Results
3.1. In-Gel Hydrolysis
3.2. In-Solution Hydrolysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solazzo, C.; Wadsley, M.; Dyer, J.M.; Clerens, S.; Collins, M.J.; Plowman, J. Characterisation of novel α-keratin peptide markers for species identification in keratinous tissues using mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 2685–2698. [Google Scholar] [CrossRef] [PubMed]
- von Oesen, T.; Treblin, M.; Clawin-Rädecker, I.; Martin, D.; Maul, R.; Hoffmann, W.; Schrader, K.; Wegner, B.; Bode, K.; Zink, R.; et al. Identification of Marker Peptides for the Whey Protein Quantification in Edam-Type Cheese. Foods 2023, 12, 2002. [Google Scholar] [CrossRef] [PubMed]
- Chassaigne, H.; Nørgaard, J.V.; Van Hengel, A.J. Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). J. Agric. Food Chem. 2007, 55, 4461–4473. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, H.; Zhang, X.; Yu, F.; Zhang, F.; Xue, C.; Xue, Y.; Tang, Q.; Li, Z. Identification of potential peptide markers for the shelf-life of Pacific oysters (Crassostrea gigas) during anhydrous preservation via mass spectrometry-based peptidomics. LWT Food Sci. Technol. 2020, 134, 109922. [Google Scholar] [CrossRef]
- Class, L.-C.; Kuhnen, G.; Hanisch, K.L.; Badekow, S.; Rohn, S.; Kuballa, J. The Shelf Life of Milk—A Novel Concept for the Identification of Marker Peptides Using Multivariate Analysis. Foods 2024, 13, 831. [Google Scholar] [CrossRef]
- Augustin, M.A.; Riley, M.; Stockmann, R.; Bennett, L.; Kahl, A.; Lockett, T.; Osmond, M.; Sanguansri, P.; Stonehouse, W.; Zajac, I.; et al. Role of food processing in food and nutrition security. Trends Food Sci. Technol. 2016, 56, 115–125. [Google Scholar] [CrossRef]
- Jedermann, R.; Nicometo, M.; Uysal, I.; Lang, W. Reducing food losses by intelligent food logistics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130302. [Google Scholar] [CrossRef]
- Corradini, M.G. Shelf Life of Food Products: From Open Labeling to Real-Time Measurements. Annu. Rev. Food Sci. Technol. 2018, 9, 251–269. [Google Scholar] [CrossRef]
- Class, L.-C.; Kuhnen, G.; Rohn, S.; Kuballa, J. Diving Deep into the Data: A Review of Deep Learning Approaches and Potential Applications in Foodomics. Foods 2021, 10, 1803. [Google Scholar] [CrossRef]
- Stenmarck, Å.; Jensen, C.; Quested, T.; Moates, G. FUSIONS—Estimates of European Food Waste Levels; IVL Swedish Environmental Research Institute: Stockolm, Sweden, 2016; ISBN 9789188319012. [Google Scholar] [CrossRef]
- Toma, L.; Costa Font, M.; Thompson, B. Impact of consumers’ understanding of date labelling on food waste behaviour. Oper. Res. 2020, 20, 543–560. [Google Scholar] [CrossRef]
- Patra, D.; Feng, S.; Howard, J.W. Confusion of food-date label with food safety—implications for food waste. Curr. Opin. Food Sci. 2022, 48, 100917. [Google Scholar] [CrossRef]
- Madilo, F.K.; Owusu-Kwarteng, J.; Parry-Hanson Kunadu, A.; Tano-Debrah, K. Self-reported use and understanding of food label information among tertiary education students in Ghana. Food Control 2020, 108, 106841. [Google Scholar] [CrossRef]
- Priefer, C.; Jörissen, J.; Bräutigam, K.R. Food waste prevention in Europe—A cause-driven approach to identify the most relevant leverage points for action. Resour. Conserv. Recycl. 2016, 109, 155–165. [Google Scholar] [CrossRef]
- Kavanaugh, M.; Quinlan, J.J. Consumer knowledge and behaviors regarding food date labels and food waste. Food Control 2020, 115, 107285. [Google Scholar] [CrossRef]
- Buttlar, B.; Löwenstein, L.; Geske, M.S.; Ahlmer, H.; Walther, E. Love food, hate waste? Ambivalence towards food Fosters people’s willingness to waste food. Sustainability 2021, 13, 3971. [Google Scholar] [CrossRef]
- Martin, N.H.; Ranieri, M.L.; Murphy, S.C.; Ralyea, R.D.; Wiedmann, M.; Boor, K.J. Results from raw milk microbiological tests do not predict the shelf-life performance of commercially pasteurized fluid milk. J. Dairy Sci. 2011, 94, 1211–1222. [Google Scholar] [CrossRef]
- Condurso, C.; Cincotta, F.; Tripodi, G.; Merlino, M.; Giarratana, F.; Verzera, A. A new approach for the shelf-life definition of minimally processed carrots. Postharvest Biol. Technol. 2020, 163, 111138. [Google Scholar] [CrossRef]
- Dalgaard, P. Modelling of microbial activity and prediction of shelf life for packed fresh fish. Int. J. Food Microbiol. 1995, 26, 305–317. [Google Scholar] [CrossRef]
- Machado, S.G.; Baglinière, F.; Marchand, S.; Van Coillie, E.; Vanetti, M.C.D.; De Block, J.; Heyndrickx, M. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Front. Microbiol. 2017, 8, 302. [Google Scholar] [CrossRef]
- Verhegghe, M.; De Block, J.; Heyndrickx, M.; Van Coillie, E.; Van Poucke, C.; Duquenne, B. Application of LC-HRMS identified marker peptides in an LC-MS/MS method for detection and quantification of heat-resistant proteolytic activity in raw milk. Int. J. Dairy Technol. 2021, 74, 286–296. [Google Scholar] [CrossRef]
- Wei, Z.; Dai, C.; Bassey, A.P.; Tang, C.; Han, Y.; Wang, C.; Zhou, G. Identification of Potential Peptide Marker(s) for Evaluating Pork Meat Freshness via Mass Spectrometry-Based Peptidomics during Storage under Different Temperatures. Foods 2022, 11, 1144. [Google Scholar] [CrossRef] [PubMed]
- Dalabasmaz, S.; Dittrich, D.; Kellner, I.; Drewello, T.; Pischetsrieder, M. Identification of peptides reflecting the storage of UHT milk by MALDI-TOF-MS peptide profiling. J. Proteomics 2019, 207, 103444. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Grosvenor, A.J.; Li, X.; Wang, X.l.; Ma, Y.; Clerens, S.; Dyer, J.M.; Day, L. Changes in Milk Protein Interactions and Associated Molecular Modification Resulting from Thermal Treatments and Storage. J. Food Sci. 2019, 84, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Ebner, J.; Baum, F.; Pischetsrieder, M. Identification of sixteen peptides reflecting heat and/or storage induced processes by profiling of commercial milk samples. J. Proteomics 2016, 147, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Pischetsrieder, M.; Baeuerlein, R. Proteome research in food science. Chem. Soc. Rev. 2009, 38, 2600–2608. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.H. Massenspektrometrie—Ein Lehrbuch; 1. Auflage; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783827429803. [Google Scholar]
- Shevchenko, A.; Tomas, H.; Havliš, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2007, 1, 2856–2860. [Google Scholar] [CrossRef]
- Pedreschi, R.; Maarten, H.; Lilley, K.S.; Bart, N. Proteomics for the food industry: Opportunities and challenges. Crit. Rev. Food Sci. Nutr. 2010, 50, 680–692. [Google Scholar] [CrossRef]
- Matissek, R.; Fischer, M. Lebensmittelanalytik, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 9783662634080. [Google Scholar]
- Kuhnen, G.; Class, L.C.; Badekow, S.; Lara, K.; Sascha, H.; Jürgen, R. Python workflow for the selection and identification of marker peptides—proof-of-Principle study with heated milk. Anal. Bioanal. Chem. 2024, 416, 3349–3360. [Google Scholar] [CrossRef]
- Wölk, M.; Milkovska-Stamenova, S.; Hoffmann, R. Comprehensive profiling of the native and modified peptidomes of raw bovine milk and processed milk products. Foods 2020, 9, 1841. [Google Scholar] [CrossRef]
- Giansanti, P.; Tsiatsiani, L.; Low, T.Y.; Heck, A.J.R. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat. Protoc. 2016, 11, 993–1006. [Google Scholar] [CrossRef]
- Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 1996, 68, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.C.; MacLean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L., Jr. The Python Language Reference; Python Software Foundation: Wilmington, DE, USA, 2014. [Google Scholar]
- Scikit-Learn Developers sklearn.feature_selection.SelectKBest. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html (accessed on 6 August 2024).
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) Verordnung über Anforderungen an die Hygiene beim Herstellen, Behandeln und Inverkehrbringen von Bestimmten Lebensmitteln Tierischen Ursprungs (Tierische Lebensmittel-Hygieneverordnung—Tier-LMHV); Federal Ministry of Justice: Berlin, Germany, 2007; pp. 1–42.
- Mehmood, T.; Sæbø, S.; Liland, K.H. Comparison of variable selection methods in partial least squares regression. J. Chemom. 2020, 34, e3226. [Google Scholar] [CrossRef]
- Mehmood, T.; Ahmed, B. The diversity in the applications of partial least squares: An overview. J. Chemom. 2016, 30, 4–17. [Google Scholar] [CrossRef]
- Christmann, J.; Rohn, S.; Weller, P. Finding features—Variable extraction strategies for dimensionality reduction and marker compounds identification in GC-IMS data. Food Res. Int. 2022, 161, 111779. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Ortea, I.; O’Connor, G.; Maquet, A. Review on proteomics for food authentication. J. Proteomics 2016, 147, 212–225. [Google Scholar] [CrossRef]
- Jovanovic, S.; Barac, M.; Macej, O.; Vucic, T.; Lacnjevac, C. SDS-PAGE analysis of soluble proteins in reconstituted milk exposed to different heat treatments. Sensors 2007, 7, 371–383. [Google Scholar] [CrossRef]
- Holzmüller, W.; Kulozik, U. Quantification of MFGM proteins in buttermilk and butter serum by means of a stain free SDS-PAGE method. J. Food Compos. Anal. 2016, 49, 102–109. [Google Scholar] [CrossRef]
- Kausar, R.; Hameed, A.; Qureshi, Z.; Muhammd, G. Comparative Protein Profiling of Milk of Nili-Ravi Buffaloes, Sahiwal and Cross Bred Cows by SDS-PAGE. Pak. Vet. J. 2016, 37, 73–77. [Google Scholar]
- Havliš, J.; Thomas, H.; Šebela, M.; Shevchenko, A. Fast-Response Proteomics by Accelerated In-Gel. Anal. Chem. 2003, 75, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.T. Proteinases in normal bovine milk and their action on caseins. J. Diary Res. 1982, 50, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.S. Plasmin system and microbial proteases in milk: Characteristics, roles, and relationship. J. Agric. Food Chem. 2002, 50, 6628–6634. [Google Scholar] [CrossRef]
- Wölk, M.; Milkovska-Stamenova, S.; Schröter, T.; Hoffmann, R. Influence of seasonal variation and processing on protein glycation and oxidation in regular and hay milk. Food Chem. 2021, 337, 127690. [Google Scholar] [CrossRef]
- Stuknytė, M.; Decimo, M.; Colzani, M.; Silvetti, T.; Brasca, M.; Cattaneo, S.; Aldini, G.; Noni, I. De Extracellular thermostable proteolytic activity of the milk spoilage bacterium Pseudomonas fluorescens PS19 on bovine caseins. J. Diary Sci. 2016, 99, 4188–4195. [Google Scholar] [CrossRef]
- Mentana, A.; Natale, A.; Palermo, C.; Nardiello, D.; Conte, A.; Del Nobile, M.A.; Quinto, M.; Centonze, D. Mass spectrometry hyphenated techniques for the analysis of volatiles and peptides in soft cheese: Useful tools for the shelf life optimization. Electrophoresis 2016, 37, 1861–1872. [Google Scholar] [CrossRef]
- Zhao, F.; Wei, Z.; Bai, Y.; Li, C.; Zhou, G.; Kristiansen, K.; Wang, C. Proteomics and Metabolomics Profiling of Pork Exudate Reveals Meat Spoilage during Storage. Metabolites 2022, 12, 570. [Google Scholar] [CrossRef]
- Zou, X.; He, J.; Zhao, D.; Zhang, M.; Xie, Y.; Dai, C.; Wang, C.; Li, C. Structural Changes and Evolution of Peptides During Chill Storage of Pork. Front. Nutr. 2020, 7, 151. [Google Scholar] [CrossRef]
- Böhme, K.; Fernández-No, I.C.; Calo-Mata, P.; Barros-Velázquez, J. Proteomics of Food Spoilage Pathogens; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128040577. [Google Scholar]
- Khoury, G.A.; Baliban, R.C.; Floudas, C.A. Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci. Rep. 2011, 1, 90. [Google Scholar] [CrossRef]
- Baum, F.; Ebner, J.; Pischetsrieder, M. Identification of Multiphosphorylated Peptides in Milk. J. Agric. Food Chem. 2013, 61, 9110–9117. [Google Scholar] [CrossRef] [PubMed]
- Hurley, M.J.; Larsen, L.B.; Kelly, A.L.; Mcsweeney, P.L.H. The milk acid proteinase cathepsin D: A review. Int. Dairy J. 2001, 10, 673–681. [Google Scholar] [CrossRef]
- Plumb, R.S.; Johnson, K.A.; Rainville, P.; Smith, B.W.; Wilson, I.D.; Castro-Pere, J.M.; Nicholson, J.K. UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 2006, 20, 1989–1994. [Google Scholar] [CrossRef] [PubMed]
- Mansor, R.; Mullen, W.; Albalat, A.; Zerefos, P.; Mischak, H.; Barrett, D.C.; Biggs, A.; Eckersall, P.D. A peptidomic approach to biomarker discovery for bovine mastitis. J. Proteomics 2013, 85, 89–98. [Google Scholar] [CrossRef]
- Van Vlierberghe, K.; Gavage, M.; Dieu, M.; Renard, P.; Arnould, T.; Gillard, N.; Coudijzer, K.; De Loose, M.; Gevaert, K.; Van Poucke, C. Selecting Processing Robust Markers Using High-Resolution Mass Spectrometry for the Detection of Milk in Food Products. J. AOAC Int. 2022, 105, 463–475. [Google Scholar] [CrossRef]
- Baum, F.; Fedorova, M.; Ebner, J.; Hoffmann, R.; Pischetsrieder, M. Analysis of the endogenous peptide profile of milk: Identification of 248 mainly casein-derived peptides. J. Proteome Res. 2013, 12, 5447–5462. [Google Scholar] [CrossRef]
Sample Day | Band Number | MASCOT Identification | Scores |
---|---|---|---|
1 | - | - | - |
2 | 5 | α-s1-Casein | 48 |
8 | κ-Casein | 75 | |
8 | β-Casein | 56 | |
3 | 5 | α-s1-Casein | 85 |
6 | α-s2-Casein | 62 | |
8 | κ-Casein | 111 | |
8 | β-Casein | 62 | |
10 | β-Lactoglobulin | 167 | |
4 | 5 | α-s1-Casein | 67 |
8 | κ-Casein | 76 | |
10 | β-Lactoglobulin | 73 | |
5 | 5 | α-s1-Casein | 94 |
8 | κ-Casein | 63 | |
8 | β-Casein | 54 | |
10 | β-Lactoglobulin | 60 | |
6 | - | - | - |
7 | 5 | α-s1-Casein | 70 |
8 | κ-Casein | 66 | |
8 | β-Casein | 50 | |
10 | β-Lactoglobulin | 40 | |
8 | 5 | α-s1-Casein | 86 |
8 | κ-Casein | 60 | |
8 | β-Casein | 68 | |
10 | β-Lactoglobulin | 79 | |
9 | 10 | β-Lactoglobulin | 193 |
10 | 10 | β-Lactoglobulin | 42 |
Feature Name | m/z | rt [s] | Charge | VIP Score | Increase (I)/ Decrease (D) | SDS-PAGE |
---|---|---|---|---|---|---|
FT 196375 | 322.9788 | 230.3010 | 1 | 1.6993 | I | - |
FT 113694 | 399.6896 | 587.1291 | 2 | 1.6491 | D | Band 8—sdsFT20628 |
FT 152646 | 472.1981 | 614.6866 | 2 | 1.6319 | D | - |
FT 100975 | 376.1899 | 587.4633 | 2 | 1.6277 | D | Band 8—sdsFT4082 |
FT 10104 | 415.1563 | 614.5459 | 2 | 1.6210 | D | - |
FT 221952 | 620.3291 | 403.8281 | 2 | 1.6129 | I | - |
FT 34290 | 442.1821 | 320.1580 | 2 | 1.5732 | D | Band 8—sdsFT1284 |
FT 69089 | 594.6089 | 543.7169 | 3 | 1.5687 | D | - |
FT 90590 | 502.1869 | 577.8206 | 1 | 1.5678 | D | - |
FT 53501 | 411.0683 | 278.2279 | 1 | 1.5637 | I | - |
Feature Name | m/z | rt [s] | Charge | Increase (I)/ Decrease (D) | Modification | AA Sequence | Protein | Position |
---|---|---|---|---|---|---|---|---|
FT 128885 | 415.2385 | 538.6355 | 1 | D | - | PLW | α-s1-Casein | 212–214 |
FT 62883 | 857.3572 | 465.8155 | 2 | D | phosphory-lation | FSDIPNPIGSENSEK | α-s1-Casein | 194–208 |
FT 298105 | 571.9066 | 465.9806 | 3 | D | phosphory-lation | FSDIPNPIGSENSEK | α-s1-Casein | 194–208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Class, L.-C.; Kuhnen, G.; Schmid, J.; Rohn, S.; Kuballa, J. Marker Peptides for Indicating the Spoilage of Milk—Sample Preparation and Chemometric Approaches for Yielding Potential Peptides in a Raw Milk Model. Foods 2024, 13, 3315. https://doi.org/10.3390/foods13203315
Class L-C, Kuhnen G, Schmid J, Rohn S, Kuballa J. Marker Peptides for Indicating the Spoilage of Milk—Sample Preparation and Chemometric Approaches for Yielding Potential Peptides in a Raw Milk Model. Foods. 2024; 13(20):3315. https://doi.org/10.3390/foods13203315
Chicago/Turabian StyleClass, Lisa-Carina, Gesine Kuhnen, Jasmin Schmid, Sascha Rohn, and Jürgen Kuballa. 2024. "Marker Peptides for Indicating the Spoilage of Milk—Sample Preparation and Chemometric Approaches for Yielding Potential Peptides in a Raw Milk Model" Foods 13, no. 20: 3315. https://doi.org/10.3390/foods13203315
APA StyleClass, L.-C., Kuhnen, G., Schmid, J., Rohn, S., & Kuballa, J. (2024). Marker Peptides for Indicating the Spoilage of Milk—Sample Preparation and Chemometric Approaches for Yielding Potential Peptides in a Raw Milk Model. Foods, 13(20), 3315. https://doi.org/10.3390/foods13203315