Extrusion Modification of Wheat Bran and Its Effects on Structural and Rheological Properties of Wheat Flour Dough
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extrusion Modification
2.3. Compositional Determination of Wheat Bran
2.4. Microscopic Structure Characterization of Wheat Bran
2.5. Hydration Property Determination of Wheat Bran
2.6. Preparation of Wheat Dough with Addition of Wheat Bran
2.7. Fourier-Transformed Infrared Spectroscopy (FT-IR) of Wheat Dough
2.8. Low-Field Nuclear Magnetic Resonance (LF-NMR) of Wheat Dough
2.9. Farinographic Property Determination of Wheat Dough
2.10. Dynamic Viscoelastic Property Determination of Wheat Dough
2.11. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Extruded Wheat Bran
3.1.1. Component Analysis
3.1.2. Swelling Capacity and Solvent Retention Capacity
3.1.3. Morphological Characterization
3.2. Water States of Wheat Dough
3.3. Protein Secondary Structure of Wheat Dough
3.4. Rheological Properties of Wheat Dough
3.4.1. Farinographic Property
3.4.2. Dynamic Rheological Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roye, C.; Henrion, M.; Chanvrier, H.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Extrusion-cooking modifies physicochemical and nutrition-related properties of wheat bran. Foods 2020, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, X.; Xu, L.; Xue, Y.; Pan, Q.; Shen, W.; Wang, Z. Effect of extrusion and semi-solid enzymatic hydrolysis modifications on the quality of wheat bran and steamed bread containing bran. J. Cereal Sci. 2022, 108, 103577. [Google Scholar] [CrossRef]
- Sui, W.J.; Xie, X.; Liu, R.; Wu, T.; Zhang, M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll. 2018, 84, 571–580. [Google Scholar] [CrossRef]
- Khanpit, V.V.; Tajane, S.P.; Mandavgane, S.A. Extrusion for soluble dietary fiber concentrate: Critical overview on effect of process parameters on physicochemical, nutritional, and biological properties. Food Res. Int. 2022, 1–22. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Andersson, R.; Jonsäll, A.; Andersson, J.; Fredriksson, H. Effect of different extrusion parameters on dietary fiber in wheat bran and rye bran. J. Food Sci. 2017, 82, 1344–1350. [Google Scholar] [CrossRef]
- Yan, X.G.; Ye, R.; Chen, Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chem. 2015, 180, 106–115. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto-Leppäla, A.; Rantamäki, P.; Tupasela, T. Impact of processing on bioactive proteins and peptides. Trends Food Sci. Technol. 1998, 9, 307–319. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Wilczewska, A.Z.; Markiewicz, K.H. Dietary Fiber-Induced Changes in the Structure and Thermal Properties of Gluten Proteins Studied by Fourier Transform-Raman Spectroscopy and Thermogravimetry. J. Agric. Food Chem. 2016, 64, 094–2104. [Google Scholar] [CrossRef]
- Gómez, M.; Jiménez, S.; Ruiz, E.; Oliete, B. Effect of extruded wheat bran on dough rheology and bread quality. LWT Food Sci. Technol. 2011, 44, 2231–2237. [Google Scholar] [CrossRef]
- Sun, X.; Wu, S.; Koksel, F.; Xie, M.; Fang, Y. Effects of ingredient and processing conditions on the rheological properties of whole wheat flour dough during breadmaking—A review. Food Hydrocolloid. 2023, 135, 108123. [Google Scholar] [CrossRef]
- Wu, Y.; Ye, G.; Li, X.; Wang, L.; Liu, Y.; Tan, B.; Shen, W.; Zhou, J. Comparison of quality characteristics of six reconstituted whole wheat flour with different modified bran. LWT Food Sci. Technol. 2022, 153, 112543. [Google Scholar] [CrossRef]
- Menis-Henrique, M.E.C.; Scarton, M.; Piran, M.V.F.; Clerici, M.T.P.S. Cereal fiber: Extrusion modifications for food industry. Curr. Opin. Food Sci. 2020, 33, 141–148. [Google Scholar] [CrossRef]
- Logié, N.; Della Valle, G.; Rolland-Sabaté, A.; Descamps, N.; Soulestin, J. How does temperature govern mechanisms of starch changes during extrusion. Carbohydr. Polym. 2018, 184, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Offiah, V.; Kontogiorgos, V.; Falade, K.O. Extrusion processing of raw food materials and by-products: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2979–2998. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.C.; Zhang, B.J.; Niu, M.; Zhao, S.M. Protein polymerization and water mobility in whole-wheat dough influenced by bran particle size distribution. LWT Food Sci. Technol. 2017, 82, 396–403. [Google Scholar] [CrossRef]
- Bock, J.E.; Connelly, R.K.; Damodaran, S. Impact of bran addition on water properties and gluten secondary structure in wheat flour doughs studied by attenuated total reflectance Fourier transform infrared spectroscopy. Cereal Chem. 2013, 90, 377–386. [Google Scholar] [CrossRef]
- Bock, J.E.; Damodaran, S. Bran-induced changes in water structure and gluten conformation in model gluten dough studied by Fourier transform infrared spectroscopy. Food Hydrocoll. 2013, 31, 146–155. [Google Scholar] [CrossRef]
- Wang, P.; Jin, Z.Y.; Xu, X.M. Physicochemical alterations of wheat gluten proteins upon dough formation and frozen storage—A review from gluten, glutenin and gliadin perspectives. Trends Food Sci. Technol. 2015, 46, 189–198. [Google Scholar] [CrossRef]
- Li, J.; Kang, J.; Wang, L.; Li, Z.; Wang, R.; Chen, Z.X.; Hou, G.G. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI). J. Agric. Food Chem. 2012, 60, 6507–6514. [Google Scholar] [CrossRef]
- Li, Q.; Liu, R.; Wu, T.; Zhang, M. Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy. Food Res. Int. 2017, 95, 19–27. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, X.; Zhang, Z.S. Extrusion process improves the functionality of soluble dietary fiber in oat bran. J. Cereal Sci. 2011, 54, 98–103. [Google Scholar] [CrossRef]
- McCleary, B.; Prosky, L. Advanced Dietary Fibre Technology; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Akalın, A.S.; Kesenkas, H.; Dinkci, N.; Unal, G.; Ozer, E.; Kınık, O. Enrichment of probiotic ice cream with different dietary fibers: Structural characteristics and culture viability. J. Dairy Sci. 2018, 101, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Song, R.; Wei, S.; Wang, W.; Li, F.; Tang, X.; Li, N. Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties. LWT Food Sci. Technol. 2020, 125, 109220. [Google Scholar] [CrossRef]
- Yan, J.; Hu, J.; Yang, R.; Zhang, Z.; Zhao, W. Innovative nanofibrillated cellulose from rice straw as dietary fiber for enhanced health benefits prepared by a green and scale production method. ACS Sustain. Chem. Eng. 2018, 6, 3481–3492. [Google Scholar] [CrossRef]
- Haghighi-Manesh, S.; Azizi, M.H. Integrated extrusion-enzymatic treatment of corn bran for production of functional cake. Food Sci. Nutr. 2018, 6, 1870–1878. [Google Scholar] [CrossRef]
- Lu, Z.; Seetharaman, K. 1H Nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) studies of water mobility in dough systems containing barley flour. Cereal Chem. 2013, 90, 120–126. [Google Scholar] [CrossRef]
- Arcila, J.A.; Weier, S.A.; Rose, D.J. Changes in dietary fiber fractions and gut microbial fermentation properties of wheat bran after extrusion and bread making. Food Res. Int. 2015, 74, 217–223. [Google Scholar] [CrossRef]
- Wang, M.W.; Hamer, R.J.; van Vliet, T.; Oudgenoeg, G. Interaction of water extractable pentosans with gluten protein: Effect on dough properties and gluten quality. J. Cereal Sci. 2002, 36, 25–37. [Google Scholar] [CrossRef]
- Noort, M.W.J.; van Haaster, D.; Hemery, Y.; Schols, H.A.; Hamer, R.J. The effect of particle size of wheat bran fractions on bread quality–Evidence for fibre–protein interactions. J. Cereal Sci. 2010, 52, 59–64. [Google Scholar] [CrossRef]
- Mejia, C.D.; Gonzalez, D.C.; Mauer, L.J.; Campanella, O.H.; Hamaker, B.R. Increasing and stabilizing β-sheet structure of maize zein causes improvement in its rheological properties. J. Agric. Food Chem. 2012, 60, 2316–2321. [Google Scholar] [CrossRef]
- Sarawong, C.; Schoenlechner, R.; Sekiguchi, K.; Berghofer, E.; Ng, P.K.W. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem. 2014, 143, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Ronda, F.; Perez-Quirce, S.; Lazaridou, A.; Biliaderis, C.G. Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocoll. 2015, 48, 197–207. [Google Scholar] [CrossRef]
- Wang, L.; Ye, F.Y.; Li, S.; Wei, F.B.; Chen, J.F.; Zhao, G.H. Wheat flour enriched with oat β-glucan: A study of hydration, rheological and fermentation properties of dough. J. Cereal Sci. 2017, 75, 143–150. [Google Scholar] [CrossRef]
Flour Types | Protein Content/% | Wet Gluten Content/% | Alveograph Parameters | ||
---|---|---|---|---|---|
P/mm | L/mm | W/(10−4 × J) | |||
Low-gluten wheat flour | 6.73 ± 0.23 | 21.56 ± 1.21 | 54.23 ± 2.36 | 95.63 ± 2.43 | 136.92 ± 2.37 |
Middle-gluten wheat flour | 10.48 ± 0.56 | 26.89 ± 0.58 | 23.01 ± 0.89 | 54.99 ± 1.89 | 89.08 ± 2.02 |
High-gluten wheat flour | 14.83 ± 0.45 | 34.56 ± 1.37 | 75.50 ± 2.75 | 160.88 ± 3.65 | 213.25 ± 4.03 |
Bran Addition/% | Raw Bran | Extruded Bran | |||||||
---|---|---|---|---|---|---|---|---|---|
T21/ms | T22/ms | A21/% | A22/% | T21/ms | T22/ms | A21/% | A22/% | ||
High-gluten flour | 0 | 15.21 ± 0.10 a | 618.18 ± 0.00 d | 99.87 ± 0.00 a | 0.10 ± 0.00 d | − | − | − | − |
5 | 13.23 ± 0.00 b | 444.78 ± 0.00 f | 99.07 ± 0.00 cd | 0.93 ± 0.00 b | 15.11 ± 0.00 | − | 100.00 ± 0.00 | − | |
10 | 13.23 ± 0.00 b | 920.05 ± 0.00 b | 99.75 ± 0.01 ab | 0.17 ± 0.01 d | 15.11 ± 0.00 | − | 100.00 ± 0.00 | − | |
15 | 13.23 ± 0.00 b | 1344.94 ± 0.39 a | 99.82 ± 0.23 ab | 0.08 ± 0.02 d | 15.11 ± 0.00 | − | 100.00 ± 0.00 | − | |
20 | 12.14 ± 0.55 c | 496.63 ± 0.22 e | 98.91 ± 0.14 d | 1.09 ± 0.01 a | 15.11 ± 0.00 | − | 100.00 ± 0.00 | − | |
25 | 13.23 ± 0.00 b | 777.22 ± 0.71 c | 99.44 ± 0.07 bc | 0.55 ± 0.08 c | 15.11 ± 0.00 | − | 100.00 ± 0.00 | − | |
Middle-gluten flour | 0 | 13.22 ± 0.02 | 214.09 ± 0.00 d | 98.80 ± 0.02 a | 1.20 ± 0.02 e | − | − | − | − |
5 | 13.23 ± 0.00 | 187.51 ± 0.00 e | 98.51 ± 0.03 b | 1.49 ± 0.03 c | 15.11 ± 0.00 a | 279.07 ± 0.00 c | 98.90 ± 0.01 e | 1.09 ± 0.02 a | |
10 | 13.23 ± 0.00 | 171.99 ± 0.77 d | 98.20 ± 0.02 d | 1.80 ± 0.02 a | 15.11 ± 0.00 a | 415.35 ± 0.00 b | 99.22 ± 0.05 d | 0.78 ± 0.05 b | |
15 | 13.23 ± 0.00 | 255.98 ± 1.15 b | 98.56 ± 0.03 b | 1.44 ± 0.03 c | 15.11 ± 0.00 a | 474.22 ± 2.24 b | 99.38 ± 0.05 c | 0.62 ± 0.05 c | |
20 | 13.23 ± 0.00 | 244.43 ± 0.00 c | 98.38 ± 0.03 c | 1.62 ± 0.03 b | 13.23 ± 0.00 b | 705.80 ± 1.89 a | 99.76 ± 0.03 b | 0.18 ± 0.03 d | |
25 | 13.23 ± 0.00 | 365.92 ± 2.79 a | 98.70 ± 0.04 a | 1.30 ± 0.03 d | 13.23 ± 0.63 b | − | 100.00 ± 0.00 a | − | |
Low-gluten flour | 0 | 13.22 ± 0.02 a | 125.99 ± 0.00 f | 98.50 ± 0.02 | 1.50 ± 0.02 | − | − | − | − |
5 | 13.23 ± 0.00 a | 157.43 ± 0.68 d | 98.50 ± 0.04 | 1.50 ± 0.04 | 11.59 ± 0.00 | 96.65 ± 4.57 c | 97.84 ± 0.02 d | 2.16 ± 0.02 a | |
10 | 13.23 ± 0.00 a | 143.84 ± 0.00 e | 98.20 ± 0.04 | 1.80 ± 0.04 | 13.23 ± 0.00 | 164.23 ± 1.76 c | 98.43 ± 0.03 c | 1.57 ± 0.03 b | |
15 | 12.68 ± 0.55 ab | 179.75 ± 0.77 c | 98.48 ± 0.26 | 1.52 ± 0.26 | 15.11 ± 0.00 | 415.35 ± 7.21 b | 98.96 ± 0.00 b | 1.04 ± 0.00 c | |
20 | 12.14 ± 0.55 ab | 187.51 ± 0.00 b | 98.28 ± 0.03 | 1.72 ± 0.03 | 13.23 ± 0.00 | 415.35 ± 1.96 b | 99.02 ± 0.02 b | 0.98 ± 0.02 c | |
25 | 11.59 ± 0.00 b | 196.37 ± 0.89 a | 98.24 ± 0.02 | 1.76 ± 0.02 | 13.23 ± 0.00 | 805.83 ± 5.42 a | 99.50 ± 0.13 a | 0.50 ± 0.05 d |
Flour Type | Bran Addition /% | Untreated Bran | Extruded Bran | ||||||
---|---|---|---|---|---|---|---|---|---|
Water Absorption (WA) /% | Development Time (DT) /min | Stability Time (ST) /min | Degree of Softening (Ds) /FU | Water Absorption (WA) /% | Development Time (DT) /min | Stability Time (ST) /min | Degree of Softening (Ds) /FU | ||
High-gluten flour | 0 | 62.9 ± 0.0 f | 15.0 ± 0.1 a | 19.6 ± 0.1 a | − | 63.1 ± 0.0 c | 15.0 ± 0.1 a | 19.6 ± 0.0 a | − |
5 | 64.4 ± 0.1 e | 9.1 ± 0.0 c | 17.1 ± 0.0 b | − | 65.3 ± 0.1 c | 13.7 ± 0.2 b | 14.1 ± 0.2 b | − | |
10 | 65.6 ± 0.0 d | 10.1 ± 0.1 b | 15.5 ± 0.1 c | − | 68.5 ± 0.1 b | 11.1 ± 0.3 c | 14.6 ± 0.2 b | − | |
15 | 68.7 ± 0.0 c | 9.0 ± 0.0 c | 15.7 ± 0.2 c | − | 72.7 ± 0.1 b | 8.8 ± 0.1 d | 11.4 ± 0.4 c | − | |
20 | 70.0 ± 0.2 b | 7.2 ± 0.2 e | 13.4 ± 0.3 d | − | 76.2 ± 0.3 a | 8.4 ± 0.1 d | 7.8 ±0.2 d | − | |
25 | 74.3 ± 0.1 a | 7.8 ± 0.1 d | 11.2 ± 0.2 e | − | 77.3 ± 0.2 a | 7.5 ± 0.2 e | 6.4 ± 0.1 d | 112.8 ± 7.3 | |
Middle-gluten flour | 0 | 58.8 ± 0.1 f | 5.3 ± 0.3 a | 12.6 ± 0.2 a | 45.0 ± 1.2 c | 58.8 ± 0.2 e | 5.2 ±0.1 a | 13.4 ± 0.1 a | 44.4 ± 2.1 e |
5 | 60.9 ± 0.1 e | 3.2 ± 0.1 c | 7.8 ± 0.1 b | 93.5 ± 2.0 b | 62.0 ± 0.0 d | 2.5 ± 0.0 d | 7.3 ± 0.1 b | 72.4 ± 3.2 d | |
10 | 62.8 ± 0.2 d | 3.3 ± 0.2 c | 6.8 ± 0.1 c | 103.2 ± 1.7 b | 65.6 ± 0.1 c | 3.4 ± 0.2 c | 4.8 ± 0.2 c | 108.6 ± 9.0 c | |
15 | 65.4 ± 0.1 c | 4.2 ± 0.1 b | 6.1 ± 0.3 d | 116.8 ± 1.5 a | 70.0 ± 0.2 b | 3.8 ± 0.2 b | 4.1 ± 0.1 cd | 122.9 ± 6.4 bc | |
20 | 68.7 ± 0.2 b | 3.8 ± 0.3 b | 5.5 ± 0.2 d | 129.1 ± 3.5 a | 73.0 ± 0.3 a | 4.0 ± 0.0 | 3.7 ± 0.0 d | 136.4 ± 4.8 a | |
25 | 73.1 ±0.1 a | 5.3 ± 0.2 a | 6.3 ±0.2 d | 128.9 ± 2.4 a | 75.1 ± 0.1 a | 4.0 ± 0.1 b | 2.8 ± 0.1 e | 135.4 ± 5.1 a | |
Low-gluten flour | 0 | 49.3 ± 0.1 e | 1.2 ± 0.0 d | 1.1 ± 0.1 e | 132.1 ± 2.1 a | 49.3 ± 0.1 e | 1.1 ± 0.3 d | 1.1 ± 0.3 d | 132.1 ± 2.1 a |
5 | 49.6 ± 0.1 e | 1.2 ± 0.0 d | 1.4 ± 0.0 e | 119.8 ± 4.1 b | 49.3 ± 0.0 e | 1.3 ± 0.1 d | 1.7 ± 0.2 d | 126.0 ± 3.3 b | |
10 | 52.5 ± 0.0 d | 1.3 ± 0.1 cd | 2.7 ± 0.2 d | 110.2 ± 1.9 c | 52.5 ± 0.1 d | 1.5 ± 0.0 d | 3.2 ± 0.4 c | 121.7 ± 5.0 b | |
15 | 57.4 ± 0.2 c | 1.5 ± 0.1 d | 3.4 ± 0.1 c | 106.6 ± 2.3 c | 56.1 ± 0.3 c | 3.9 ± 0.2 c | 5.4 ± 0.2 b | 95.4 ± 2.4 cd | |
20 | 60.7 ± 0.0 b | 1.8 ± 0.0 b | 5.5 ± 0.2 b | 90.3 ± 0.7 d | 58.2 ± 0.2 bc | 5.3 ± 0.3 b | 4.5 ± 0.2 bc | 86.2 ± 7.9 d | |
25 | 62.5 ± 0.1 a | 3.9 ± 0.1 a | 6.4 ± 0.1 a | 98.0 ± 1.4 d | 63.5 ± 0.1 a | 6.7 ± 0.2 a | 7.0 ± 0.0 a | 45.9 ± 3.7 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, C.; Wang, Y.; Xie, X.; Sui, W.; Liu, R.; Wu, T.; Zhang, M. Extrusion Modification of Wheat Bran and Its Effects on Structural and Rheological Properties of Wheat Flour Dough. Foods 2023, 12, 1813. https://doi.org/10.3390/foods12091813
Li R, Wang C, Wang Y, Xie X, Sui W, Liu R, Wu T, Zhang M. Extrusion Modification of Wheat Bran and Its Effects on Structural and Rheological Properties of Wheat Flour Dough. Foods. 2023; 12(9):1813. https://doi.org/10.3390/foods12091813
Chicago/Turabian StyleLi, Ranran, Chenyang Wang, Yan Wang, Xuan Xie, Wenjie Sui, Rui Liu, Tao Wu, and Min Zhang. 2023. "Extrusion Modification of Wheat Bran and Its Effects on Structural and Rheological Properties of Wheat Flour Dough" Foods 12, no. 9: 1813. https://doi.org/10.3390/foods12091813
APA StyleLi, R., Wang, C., Wang, Y., Xie, X., Sui, W., Liu, R., Wu, T., & Zhang, M. (2023). Extrusion Modification of Wheat Bran and Its Effects on Structural and Rheological Properties of Wheat Flour Dough. Foods, 12(9), 1813. https://doi.org/10.3390/foods12091813