Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Origin of Honey Samples
2.2. Melissopalynological Analysis of Honey
2.3. Determination of Quality Parameters: Moisture, pH and Electrical Conductivity
2.4. Determination of Color
2.5. Determination of Total Phenol and Flavonoid Concentration
2.6. Statistical Analysis
3. Results
3.1. Representation of Botanical Diversity in Galician Honeys
3.2. Physicochemical Characteristics of Honeys
3.3. Distribution of Honeys According to Botanical Origin, Physicochemical Parameters and Multivariate Classification Techniques
3.4. Classification Rate of Honeys According to Botanical Origin
3.5. Physicochemical and Melissopalynological Characterization of Unifloral and Honeydew Honeys
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Seijo, M.C. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Res. Int. 2019, 119, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Nikhat, S.; Fazil, M. History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine. J. Ethnopharmacol. 2022, 282, 114614. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.A.; Almeida-Muradian, L.B.D.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C. Characterization and antioxidant capacity of sweet chestnut honey produced in North-West Spain. J. Apic. Sci. 2016, 60, 19. [Google Scholar] [CrossRef] [Green Version]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Elmore, J.S.; Bernal, J. Recent trends in the analysis of honey constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef] [PubMed]
- Isidorow, W.; Witkowski, S.; Iwaniuk, P.; Zambrzycka, M.; Swiecicka, I. Royal jelly aliphatic acids contribute to antimicrobial activity of honey. J. Apic. Sci. 2018, 62, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Trifković, J.; Andrić, F.; Ristovojević, P.; Guzelmeric, E.; Yesilada, E. Analytical methods in tracing honey authenticity. J. AOAC Int. 2017, 100, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Ghorab, A.; Rodríguez-Flores, M.S.; Nakib, R.; Escuredo, O.; Haderbache, L.; Bekdouche, F.; Seijo, M.C. Sensorial, Melissopalynological and Physico-Chemical Characteristics of Honey from Babors Kabylia’s Region (Algeria). Foods 2021, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Vela, L.; De Lorenzo, C.; Pérez, R.A. Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J. Sci. Food Agric. 2007, 87, 1069–1075. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Rojo-Martínez, S.; Seijo, M.C. Contribution to the chromatic characterization of unifloral honeys from Galicia (NW Spain). Foods 2019, 8, 233. [Google Scholar] [CrossRef] [Green Version]
- Combarros-Fuertes, P.; Valencia-Barrera, R.M.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tornadijo, M.E.; Fresno, J.M. Spanish honeys with quality brand: A multivariate approach to physicochemical parameters, microbiological quality, and floral origin. J. Apic. Res. 2019, 58, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Dobre, I.; Escuredo, O.; Rodriguez-Flores, S.; Seijo, M.C. Evaluation of several Romanian honeys based on their palynological and biochemical profiles. Int. J. Food Prop. 2014, 17, 1850–1860. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Badeka, A.V.; Kontakos, S.; Karabournioti, S.; Kontominas, M.G. Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. Food Chem. 2014, 165, 181–190. [Google Scholar] [CrossRef]
- Vasić, V.; Gašić, U.; Stanković, D.; Lušić, D.; Vukić-Lušić, D.; Milojković-Opsenica, D.; Tešić, Ž.; Trifković, J. Towards better quality criteria of European honeydew honey: Phenolic profile and antioxidant capacity. Food Chem. 2019, 274, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Preti, R.; Tarola, A.M. Chemometric evaluation of the antioxidant properties and phenolic compounds in Italian honeys as markers of floral origin. Eur. Food Res. Technol. 2022, 248, 991–1002. [Google Scholar] [CrossRef]
- Serrano, S.; Villarejo, M.; Espejo, R.; Jodral, M. Chemical and physical parameters of Andalusian honey: Classification of Citrus and Eucalyptus honeys by discriminant analysis. Food Chem. 2004, 87, 619–625. [Google Scholar] [CrossRef]
- Bentabol-Manzanares, A.; Hernández-García, Z.; Rodríguez-Galdón, B.; Rodríguez-Rodríguez, E.M.; Díaz-Romero, C. Physicochemical characteristics and pollen spectrum of monofloral honeys from Tenerife, Spain. Food Chem. 2017, 228, 441–446. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Míguez, M.; Seijo, M.C. Differentiation of oak honeydew and chestnut honeys from the same geographical origin using chemometric methods. Food Chem. 2019, 297, 124979. [Google Scholar] [CrossRef] [PubMed]
- Seijo, M.C.; Escuredo, O.; Rodríguez-Flores, M.S. Physicochemical properties and pollen profile of oak honeydew and evergreen oak honeydew honeys from Spain: A comparative study. Foods 2019, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Akbari, E.; Baigbabaei, A.; Shahidi, M. Determination of the floral origin of honey based on its phenolic profile and physicochemical properties coupled with chemometrics. Int. J. Food Prop. 2020, 23, 506–519. [Google Scholar] [CrossRef] [Green Version]
- MAGRAMA. El Sector Apícola Español en 2020: Principales Magnitudes e Indicadores Económicos. Informes del Sector Apícola Español. Available online: https://www.mapa.gob.es/es/ganaderia/temas/produccion-y-mercados-ganaderos/indicadoreseconomicossectorapicola2020.pdf (accessed on 15 December 2022).
- Persano-Oddo, L.; Piro, R. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35, S38–S81. [Google Scholar] [CrossRef]
- Estevinho, L.M.; Feás, X.; Seijas, J.A.; Vázquez-Tato, M.P. Organic honey from Trás-Os-Montes region (Portugal): Chemical, palynological, microbiological and bioactive compounds characterization. Food Chem. Toxicol. 2012, 50, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Flanjak, I.; Kenjerić, D.; Bubalo, D.; Primorac, L. Characterisation of selected Croatian honey types based on the combination of antioxidant capacity, quality parameters, and chemometrics. Eur. Food Res. Technol. 2016, 242, 467–475. [Google Scholar] [CrossRef]
- Carabetta, S.; Di Sanzo, R.; Campone, L.; Fuda, S.; Rastrelli, L.; Russo, M. High-performance anion exchange chromatography with Pulsed Amperometric Detection (HPAEC–PAD) and chemometrics for geographical and floral authentication of honeys from Southern Italy (Calabria region). Foods 2020, 9, 1625. [Google Scholar] [CrossRef]
- Tarapatskyy, M.; Sowa, P.; Zaguła, G.; Dżugan, M.; Puchalski, C. Assessment of the botanical origin of polish honeys based on physicochemical properties and bioactive components with chemometric analysis. Molecules 2021, 26, 4801. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P.; Lullmann, C. Harmonized methods of the international honey commission. Apidologie 1997, 1–59. Available online: https://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 20 July 2019).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar] [PubMed]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Characterization of eucalyptus, chestnut and heather honeys from Portugal using multi-parameter analysis and chemo-calculus. Foods 2018, 7, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homrani, M.; Escuredo, O.; Rodríguez-Flores, M.S.; Fatiha, D.; Mohammed, B.; Homrani, A.; Seijo, M.C. Botanical origin, pollen profile, and physicochemical properties of Algerian honey from different bioclimatic areas. Foods 2020, 9, 938. [Google Scholar] [CrossRef] [PubMed]
- Corbella, E.; Cozzolino, D. Classification of the Floral Origin of Uruguayan Honeys by Chemical and Physical Characteristics Combined with Chemometrics. LWT-Food Sci. Technol. 2006, 39, 534–539. [Google Scholar] [CrossRef]
- Pita-Calvo, C.; Vázquez, M. Honeydew honeys: A Review on the characterization and authentication of botanical and geographical origins. J. Agric. Food Chem. 2018, 66, 2523–2537. [Google Scholar] [CrossRef]
- Szabó, R.T.; Mézes, M.; Szalai, T.; Zajácz, E.; Kovács-Weber, M. Colour identification of honey and methodical development of its instrumental measuring. Columella J. Agric. Environ. Sci. 2016, 3, 29–36. [Google Scholar] [CrossRef]
- Nayik, N.; Nanda, V. A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT-Food Sci. Technol. 2016, 74, 504–513. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, I.; Kariyat, R. The multifunctional roles of polyphenols in plant-herbivore interactions. Int. J. Mol. Sci. 2021, 22, 1442. [Google Scholar] [CrossRef]
- Rios, F.; Sanchez, A.C.; Lobo, M.; Lupo, L.; Coelho, I.; Castanheira, I.; Samman, N. A Chemometric Approach: Characterization of Quality and Authenticity of Artisanal Honeys from Argentina. J. Chemom. 2014, 28, 834–843. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabournioti, S. Discrimination of clover and citrus honeys from Egypt according to floral type using easily assessable physicochemical parameters and discriminant analysis: An external validation of the chemometric approach. Foods 2018, 7, 70. [Google Scholar] [CrossRef] [Green Version]
Family | Pollen Type | Rep.(%) | Mean | SD | Max. | D > 45 | A (15–45) | I (3–15) | R (1–3) | P (0–1) |
---|---|---|---|---|---|---|---|---|---|---|
Rosaceae | Rubus | 99.2 | 23.2 | 19.8 | 91.3 | 18.0 | 37.6 | 30.4 | 7.7 | 5.5 |
Fagaceae | Castanea sativa | 98.6 | 42.9 | 24.8 | 92.5 | 45.6 | 38.1 | 9.7 | 3.6 | 1.7 |
Fabaceae | Cytisus type | 97.8 | 5.3 | 6.6 | 48.6 | 0.3 | 6.6 | 45.9 | 29.0 | 16.0 |
Ericaceae | Erica | 96.7 | 7.9 | 11.6 | 68.6 | 1.9 | 14.9 | 35.6 | 22.4 | 21.8 |
Myrtaceae | Eucalyptus | 81.5 | 13.4 | 23.8 | 94.8 | 11.9 | 10.5 | 17.1 | 16.9 | 25.1 |
Fabaceae | Trifolium type | 73.8 | 0.8 | 1.5 | 15.4 | - | 0.3 | 6.4 | 16.9 | 50.3 |
Fagaceae | Quercus | 71.8 | 0.7 | 1.9 | 27.8 | - | 0.3 | 4.7 | 14.9 | 51.9 |
Boraginaceae | Echium | 67.1 | 0.9 | 1.8 | 13.1 | - | - | 9.4 | 13.8 | 43.9 |
Salicaceae | Salix | 59.7 | 0.7 | 2.3 | 27.4 | - | 0.8 | 4.1 | 10.5 | 44.2 |
Plantaginaceae | Plantago | 53.6 | 0.2 | 0.6 | 7.4 | - | - | 0.6 | 4.4 | 48.6 |
Poaceae | Poaceae | 53.3 | 0.2 | 0.5 | 3.3 | - | - | 0.8 | 5.8 | 46.7 |
Rosaceae | Crataegus monogyna type | 44.5 | 0.3 | 1.1 | 17.5 | - | 0.3 | 1.9 | 6.4 | 35.9 |
Rosaceae | Prunus type | 42.0 | 0.2 | 0.4 | 3.9 | - | - | 0.8 | 2.5 | 38.7 |
Apiaceae | Conium maculatum type | 41.4 | 0.3 | 0.7 | 7.0 | - | - | 1.4 | 5.2 | 34.8 |
Brassicaceae | Brassica type | 40.1 | 0.2 | 0.5 | 5.5 | - | - | 0.6 | 3.3 | 36.2 |
Rhamnaceae | Frangula alnus | 35.9 | 0.4 | 1.8 | 21.8 | - | 0.6 | 1.4 | 6.4 | 27.6 |
Campanulaceae | Campanula type | 35.1 | 0.2 | 0.4 | 3.9 | - | - | 0.6 | 3.3 | 31.2 |
Resedaceae | Sesamoides | 34.3 | 0.2 | 0.9 | 16.0 | - | 0.3 | - | 3.3 | 30.7 |
Scrophulariaceae | Scrophularia type | 32.3 | 0.1 | 0.2 | 2.9 | - | - | - | 1.1 | 31.2 |
Mean | SD | Minimum | Maximum | |
---|---|---|---|---|
Moisture (%) | 17.74 | 1.02 | 14.40 | 21.20 |
pH | 4.24 | 0.35 | 3.29 | 5.15 |
EC (mS/cm) | 0.76 | 0.28 | 0.22 | 1.65 |
Diastase content | 21.31 | 8.79 | 6.14 | 44.04 |
TPC (mg/100 g) | 116.43 | 44.39 | 33.91 | 254.50 |
TFC (mg/100 g) | 6.72 | 2.72 | 1.28 | 16.70 |
Color (mm) | 105 | 30 | 36 | 150 |
Components | C1 | C2 | C3 | C4 |
---|---|---|---|---|
Eigenvalue | 4.03 | 1.88 | 1.29 | 1.18 |
Variance (%) | 36.63 | 17.08 | 11.73 | 10.69 |
Cumulative variance (%) | 36.63 | 53.71 | 65.45 | 76.14 |
Component weights of pollen variables | ||||
Rubus | −0.02 | −0.38 | 0.72 | 0.07 |
Castanea sativa | −0.30 | −0.08 | −0.18 | −0.54 |
Erica | −0.01 | 0.60 | 0.23 | 0.11 |
Eucalyptus | 0.31 | 0.06 | −0.54 | 0.34 |
Component weights of physicochemical variables | ||||
Moisture | −0.03 | 0.41 | 0.06 | −0.55 |
pH | −0.29 | −0.34 | −0.15 | 0.21 |
EC | −0.44 | −0.10 | −0.19 | −0.03 |
Diastase content | −0.31 | −0.15 | −0.19 | −0.20 |
TPC | −0.43 | 0.09 | 0.02 | 0.28 |
TFC | −0.42 | 0.17 | 0.08 | 0.22 |
Color | −0.29 | 0.37 | 0.03 | 0.27 |
Discriminant Function | EigenValue | Relative Percentage | Canonical Correlation | Wilks Lambda | Chi-Square | DF | p |
---|---|---|---|---|---|---|---|
1 | 3.98 | 37.27 | 0.89 | 0.01 | 1777.24 | 55 | <0.001 |
2 | 3.48 | 32.54 | 0.88 | 0.03 | 1211.01 | 40 | <0.001 |
3 | 2.29 | 21.42 | 0.83 | 0.14 | 682.5 | 27 | <0.001 |
4 | 0.7 | 6.52 | 0.64 | 0.47 | 262.65 | 16 | <0.001 |
5 | 0.24 | 2.26 | 0.44 | 0.81 | 76.31 | 7 | <0.001 |
Predicted Honey Type (%) | |||||||
---|---|---|---|---|---|---|---|
Honey Type | n | Chestnut | Blackberry | Eucalyptus | Heather | Honeydew | Multifloral |
Chestnut | 52 | 47 (90.4) | 0 | - | - | 2 (3.8) | 3 (5.8) |
Blackberry | 56 | 0 | 56 (100) | - | - | 0 | 0 |
Eucalyptus | 33 | 0 | 0 | 33 (100) | 0 | 0 | 0 |
Heather | 36 | 0 | 0 | 0 | 36 (100) | 0 | 0 |
Honeydew | 53 | 7 (13.2) | 5 (9.4) | 0 | 0 | 39 (73.6) | 2 (3.8) |
Multifloral | 132 | 3 (2.3) | 4 (3.0) | 6 (4.5) | 3 (2.3) | 2 (1.5) | 114 (86.4) |
Mean | SD | Lower Limit than 95% | Upper Limit than 95% | ANOVA * | |
---|---|---|---|---|---|
Chestnut honey (n = 57) | |||||
Rubus (%) | 12.6 | 6.7 | 10.8 | 14.4 | 2, 3, 5, 6 |
Castanea sativa (%) | 76.8 | 8.0 | 74.6 | 78.9 | 2, 3, 4, 5, 6 |
Erica (%) | 4.0 | 3.7 | 3.0 | 5.0 | 4 |
Eucalyptus (%) | 1.3 | 2.5 | 0.6 | 1.9 | 3, 6 |
PG/g | 30,239 | 23,505 | 23,885 | 36,593 | 3, 4, 6 |
Moisture (%) | 18.2 | 1.0 | 17.9 | 18.5 | 2, 3, 5, 6 |
pH | 4.5 | 0.4 | 4.4 | 4.6 | 2, 3, 4, 6 |
EC (mS/cm) | 1.02 | 0.21 | 0.97 | 1.08 | 2, 3, 4, 6 |
Diastase content | 23.5 | 7.2 | 21.6 | 25.4 | 3, 5 |
TPC (mg/100 g) | 122.8 | 29.4 | 115.0 | 130.6 | 2, 3, 5 |
TFC (mg/100 g) | 8.2 | 2.2 | 7.6 | 8.8 | 2, 3, 5, 6 |
Color (mm Pfund) | 128 | 24 | 122 | 135 | 2, 3, 6 |
Blackberry honey (n = 65) | |||||
Rubus (%) | 56.7 | 11.4 | 53.9 | 59.5 | 1, 3, 4, 5, 6 |
Castanea sativa (%) | 26.6 | 13.9 | 23.1 | 30.0 | 1, 3, 5, 6 |
Erica (%) | 3.3 | 4.5 | 2.1 | 4.4 | 4, 6 |
Eucalyptus (%) | 1.6 | 2.5 | 0.9 | 2.2 | 3, 6 |
PG/g | 26,571 | 29,847 | 18,723 | 34,418 | 4 |
Moisture (%) | 17.4 | 1.0 | 17.1 | 17.6 | 1, 4 |
pH | 4.3 | 0.3 | 4.2 | 4.4 | 1, 3, 4, 5, 6 |
EC (mS/cm) | 0.69 | 0.25 | 0.63 | 0.75 | 1, 3, 5 |
Diastase content | 19.7 | 7.0 | 18.0 | 21.5 | 3, 5 |
TPC (mg/100 g) | 94.7 | 31.7 | 86.8 | 102.5 | 1, 4, 5 |
TFC (mg/100 g) | 6.1 | 2.1 | 5.6 | 6.7 | 1, 3, 4, 5, 6 |
Color (mm Pfund) | 96 | 30 | 89 | 104 | 1, 3, 4, 5 |
Eucalyptus honey (n = 39) | |||||
Rubus (%) | 2.2 | 2.6 | 1.3 | 3.0 | 1, 2, 4, 5, 6 |
Castanea sativa (%) | 8.3 | 7.9 | 5.7 | 10.9 | 1, 2, 4, 5, 6 |
Erica (%) | 3.0 | 3.3 | 1.9 | 4.0 | 4, 6 |
Eucalyptus (%) | 73.8 | 11.4 | 70.1 | 77.5 | 1, 2, 4, 5, 6 |
PG/g | 16,371 | 10,946 | 12,126 | 20,615 | 1 |
Moisture (%) | 17.4 | 0.9 | 17.1 | 17.7 | 1, 4 |
pH | 4.1 | 0.3 | 4.0 | 4.2 | 1, 2, 5 |
EC (mS/cm) | 0.51 | 0.10 | 0.48 | 0.54 | 1, 2, 4, 5, 6 |
Diastase content | 14.6 | 7.0 | 12.4 | 16.9 | 1, 2, 4, 5, 6 |
TPC (mg/100 g) | 83.7 | 38.2 | 71.3 | 96.1 | 1, 4, 5, 6 |
TFC (mg/100 g) | 4.6 | 1.2 | 4.2 | 5.0 | 1, 2, 4, 5 |
Color (mm Pfund) | 77 | 19 | 71 | 83 | 1, 2, 4, 5, 6 |
Heather honey (n = 39) | |||||
Rubus (%) | 10.9 | 8.7 | 8.1 | 13.7 | 2, 3, 5, 6 |
Castanea sativa (%) | 28.4 | 14.7 | 23.6 | 33.1 | 1, 3, 5, 6 |
Erica (%) | 36.7 | 11.0 | 33.1 | 40.3 | 1, 2, 3, 5, 6 |
Eucalyptus (%) | 5.6 | 9.5 | 2.6 | 8.7 | 3, 6 |
PG/g | 11,045 | 11,028 | 7420 | 14,670 | 1, 2 |
Moisture (%) | 18.5 | 1.2 | 18.1 | 18.9 | 2, 3, 5, 6 |
pH | 4.0 | 0.2 | 3.9 | 4.1 | 1, 2, 5 |
EC (mS/cm) | 0.68 | 0.17 | 0.62 | 0.73 | 1, 3, 5 |
Diastase content | 20.1 | 8.2 | 17.4 | 22.8 | 3, 5 |
TPC (mg/100 g) | 143.1 | 49.6 | 127.0 | 159.2 | 2, 3, 6 |
TFC (mg/100 g) | 7.3 | 2.0 | 6.7 | 8.0 | 2, 3, 5, 6 |
Color (mm Pfund) | 117 | 21 | 110 | 124 | 2, 3, 5, 6 |
Honeydew honey (n = 43) | |||||
Rubus (%) | 26.9 | 12.7 | 23.0 | 30.8 | 1, 2, 3, 4, 6 |
Castanea sativa (%) | 53.6 | 19.1 | 47.7 | 59.4 | 1, 2, 3, 4 |
Erica (%) | 3.5 | 3.6 | 2.4 | 4.6 | 4 |
Eucalyptus (%) | 1.0 | 2.3 | 0.3 | 1.7 | 3, 6 |
PG/g | 18,531 | 14,365 | 13,352 | 23,710 | |
Moisture (%) | 17.4 | 0.9 | 17.1 | 17.6 | 1, 4 |
pH | 4.5 | 0.2 | 4.4 | 4.5 | 2, 3, 4, 6 |
EC (mS/cm) | 1.14 | 0.20 | 1.07 | 1.20 | 2, 3, 4, 6 |
Diastase content | 29.4 | 7.9 | 27.0 | 31.8 | 1, 2, 3, 4, 6 |
TPC (mg/100 g) | 166.2 | 39.2 | 154.1 | 178.3 | 1, 2, 3, 6 |
TFC (mg/100 g) | 11.2 | 2.2 | 10.5 | 11.8 | 1, 2, 3, 4, 6 |
Color (mm Pfund) | 142 | 15 | 137 | 146 | 2, 3, 4, 6 |
Multifloral honey (n = 119) | |||||
Rubus (%) | 19.5 | 11.7 | 17.4 | 21.6 | 1, 2, 3, 4, 5 |
Castanea sativa (%) | 47.8 | 17.0 | 44.7 | 50.9 | 1, 2, 3, 4 |
Erica (%) | 6.2 | 6.1 | 5.1 | 7.3 | 2, 3, 4 |
Eucalyptus (%) | 12.8 | 14.8 | 10.1 | 15.5 | 1, 2, 3, 4, 5 |
PG/g | 18,153 | 18,868 | 14,390 | 21,916 | 1 |
Moisture (%) | 17.7 | 0.8 | 17.6 | 17.9 | 1, 4 |
pH | 4.1 | 0.3 | 4.1 | 4.2 | 1, 2, 5 |
EC (mS/cm) | 0.66 | 0.19 | 0.62 | 0.69 | 1, 3, 5 |
Diastase content | 20.8 | 9.1 | 19.1 | 22.4 | 3, 5 |
TPC (mg/100 g) | 109.3 | 37.9 | 102.4 | 116.2 | 3, 4, 5 |
TFC (mg/100 g) | 5.2 | 1.4 | 5.0 | 5.5 | 1, 2, 4, 5 |
Color (mm Pfund) | 91 | 21 | 87 | 94 | 1, 3, 4, 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escuredo, O.; Rodríguez-Flores, M.S.; Míguez, M.; Seijo, M.C. Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters. Foods 2023, 12, 1493. https://doi.org/10.3390/foods12071493
Escuredo O, Rodríguez-Flores MS, Míguez M, Seijo MC. Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters. Foods. 2023; 12(7):1493. https://doi.org/10.3390/foods12071493
Chicago/Turabian StyleEscuredo, Olga, María Shantal Rodríguez-Flores, Montserrat Míguez, and María Carmen Seijo. 2023. "Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters" Foods 12, no. 7: 1493. https://doi.org/10.3390/foods12071493
APA StyleEscuredo, O., Rodríguez-Flores, M. S., Míguez, M., & Seijo, M. C. (2023). Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters. Foods, 12(7), 1493. https://doi.org/10.3390/foods12071493