Incidence of Perfluoroalkyl Substances in Commercial Eggs and Their Impact on Consumer’s Safety
Abstract
:1. Introduction
Reference | Analytes | Matrix | Extraction Technique | Instrumental Analysis | Limits of the Method (ng g−1) | Application Range Conc. (ng g−1) |
---|---|---|---|---|---|---|
[16] | PFOS, PFHxS, PFBS, PFOSA, PFNA, PFOA, PFHxA, PFHpA, PFUnDA, PFDA, PFDoDA | Pooled and yolk chicken egg form local markets | Homogenization and extraction with TBA, sodium carbonate buffer (pH 10) and MTBE. Centrifugation, pour 4 mL of the extract in a tube and perform the extraction again. Purification with SPE Oasis WAX cartridge. Evaporation and injection. | LC-MS/MS 1 | LOQ 2 = 0.01 − 0.08 | <LOQ − 87.6 |
[17] | PFOA and PFOS | Human milk, fish, meat, milk dairy products, cereal-based food, eggs, vegetables, honey and beverages | Homogenization, extraction with 1 mL of 0.5 M of TBA, 2 mL of sodium carbonate buffer (0.25 M, pH 10) and 5 mL of MTBE, mix and centrifugation. Do the step twice. Evaporation, resuspension, filtration and injection | LC-MS/MS | LOD 3 = 0.50 | <LOD |
[18] | FOSA, PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFHxDA, PFODA, PFBS, PFHxS, PFOS, Br-PFOS, PFDS, PFHxPA, PFOPA, PFDPA | Meat, seafood, fish, milk, dairy products, and hen eggs | Homogenization, extraction with water, acetonitrile, and formic acid. QuEChERS extraction procedure was performed. Evaporation, resuspension, filtration, and injection | LC-MS/MS | MQL 4 = 0.001 − 0.01 | <MQL − 1.96 |
[15] | PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA, PFBuS, PFHxS, PFHpS, PFOS | Home produced and commercially produced eggs (organic, battery and free-range eggs) | Homogenization, fortification, and extraction with 10 mL of MeOH. Acidification and centrifugation. Purification with SPE Oasis WAX cartridge. Evaporation, resuspension, and injection. | LC-MS/MS | LOD = 0.15 LOQ = 0.5 | <LOQ − 31.2 |
[19] | (PFOS, PFOA, PFNA, PFHxS | EBC, eggs from backyard chickens | Digestion with a sodium hydroxide solution, homogenization, addition of methanol and HCl (37%), centrifugation, addition of ultrapure water, purification by SPE Oasis WAX cartridges, resuspension | UPLC–MS/MS 5 | LOD = 0.10 LOQ = 0.25 | <LOQ − 3.5 |
[20] | PFSAs, PFBS, PFHxS, PFOS, PFDS, PFCAs, PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA and PFTeDA, NaDONA, GenX | Home—produced eggs | Homogenization, add 10 mL of acetonitrile, shake. Centrifugation and not complete evaporation of the supernatant. Purification with graphitized carbon powder (Supelclean ENVI-Carb). Adding acetonitrile. Evaporation, resuspension, and injection. | UPLC-MS/MS | LOQ = 0.08 − 2.5 | <LOQ − 241 |
[21] | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFBS, PFPeS, PFHxS, PFHpS, PFOS | Eggs from cage, ecological and free-range hens | Lyophilization, extraction with 10 mL of 0.01 M methanol/potassium hydroxide. Purification with Oasis WAX (150 mg, 6 mL) SPE cartridge and ENVI Carb SPE (500 mg, 6 mL). Evaporation, resuspension, and injection. | LC-MS/MS | LOQ = 0.005 − 0.163 | <LOQ − 0.74 |
[22] | PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFBS, PFPeS, PFHxS, PFHpS, PFOS, PFNS, PFDS, PFDoDS | Commercial eggs (barn, organic and caged hen eggs) | Homogenization, extraction with 10 mL water and 10 mL acetonitrile. QuEChERS extraction (EN Method), mix and centrifugation. After drying 5 mL of the supernatant and adding 0.25 mL of 1% acetic acid in methanol, solid phase extraction (SPE) was carried out | UHPLC-HRMS 6 | LOD = 0.0050 − 0.036 LOQ = 0.050 | <LOQ − 0.042 |
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Sample Collection
2.3. Sample Size
2.4. Standard Solutions
2.5. PFAS Extraction Protocol
2.6. LC-HRMS Analysis
2.7. Parameter Validation Method
2.8. Dietary Intake Estimation
3. Results and Discussion
3.1. Occurrence of PFASs in Eggs
3.1.1. PFAS Detection and Samples Provenience
3.1.2. Comparison between PFAS Levels in Eggs from Different Countries
3.1.3. Further Considerations
3.2. Human Intake of PFASs through Diet
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farré, M.; Barceló, D. Analysis of emerging contaminants in food. TrAC 2013, 43, 240–253. [Google Scholar] [CrossRef]
- Nobile, M.; Arioli, F.; Pavlovic, R.; Ceriani, F.; Lin, S.K.; Panseri, S.; Chiesa, L.M. Presence of emerging contaminants in baby food. Food Addit. Contam. 2020, 37, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2022/2388 amending Regulation (EC) No 1881/2006 as regards maximum levels of perfluoroalkyl substances in certain foodstuffs. OJEU 2022, L, 316/38.
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Wang, Z. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Nobile, M.; Pasquale, E.; Balzaretti, C.; Cagnardi, P.; Tedesco, D.; Panseri, S.; Arioli, F. Detection of perfluoroalkyl acids and sulphonates in Italian eel samples by HPLC-HRMS Orbitrap. Chemosphere 2018, 193, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Nobile, M.; Ceriani, F.; Malandra, R.; Arioli, F.; Panseri, S. Risk characterisation from the presence of environmental contaminants and antibiotic residues in wild and farmed salmon from different FAO zones. Food Addit. Contam. 2019, 36, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Meneguzzi, A.; Fava, C.; Castelli, M.; Minuz, P. Exposure to perfluoroalkyl chemicals and cardiovascular disease: Experimental and epidemiological evidence. Front. Endocrinol. 2021, 12, 706352. [Google Scholar] [CrossRef]
- European Food Safety Authority. Results of the monitoring of perfluoroalkylated substances in food in the period 2000–2009. EFSA J. 2011, 9, 2016. [Google Scholar] [CrossRef]
- European Food Safety Authority. Perfluoroalkylated substances in food: Occurrence and dietary exposure. EFSA J. 2012, 10, 2743. [Google Scholar] [CrossRef]
- European Food Safety Authority. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- ISMEA Istituto di Servizi Per Il Mercato Agricolo Alimentare. 2021. Available online: https://www.ismeamercati.it/flex/cm/pages/ServeAttachment.php/L/IT/D/1%252F7%252F5%252FD.5d7a26d8b232be1080a2/P/BLOB%3AID%3D11350/E/pdf?mode=download. (accessed on 29 September 2023).
- World Health Organization (WHO). Keeping Our Water Clean: The Case of Water Contamination in the Veneto Region, Italy. 2007. Available online: https://www.euro.who.int/data/assets/pdffile/0018/340704/FINALpfas-report-20170530-h1200.pdf (accessed on 29 September 2023).
- Pajurek, M.; Pietron, W.; Maszewski, S.; Mikolajczyk, S.; Piskorska-Pliszczynska, J. Poultry eggs as a source of PCDD/Fs, PCBs, PBDEs and PBDD/Fs. Chemosphere 2019, 223, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Zafeiraki, E.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Dassenakis, E.; Hoogenboom, R.L.; van Leeuwen, S.P. Perfluoroalkylated substances (PFASs) in home and commercially produced chicken eggs from the Netherlands and Greece. Chemosphere 2016, 144, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yeung, L.W.Y.; Yamashita, N.; Taniyasu, S.; So, M.K.; Murphy, M.B.; Lam, P.K.S. Perfluorooctane sulfonate (PFOS) and related fluorochemicals in chicken egg in China. Sci. Bull. 2008, 53, 501–507. [Google Scholar] [CrossRef]
- Guerranti, C.; Perra, G.; Corsolini, S.; Focardi, S.E. Pilot study on levels of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in selected foodstuffs and human milk from Italy. Food Chem. 2013, 140, 197–203. [Google Scholar] [CrossRef]
- Hlouskova, V.; Hradkova, P.; Poustka, J.; Brambilla, G.; De Filipps, S.P.; D’Hollander, W.; Pulkrabova, J. Occurrence of perfluoroalkyl substances (PFASs) in various food items of animal origin collected in four European countries. Food Addit. Contam. 2013, 30, 1918–1932. [Google Scholar] [CrossRef]
- Gazzotti, T.; Sirri, F.; Ghelli, E.; Zironi, E.; Zampiga, M.; Pagliuca, G. Perfluoroalkyl contaminants in eggs from backyard chickens reared in Italy. Food Chem. 2021, 362, 130178. [Google Scholar] [CrossRef]
- Lasters, R.; Groffen, T.; Eens, M.; Coertjens, D.; Gebbink, W.A.; Hofman, J.; Bervoets, L. Home-produced eggs: An important human exposure pathway of perfluoroalkylated substances (PFAS). Chemosphere 2022, 308, 136283. [Google Scholar] [CrossRef]
- Mikolajczyk, S.; Pajurek, M.; Warenik-Bany, M. Perfluoroalkyl substances in hen eggs from different types of husbandry. Chemosphere 2022, 303, 134950. [Google Scholar] [CrossRef]
- Chiumiento, F.; Bellocci, M.; Ceci, R.; D’Antonio, S.; De Benedictis, A.; Leva, M.; Diletti, G. A new method for determining PFASs by UHPLC-HRMS (Q-Orbitrap): Application to PFAS analysis of organic and conventional eggs sold in Italy. Food Chem. 2023, 401, 134135. [Google Scholar] [CrossRef]
- Naing, L.; Winn, T.B.N.R.; Rusli, B.N. Practical issues in calculating the sample size for prevalence studies. Arch. Orofac. Sci. 2006, 1, 9–14. [Google Scholar]
- Chiesa, L.M.; Pavlovic, R.; Arioli, F.; Nobile, M.; Di Cesare, F.; Mosconi, G.; Panseri, S. Presence of perfluoroalkyl substances in Mediterranean Sea and North Italian lake fish addressed to Italian consumer. Int. J. Food Sci. Technol. 2022, 57, 1303–1316. [Google Scholar] [CrossRef]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed (SANTE 11312/2021). 2021. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 29 September 2023).
- Nobile, M.; Mosconi, G.; Chiesa, L.M.; Panseri, S.; Danesi, L.; Falletta, E.; Arioli, F. Incidence of Potentially Toxic Elements and Perfluoroalkyl Substances Present in Canned Anchovies and Their Impact on Food Safety. Foods 2023, 12, 1060. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, J.; Göckener, B.; Eichhorn, M.; Kotthoff, M.; Bücking, M.; Schafft, H.; Numata, J. Transfer of per-and polyfluoroalkyl substances (PFAS) from feed into the eggs of laying hens. Part 2: Toxicokinetic results including the role of precursors. J. Agric. Food Chem. 2020, 68, 12539–12548. [Google Scholar] [CrossRef]
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.; Reade, A. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef]
- Regione Veneto (August 2022). Monitoraggio della Contaminazione Nell’acqua Destinata al Consumo Umano Erogata da Rete Acquedottistica Rapporto Tecnico. Available online: https://www.regione.veneto.it/documents/10793/13605098/2022_08_report_rete.pdf/7f31c8e4-85d1-4404-9673-3eb315ef9842 (accessed on 29 September 2023).
- Regione Veneto (November 2022). Piano di Sorveglianza Sanitaria Sulla Popolazione Esposta a PFAS. Rapporto n. 16, Azienda Zero, Novembre 2022. Available online: https://citynews-veronasera.stgy.ovh/~media/24061559890011/piano-di-sorveglianza-sanitaria-sulla-popolazione-esposta-ai-pfas-bollettino-n-16-novembre-2022-2.pdf (accessed on 29 September 2023).
- Loos, R.; Joint Research Centre. Perfluorinated Chemicals, especially Perfluorinated Alkyl Sulfonates and Carboxylats: European Distribution and Legislation. 2013. Available online: https://www.mase.gov.it/sites/default/files/archivio/allegati/reach/Loos_PFAS.pdf (accessed on 29 September 2023).
- Adli, D.N. The effect of replacing fish meal with Sago larvae meal (SLM) on egg production and quality of laying hens. Livest. Res. Rural. Dev. 2021, 33, 1–8. [Google Scholar]
- Suominen, K.; Hallikainen, A.; Ruokojärvi, P.; Airaksinen, R.; Koponen, J.; Rannikko, R.; Kiviranta, H. Occurrence of PCDD/F, PCB, PBDE, PFAS, and organotin compounds in fish meal, fish oil and fish feed. Chemosphere 2011, 85, 300–306. [Google Scholar] [CrossRef]
- Mikkonen, A.T.; Martin, J.; Upton, R.N.; Barker, A.O.; Brumley, C.M.; Taylor, M.P.; Roberts, M.S. Spatio-temporal trends in livestock exposure to per-and polyfluoroalkyl substances (PFAS) inform risk assessment and management measures. Environ. Res. 2023, 225, 115518. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Human exposure to per-and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ. Res. 2019, 177, 108648. [Google Scholar] [CrossRef]
- Mastrantonio, M.; Bai, E.; Uccelli, R.; Cordiano, V.; Screpanti, A.; Crosignani, P. Drinking water contamination from perfluoroalkyl substances (PFAS): An ecological mortality study in the Veneto Region, Italy. Eur. J. Public Health 2018, 28, 180–185. [Google Scholar] [CrossRef]
- Barbarossa, A.; Gazzotti, T.; Zironi, E.; Serraino, A. Monitoring the presence of perfluoroalkyl substances in Italian cow milk. J. Dairy Sci. 2014, 97, 3339–3343. [Google Scholar] [CrossRef] [PubMed]
- Herzke, D.; Huber, S.; Bervoets, L.; D’Hollander, W.; Hajslova, J.; Pulkrabova, J.; de Voogt, P. Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations. Environ. Sci. Pollut. Res. 2013, 20, 7930–7939. [Google Scholar] [CrossRef] [PubMed]
- Arioli, F.; Ceriani, F.; Nobile, M.; Vigano, R.; Besozzi, M.; Panseri, S.; Chiesa, L.M. Presence of organic halogenated compounds, organophosphorus insecticides and polycyclic aromatic hydrocarbons in meat of different game animal species from an Italian subalpine area. Food Addit. Contam. 2019, 36, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
Compound | LOQ (ng g−1) | Recovery % | CV Intra-Day % | CV Inter-Day % | Matrix Effect % | Regression Equation |
---|---|---|---|---|---|---|
PFBA | 0.05 | 116 | 14 | 17 | 104 | y = 0.0861x + 0.0075 |
PFPeA | 0.05 | 109 | 10 | 13 | 102 | y = 0.1134x + 0.0008 |
PFBS | 0.05 | 105 | 9 | 14 | 102 | y = 0.8533x − 0.0056 |
PFHxA | 0.05 | 93 | 6 | 12 | 99 | y = 0.1484x − 0.0003 |
PFHpA | 0.05 | 89 | 7 | 11 | 98 | y = 0.2789x + 0.0155 |
PFHxS | 0.05 | 90 | 9 | 11 | 101 | y = 0.9212x + 0.049 |
PFOA | 0.05 | 104 | 6 | 10 | 99 | y = 0.4157x − 0.001 |
PFNA | 0.05 | 92 | 10 | 16 | 99 | y = 0.2643x − 0.0217 |
PFOS | 0.05 | 95 | 8 | 14 | 102 | y = 0.6592x − 0.1527 |
PFDA | 0.05 | 79 | 12 | 16 | 98 | y = 0.32x − 0.0059 |
PFUnDA | 0.05 | 80 | 10 | 13 | 98 | y = 0.3929x − 0.1277 |
PFDS | 0.05 | 90 | 10 | 14 | 96 | y = 0.5704x − 0.0364 |
PFDoA | 0.05 | 72 | 11 | 16 | 92 | y = 0.2471x − 0.1115 |
PFTrDA | 0.1 | 71 | 12 | 15 | 93 | y = 0.1734x − 0.0102 |
PFTeDA | 0.1 | 70 | 15 | 18 | 93 | y = 0.1579x − 0.0126 |
PFHxDA | 0.1 | 71 | 17 | 18 | 91 | y = 0.0968x − 0.0163 |
PFODA | 0.1 | 70 | 17 | 20 | 90 | y = 0.0226x + 0.0025 |
C6O4 | 0.5 | 72 | 15 | 18 | 92 | y = 0.1330 + 0.0113 |
PFBA | PFOS | PFNA | PFOA | PFUndA | PFDoA | |
---|---|---|---|---|---|---|
Sample | Concentration (ng g−1) | |||||
VENETO REGION | ||||||
1 | n.d. 1 | <LOQ | n.d. | n.d. | n.d. | n.d. |
2 | n.d. | <LOQ | n.d. | n.d. | n.d. | n.d. |
3 | 0.30 | n.d. | n.d. | n.d. | n.d. | n.d. |
4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
5 | 0.21 | <LOQ | n.d. | n.d. | n.d. | n.d. |
6 | n.d. | <LOQ | n.d. | n.d. | n.d. | n.d. |
7 | 0.17 | <LOQ | n.d. | n.d. | n.d. | n.d. |
8 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
9 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
10 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
11 | <LOQ | <LOQ | n.d. | n.d. | n.d. | n.d. |
12 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
13 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
14 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
15 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
16 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
17 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
18 | <LOQ | n.d. | n.d. | n.d. | n.d. | n.d. |
19 | <LOQ | n.d. | n.d. | n.d. | n.d. | n.d. |
20 | <LOQ | n.d. | n.d. | n.d. | n.d. | n.d. |
21 | n.d. | <LOQ | n.d. | n.d. | n.d. | n.d. |
22 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
23 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
EMILIA ROMAGNA REGION | ||||||
24 | 0.21 | <LOQ | n.d. | n.d. | n.d. | n.d. |
25 | n.d. | <LOQ | n.d. | n.d. | n.d. | n.d. |
26 | 0.23 | <LOQ | n.d. | n.d. | n.d. | n.d. |
27 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
28 | 0.42 | n.d. | n.d. | n.d. | n.d. | n.d. |
29 | n.d. | <LOQ | <LOQ | <LOQ | n.d. | n.d. |
30 | n.d. | n.d. | n.d. | <LOQ | n.d. | n.d. |
31 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
32 | 0.41 | n.d. | n.d. | n.d. | n.d. | n.d. |
33 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
34 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
35 | 0.12 | n.d. | n.d. | n.d. | n.d. | n.d. |
36 | n.d. | <LOQ | n.d. | n.d. | n.d. | n.d. |
37 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
38 | <LOQ | 0.5 | <LOQ | <LOQ | n.d. | n.d |
39 | n.d. | <LOQ | n.d. | <LOQ | n.d. | n.d. |
LOMBARDY REGION | ||||||
40 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
41 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
42 | 0.44 | 0.05 | <LOQ | <LOQ | <LOQ | <LOQ |
43 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
44 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
45 | 0.39 | n.d. | n.d. | n.d. | n.d. | n.d. |
46 | <LOQ | n.d. | n.d. | n.d. | n.d. | n.d. |
47 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
48 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
49 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
50 | 0.67 | n.d. | n.d. | n.d. | n.d. | n.d. |
51 | 0.41 | <LOQ | n.d. | <LOQ | n.d. | n.d. |
PIEDMONT REGION | ||||||
52 | 0.43 | n.d. | n.d. | n.d. | n.d. | n.d. |
53 | 0.28 | n.d. | n.d. | n.d. | n.d. | n.d. |
54 | n.d. | <LOQ | n.d. | <LOQ | n.d. | n.d. |
55 | 0.06 | n.d. | n.d. | n.d. | n.d. | n.d. |
56 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
57 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
58 | 0.25 | n.d. | n.d. | n.d. | n.d. | n.d. |
59 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
60 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
61 | 0.07 | n.d. | n.d. | n.d. | n.d. | n.d. |
62 | 0.29 | n.d. | n.d. | n.d. | n.d. | n.d. |
63 | 0.39 | n.d. | n.d. | n.d. | n.d. | n.d. |
64 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
FRIULI VENEZIA GIULIA REGION | ||||||
65 | <LOQ | n.d. | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobile, M.; Arioli, F.; Curci, D.; Ancillotti, C.; Scanavini, G.; Chiesa, L.M.; Panseri, S. Incidence of Perfluoroalkyl Substances in Commercial Eggs and Their Impact on Consumer’s Safety. Foods 2023, 12, 3846. https://doi.org/10.3390/foods12203846
Nobile M, Arioli F, Curci D, Ancillotti C, Scanavini G, Chiesa LM, Panseri S. Incidence of Perfluoroalkyl Substances in Commercial Eggs and Their Impact on Consumer’s Safety. Foods. 2023; 12(20):3846. https://doi.org/10.3390/foods12203846
Chicago/Turabian StyleNobile, Maria, Francesco Arioli, Dalia Curci, Claudia Ancillotti, Giulia Scanavini, Luca Maria Chiesa, and Sara Panseri. 2023. "Incidence of Perfluoroalkyl Substances in Commercial Eggs and Their Impact on Consumer’s Safety" Foods 12, no. 20: 3846. https://doi.org/10.3390/foods12203846
APA StyleNobile, M., Arioli, F., Curci, D., Ancillotti, C., Scanavini, G., Chiesa, L. M., & Panseri, S. (2023). Incidence of Perfluoroalkyl Substances in Commercial Eggs and Their Impact on Consumer’s Safety. Foods, 12(20), 3846. https://doi.org/10.3390/foods12203846