Short Communication: Low Prevalence of Clinically Important Antibiotic-Resistant Strains among Non-Pathogenic Genera of the Tribe Klebsielleae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Antibiotic Resistance Profile
2.3. Detection of ESBL-Positive Isolates
2.4. Detection of AmpC-Positive Isolates
2.5. Detection of KPC-Positive Isolates
2.6. Detection of MBL-Positive Isolates
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sathyavathy, K.; Madhusudhan, K. View of Antimicrobial Susceptibility Pattern of Klebsiella Species from Various Clinical Samples at a Tertiary Care Hospital. J. Pharm. Res. Int. 2020, 32, 143–147. Available online: https://journaljpri.com/index.php/JPRI/article/view/30571/57348 (accessed on 28 January 2022). [CrossRef]
- Bowling, F.L.; Dissanayake, S.U.; Jude, E.B. Opportunistic Pathogens in Diabetic Foot Lesions. Curr. Diabetes Rev. 2012, 8, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Sharma, S.; Pal, K.; Goyal, P.; Agarwal, D.; Chander, J. Serratia, No Longer an Uncommon Opportunistic Pathogen—Case Series & Review of Literature. Infect. Disord. Drug Targets 2021, 21, e300821191666. [Google Scholar] [CrossRef] [PubMed]
- Prado, G.V.; Mendes, E.T.; Martins, R.C.R.; Perdigão-Neto, L.V.; Freire, M.P.; Marchi, A.P.; Côrtes, M.F.; Lima, V.A.C.D.C.; Rossi, F.; Guimarães, T.; et al. Phenotypic and genotypic characteristics of a carbapenem-resistant Serratia marcescens cohort and outbreak: Describing an opportunistic pathogen. Int. J. Antimicrob. Agents 2022, 59, 106463. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, M.I.; Neagoe, D.; Crăciun, A.M.; Moldovan, O.T. The Gram-Negative Bacilli Isolated from Caves—Sphingomonas paucimobilis and Hafnia alvei and a Review of Their Involvement in Human Infections. Int. J. Environ. Res. Public Health 2022, 19, 2324. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I. Bacteriophages against Serratia as Fish Spoilage Control Technology. Front. Microbiol. 2017, 8, 449. [Google Scholar] [CrossRef] [Green Version]
- Garrity, G.M.; Bell, J.A.; Lilburn, T. Proteobacteria phyl. nov. Bergey’s Man. Syst. Archaea Bact. 2015, 1. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The Genus Hafnia: From Soup to Nuts. Clin. Microbiol. Rev. 2006, 19, 12–28. [Google Scholar] [CrossRef] [Green Version]
- Merlini, V.V.; Pena, F.D.L.; Da Cunha, D.T.; De Oliveira, J.M.; Rostagno, M.A.; Antunes, A.E.C. Microbiological Quality of Organic and Conventional Leafy Vegetables. J. Food Qual. 2018, 2018, 4908316. [Google Scholar] [CrossRef]
- Alfaro, B.; Hernandez, I. Evolution of the indigenous microbiota in modified atmosphere packaged Atlantic horse mackerel (Trachurus trachurus) identified by conventional and molecular methods. Int. J. Food Microbiol. 2013, 167, 117–123. [Google Scholar] [CrossRef]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–304. [Google Scholar] [CrossRef]
- Cullen, M.M.; Trail, A.; Robinson, M.; Keaney, M.; Chadwick, P.R. Serratia marcescens outbreak in a neonatal intensive care unit prompting review of decontamination of laryngoscopes. J. Hosp. Infect. 2005, 59, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Cristina, M.L.; Sartini, M.; Spagnolo, A.M. Serratia marcescens Infections in Neonatal Intensive Care Units (NICUs). Int. J. Environ. Res. Public Health 2019, 16, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phadke, V.K.; Jacob, J.T. Marvelous but Morbid: Infective endocarditis due to Serratia marcescens. Infect. Dis. Clin. Pract. 2016, 24, 143–150. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haberecht, H.B.; Nealon, N.J.; Gilliland, J.R.; Holder, A.V.; Runyan, C.; Oppel, R.C.; Ibrahim, H.M.; Mueller, L.; Schrupp, F.; Vilchez, S.; et al. Antimicrobial-ResistantEscherichia colifrom Environmental Waters in Northern Colorado. J. Environ. Public Health 2019, 2019, 3862949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurfluh, K.; Glier, M.; Hächler, H.; Stephan, R. Replicon typing of plasmids carrying blaCTX-M-15 among Enterobacteriaceae isolated at the environment, livestock and human interface. Sci. Total Environ 2015, 521–522, 75–78. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewski, A.J.; Zarzecka, U.; Chajęcka-Wierzchowska, W.; Zadernowska, A. A Comparison of Methods for Identifying Enterobacterales Isolates from Fish and Prawns. Pathogens 2022, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; CLSI standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Thomson, K.S.; Sanders, C.C.; Washington, J.A. Ceftazidime resistance in Hafnia alvei. Antimicrob. Agents Chemother. 1993, 37, 1375–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazal, B.A.; Justman, J.E.; Turett, G.S.; Telzak, E.E. Community-Acquired Hafnia alvei Infection. Clin. Infect. Dis. 1997, 24, 527–528. [Google Scholar] [CrossRef]
- Karamanlı, H.; Özer, T.T. A rare case of Hafnia alvei pneumonia presenting with chronic obstructive pulmonary disease Kronik obstrüktif akciğer hastalığı eşliğinde nadir bir Hafnia alvei pnömonisi olgusu. Türk Göğüs Kalp Damar Cerrahisi Derg. 2017, 25, 308–311. [Google Scholar] [CrossRef]
- Yin, Z.; Yuan, C.; Du, Y.; Yang, P.; Qian, C.; Wei, Y.; Zhang, S.; Huang, D.; Liu, B. Comparative genomic analysis of the Hafnia genus reveals an explicit evolutionary relationship between the species alvei and paralvei and provides insights into pathogenicity. BMC Genom. 2019, 20, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hoek, A.H.A.M.; Veenman, C.; van Overbeek, W.M.; Lynch, G.; de Roda Husman, A.M.; Blaak, H. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables. Int. J. Food Microbiol. 2015, 204, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Simşek, M. Determination of the Antibiotic Resistance Rates of Serratia marcescens Isolates Obtained from Various Clinical Specimens. Niger. J. Clin. Pract. 2019, 22, 125–130. [Google Scholar] [CrossRef]
- da Silva, K.E.; Cayô, R.; Carvalhaes, C.G.; de Sacchi, F.P.C.; Rodrigues-Costa, F.; da Silva, A.C.R.; Croda, J.; Gales, A.C.; Simionatto, S. Coproduction of KPC-2 and IMP-10 in Carbapenem-Resistant Serratia marcescens Isolates from an Outbreak in a Brazilian Teaching Hospital. J. Clin. Microbiol. 2015, 53, 2324–2328. [Google Scholar] [CrossRef] [Green Version]
- Martineau, C.; Li, X.; Lalancette, C.; Perreault, T.; Fournier, E.; Tremblay, J.; Gonzales, M.; Yergeau, É.; Quach, C. Serratia marcescens Outbreak in a Neonatal Intensive Care Unit: New Insights from Next-Generation Sequencing Applications. J. Clin. Microbiol. 2018, 56, e00235-18. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Nelson, B.C.; Mehta, M.; Seval, N.; Park, S.; Giddins, M.J.; Shi, Q.; Whittier, S.; Gomez-Simmonds, A.; Uhlemann, A.-C. Piperacillin-Tazobactam versus Other Antibacterial Agents for Treatment of Bloodstream Infections Due to AmpC β-Lactamase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00276-17. [Google Scholar] [CrossRef] [Green Version]
- Cooke, J.; Stephens, P.; Ashiru-Oredope, D.; Charani, E.; Dryden, M.; Fry, C.; Hand, K.; Holmes, A.; Howard, P.; Johnson, A.P.; et al. Longitudinal trends and cross-sectional analysis of English national hospital antibacterial use over 5 years (2008-13): Working towards hospital prescribing quality measures. J. Antimicrob. Chemother. 2015, 70, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Bou-Antoun, S.; Davies, J.; Guy, R.; Johnson, A.P.; Sheridan, E.A.; Hope, R.J. Descriptive epidemiology of Escherichia coli bacteraemia in England, April 2012 to March 2014. Eurosurveillance 2016, 21, 30329. [Google Scholar] [CrossRef] [Green Version]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shterzer, N.; Mizrahi, I. The animal gut as a melting pot for horizontal gene transfer. Can. J. Microbiol. 2015, 61, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Chen, X.; Skogerbø, G.; Zhang, P.; Chen, R.; He, S.; Huang, D.-W. The human microbiome: A hot spot of microbial horizontal gene transfer. Genomics 2012, 100, 265–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, A.; Matthias, T.; Aminov, R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front. Immunol. 2017, 8, 1630. [Google Scholar] [CrossRef] [Green Version]
Species | Source | No. of Isolates | Level of Identity [%] |
---|---|---|---|
Hafnia sp. | 13 | ||
H. alvei | salmon (Salmo salar) | 9 | 91.8–99.9 |
trout (Oncorhynchus mykiss) | 4 | 99.1–99.9 | |
Serratia sp. | 34 | ||
S. fonticola | salmon (Salmo salar) | 2 | 99.9 |
trout (Oncorhynchus mykiss) | 5 | 90.1–99.9 | |
prawn (Penaeus monodon) | 5 | 97.1–99.9 | |
S. grimensi | salmon (Salmo salar) | 1 | 99.9 |
S.liquefaciens | salmon (Salmo salar) | 9 | 95.6–99.9 |
trout (Oncorhynchus mykiss) | 4 | 92.1–99.9 | |
prawn (Penaeus monodon) | 3 | 99.9 | |
S. quinivorans | salmon (Salmo salar) | 1 | 99.9 |
Other | trout (Oncorhynchus mykiss) | 4 | 99.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakrzewski, A.J.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Short Communication: Low Prevalence of Clinically Important Antibiotic-Resistant Strains among Non-Pathogenic Genera of the Tribe Klebsielleae. Foods 2022, 11, 2270. https://doi.org/10.3390/foods11152270
Zakrzewski AJ, Chajęcka-Wierzchowska W, Zadernowska A. Short Communication: Low Prevalence of Clinically Important Antibiotic-Resistant Strains among Non-Pathogenic Genera of the Tribe Klebsielleae. Foods. 2022; 11(15):2270. https://doi.org/10.3390/foods11152270
Chicago/Turabian StyleZakrzewski, Arkadiusz Józef, Wioleta Chajęcka-Wierzchowska, and Anna Zadernowska. 2022. "Short Communication: Low Prevalence of Clinically Important Antibiotic-Resistant Strains among Non-Pathogenic Genera of the Tribe Klebsielleae" Foods 11, no. 15: 2270. https://doi.org/10.3390/foods11152270
APA StyleZakrzewski, A. J., Chajęcka-Wierzchowska, W., & Zadernowska, A. (2022). Short Communication: Low Prevalence of Clinically Important Antibiotic-Resistant Strains among Non-Pathogenic Genera of the Tribe Klebsielleae. Foods, 11(15), 2270. https://doi.org/10.3390/foods11152270