Obtaining Titanium Dioxide from Magnesium Titanates—Products of Pyrometallurgical Processing of Oil Sandstones
Abstract
1. Introduction
- To investigate the pyrometallurgical conversion of quartz–leucoxene concentrate in the presence of magnesium oxide to magnesium titanates.
- To investigate the magnesium titanate sulfation process.
- To determine the precipitation conditions of titanium and magnesium compounds from individual and binary solutions.
- To investigate the properties of the obtained titanium dioxide.
2. Results and Discussion
- SiO2—99.1%
- TiO2—0.4%
- Fe2O3—0.12%
- Al2O3—0.11%
- CaSO4·2H2O—0.27%
3. Materials and Methods
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boutillier, S.; Fourmentin, S.; Laperche, B. History of titanium dioxide regulation as a food additive: A review. Environ. Chem. Lett. 2022, 20, 1017–1033. [Google Scholar] [CrossRef]
- Farooq, N.; Kallem, P.; ur Rehman, Z.; Imran, K.M.; Kumar, G.R.; Tahseen, T.; Mushtaq, Z.; Ejaz, N.; Shanableh, A. Recent trends of titania (TiO2) based materials: A review on synthetic approaches and potential applications. J. King Saud Univ. Sci. 2024, 36, 103210. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Lazić, V.; Nikšić, V.; Nedeljković, J.M. Application of TiO2 in Photocatalytic Bacterial Inactivation: Review. Int. J. Mol. Sci. 2025, 26, 10593. [Google Scholar] [CrossRef]
- Zoubi, W.A.; Al-Hamdani, A.A.S.; Sunghun, B.; Ko, Y.G. A review on TiO2- based composites for superior photocatalytic activity. Rev. Inorg. Chem. 2021, 41, 213–222. [Google Scholar] [CrossRef]
- Qiu, G.; Guo, Y. Current situation and development trend of titanium metal industry in China. Int. J. Miner. Metall. Mater. 2022, 29, 599–610. [Google Scholar] [CrossRef]
- Nam, B.; Giao, H. Status of development orientations for mining titanium placer in Vietnam. Min. Sci. Technol. 2016, 1, 40–50. [Google Scholar] [CrossRef]
- Aviandharie, S.A.; Aidha, N.N.; Jati, B.N.; Ermawati, R.; Cahyaningtyas, A.A. TiO2 Purification from Ilmenite the Tin Industry By-Product for Pigment. J. Phys. Conf. Ser. 2020, 1503, 012030. [Google Scholar] [CrossRef]
- Sampath, A.H.J.; Wickramasinghe, N.D.; de Silva, K.M.N.; de Silva, R.M. Methods of Extracting TiO2 and Other Related Compounds from Ilmenite. Minerals 2023, 13, 662. [Google Scholar] [CrossRef]
- Ma, J.; Fu, G.Q.; Li, W.; Zhu, M.-Y. Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag. Int. J. Miner. Metall. Mater. 2020, 27, 310–318. [Google Scholar] [CrossRef]
- Baritto, M.; Kumar, A. The development of process-based techno-economic models for the assessment of critical minerals recovery from bitumen extraction tailings. Miner. Eng. 2025, 232, 109583. [Google Scholar] [CrossRef]
- Wang, D.; Wang, D.; Tan, X.; Yeung, A.; Liu, Q. A review of the roles of constituent minerals and residual bitumen in the solid-liquid separation of oil sands tailings. J. Hazard. Mater. 2023, 451, 131178. [Google Scholar] [CrossRef]
- Makeyev, A.B.; Skublov, S.G.; Galankina, O.L.; Vasiliev, E.A.; Krasotkina, A.O. Pseudorutile-leucoxene-quartz ores of Timan—A new genetic type of titanium raw materials: Prospects for industrial development. Georesursy 2023, 25, 163–174. [Google Scholar] [CrossRef]
- Gázquez, M.; Bolívar, J.; Garcia-Tenorio, R.; Vaca, F. A Review of the Production Cycle of Titanium Dioxide Pigment. Mater. Sci. Appl. 2014, 5, 441–458. [Google Scholar] [CrossRef]
- Maldybayev, G.; Korabayev, A.; Sharipov, R.; Al Azzam, K.M.; Negim, E.S.; Baigenzhenov, O.; Alimzhanova, A.; Panigrahi, M.; Shayakhmetova, R. Processing of titanium-containing ores for the production of titanium products: A comprehensive review. Heliyon 2024, 10, e24966. [Google Scholar] [CrossRef]
- Wang, T.-H.; Navarrete-López, A.M.; Li, S.; Dixon, D.A.; Gole, J.L. Hydrolysis of TiCl4: Initial Steps in the Production of TiO2. J. Phys. Chem. A 2010, 114, 7561–7570. [Google Scholar] [CrossRef]
- Kuzin, E.N.; Mokrushin, I.G.; Kruchinina, N.E. Assessment of the possibility of using leucoxene-quartz concentrate as raw material for production of aluminium and magnesium titanates. J. Min. Inst. 2023, 264, 886–894. [Google Scholar] [CrossRef]
- Zablotskaya, Y.V.; Sadykhov, G.B.; Olyunina, T.V.; Goncharenko, T.V. Prospects for development of the Yaregskoye field as a source for obtaining artificial rutile and wollastonite. Chernaya Metall. Byulleten Nauchno-Tekhnicheskoi Ekon. Informatsii 2015, 9, 12–15. [Google Scholar]
- Perovskiy, I.A.; Burtsev, I.N.; Ponaryadov, A.V.; Smorokov, A.A. Ammonium fluoride roasting and water leaching of leucoxene concentrates to produce a high-grade titanium dioxide resource (of the Yaregskoye deposit, Timan, Russia). Hydrometallurgy 2022, 210, 105858. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Kirpichev, D.E.; Nikolaev, A.V. Thermophysical parameters of the anode region of plasma arc under the reduction smelting of quartz-leucoxene concentrate in a metal-graphite reactor. Inorg. Mater. Appl. Res. 2020, 11, 563–567. [Google Scholar] [CrossRef]
- Istomina, E.I.; Istomin, P.V.; Nadutkin, A.V.; Grass, V.E. Desiliconization of leucoxene concentrate through the vacuum silicothermic reduction. Novye Ogneupory 2020, 3, 5–9. [Google Scholar] [CrossRef]
- Shakeel, N.; Piwoński, I.; Iqbal, P.; Kisielewska, A. Green Synthesis of Titanium Dioxide Nanoparticles: Physicochemical Characterization and Applications: A Review. Int. J. Mol. Sci. 2025, 26, 5454. [Google Scholar] [CrossRef] [PubMed]
- Chandoliya, R.; Sharma, S.; Sharma, V.; Joshi, R.; Sivanesan, I. Titanium Dioxide Nanoparticle: A Comprehensive Review on Synthesis, Applications and Toxicity. Plants 2024, 13, 2964. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, P.; Jeice, A.R.; Jayakumar, K. Review of green synthesized TiO2 nanoparticles for diverse applications. Surf. Interfaces 2023, 39, 102912. [Google Scholar] [CrossRef]
- Macwan, D.P.; Dave, P.N.; Chaturvedi, S. A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 2011, 46, 3669–3686. [Google Scholar] [CrossRef]
- Abdelgalil, M.S.; El-Barawy, K.; Ge, Y.; Xia, L. The Recovery of TiO2 from Ilmenite Ore by Ammonium Sulfate Roasting–Leaching Process. Processes 2023, 11, 2570. [Google Scholar] [CrossRef]
- Dubenko, A.V.; Nikolenko, M.V.; Kostyniuk, A.; Likozar, B. Sulfuric Acid Leaching of Altered Ilmenite Using Thermal, Mechanical and Chemical Activation. Minerals 2020, 10, 538. [Google Scholar] [CrossRef]
- Khalloufi, E.; Drevelle, M.; Soucy, O.G. Titanium: An Overview of Resources and Production Methods. Minerals 2021, 11, 1425. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Wijesekera, R.; Bakker, M.G. Leaching of ilmenite to produce titanium based materials: A review. Discover Mater. 2021, 1, 20. [Google Scholar] [CrossRef]
- Massola, C.P.; Chaves, A.P.; Lima, J.R.B.; Andrade, C.F. Separation of silica from bauxite via froth flotation. Miner. Eng. 2009, 22, 315–318. [Google Scholar] [CrossRef]
- Shabanova, N.A.; Popov, V.V.; Sarkisov, P.D. The Chemistry and Technology of Nanodispersed Oxides; Learner’s Guide; IKTs “Akademkniga”: Moscow, Russia, 2007; p. 309. [Google Scholar]
- Song, C.; Xiao, L.; Chen, Y.; Yang, F.; Meng, H.; Zhang, W.; Zhang, Y.; Wu, Y. TiO2-Based Catalysts with Various Structures for Photocatalytic Application: A Review. Catalysts 2024, 14, 366. [Google Scholar] [CrossRef]
- Lin, Y.; Qian, Q.; Chen, Z.; Dinh Tuan, P.; Feng, D. Fabrication of high specific surface area TiO2 nanopowders by anodization of porous titanium. Electrochem. Commun. 2022, 136, 107234. [Google Scholar] [CrossRef]
- Han, F.; Wang, M.; Liu, W.; Song, W. Recovery of sulfuric acid and iron from titanium dioxide waste acid by membrane electrolysis combined with selective electrodialysis. Sep. Purif. Technol. 2024, 344, 127199. [Google Scholar] [CrossRef]
- Bai, R.; Liu, H.; Liu, Y.; Yong, J.W.H. Effects of Foliar Application of Magnesium Fertilizer on Photosynthesis and Growth in Grapes. Agronomy 2024, 14, 2659. [Google Scholar] [CrossRef]
- Liu, P.; Dong, J.; Chang, C.; Zheng, W.; Liu, X.; Xiao, X.; Wen, J. Preparation of Low-Cost Magnesium Oxychloride Cement Using Magnesium Residue Byproducts from the Production of Lithium Carbonate from Salt Lakes. Materials 2021, 14, 3899. [Google Scholar] [CrossRef] [PubMed]
- Kuzin, E.N. Application of atomic emission spectroscopy with microwave (magnetic) plasma in the processes of identifying the chemical composition of steelmaking waste. Chernye Metally 2022, 10, 79–82. [Google Scholar] [CrossRef]







| Component | Before Concentration | After Concentration |
|---|---|---|
| MgXTiYOZ | 54.1% | 91.4% |
| SiO2 | 41.5% | 7.3% |
| Al2O3 | 1.5% | 0.3% |
| CaO | 0.2% | 0.1% |
| TiO2 | 0.1% | 0.1% |
| Other impurities | 3.5% | 0.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kuzin, E. Obtaining Titanium Dioxide from Magnesium Titanates—Products of Pyrometallurgical Processing of Oil Sandstones. Inorganics 2026, 14, 22. https://doi.org/10.3390/inorganics14010022
Kuzin E. Obtaining Titanium Dioxide from Magnesium Titanates—Products of Pyrometallurgical Processing of Oil Sandstones. Inorganics. 2026; 14(1):22. https://doi.org/10.3390/inorganics14010022
Chicago/Turabian StyleKuzin, Evgenii. 2026. "Obtaining Titanium Dioxide from Magnesium Titanates—Products of Pyrometallurgical Processing of Oil Sandstones" Inorganics 14, no. 1: 22. https://doi.org/10.3390/inorganics14010022
APA StyleKuzin, E. (2026). Obtaining Titanium Dioxide from Magnesium Titanates—Products of Pyrometallurgical Processing of Oil Sandstones. Inorganics, 14(1), 22. https://doi.org/10.3390/inorganics14010022

