Synthesis and Photophysical Evaluation of Isoleptic Pt(II) and Pd(II) Complexes Utilizing N^N^N Ligands as Luminophoric Chelators with Different Ancillary Ligands
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design, Synthesis, Purification, and Structural Characterization
2.2. Photophysical Characterization
Compound | λabs/nm | RT-DCM | 77 K-DCM/MeOH | ||||||
---|---|---|---|---|---|---|---|---|---|
ε/L mol−1 cm−1 | λem/nm | τAr/μs a | τAir/μs a | ΦL (%) b | kr/104 s−1 c | knr/104 s−1 c | λem/nm | τ/μs | |
CF3-Pt-AmPy | 302 (14,189) 254 (20,915) | 462 | 0.179 ± 0.004 e | 0.144 ± 0.006 e | <0.02 | kr < 30 | 485 < knr < 498 | 454 | 8.73 ± 0.02 e |
tbu-Pt-AmPy | 314 (22,333) 265 (25,162) | 510 | 12.44 ± 0.02 d | 0.4069 ± 0.0005 d | 0.79 ± 0.04 | 6.3 ± 0.3 | 1.7 ± 0.3 | 496 | 6.64 ± 0.02 e |
tbu-Pt-CNR | 309 (27,625) | 515 | 13.7 ± 0.3 d | 0.374 ± 0.003 d | 0.69 ± 0.03 | 5.0 ± 0.3 | 2.3 ± 0.2 | 487 | 16.75 ± 0.02 e |
CF3-Pt-PPh3 | 298 (17,684) | - | - | - | - | - | - | 455 | 14.01 ± 0.02 d |
tbu-Pt-PPh3 | 321 (13,569) 270 (20,523) | 517 | 4.88 ± 0.07 e | 0.23 ± 0.01 e | <0.02 | kr < 1 | 21 < knr < 22 | 495 | 13.94 ± 0.04 e |
tbu-Pt-PTA | 318 (12,252) 270 (9893) | 512 | 3.819 ± 0.003 d | 0.408 ± 0.003 d | 0.20 ± 0.02 | 5.2 ± 0.9 | 21 ± 1 | 490 | 15.70 ± 0.02 d |
Compound | λabs/nm | RT-Toluene | |||||
---|---|---|---|---|---|---|---|
ε/L mol−1 cm−1 | λem/nm | τAr/μs a | τAir/μs a | ΦL (%) b | kr/104 s−1 c | knr/104 s−1 c | |
CF3-Pt-AmPy | 303 (15,738) | 493 | 6.30 ± 0.05 e | 0.0181 ± 0.0005 e | <0.02 | kr < 0.33 | 14.8 < knr < 15.1 |
tbu-Pt-AmPy | 313 (62,145) | 507 | 10.54 ± 0.01 d | 0.1843 ± 0.0001 d | 0.89 ± 0.04 | 8.4 ± 0.4 | 1.0 ± 0.4 |
tbu-Pt-CNR | 307 (18,168) | 515 | 10.72 ± 0.02 d | 0.258 ± 0.001 e | 0.77 ± 0.04 | 7.2 ± 0.2 | 2.1 ± 0.2 |
CF3-Pt-PPh3 | 300 (20,782) | 507 | 5.62 ± 0.07 f | 0.42 ± 0.01 e | <0.02 | kr < 0.39 | 17 < knr < 18 |
tbu-Pt-PPh3 | 287 (20,664) 317 (18,213) | 511 | 2.77 ± 0.04 f | 1.11 ± 0.06 f | 0.11 ± 0.02 | 4.0 ± 0.9 | 32.1 ± 0.9 |
tbu-Pt-PTA | 320 (11,146) | 510 | 12.21 ± 0.02 d | 0.170 ± 0.001 e | 0.85 ± 0.04 | 7.0 ± 0.2 | 1.2 ± 0.2 |
tbu-Pd-AmPy | 295 (15,632) 399 (2041) | 513 | 3.59 ± 0.04 e | 0.00382 ± 0.00004 f | <0.02 | kr < 1.18 | 29 < knr < 30 |
tbu-Pd-CNR | 282 (19,473) 412 (1863) | 512 | 7.85 ± 0.02 d | 0.0025 ± 0.0001 f | <0.02 | kr < 0.55 | 12 < knr < 13 |
tbu-Pd-PPh3 | 289 (29,241) | 516 | 5.1 ± 0.2 e | 0.00228 ± 0.00004 f | <0.02 | kr < 0.43 | 19 < knr < 20 |
3. Methods and Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yam, V.W.-W.; Au, V.K.-M.; Leung, S.Y.-L. Light-Emitting Self-Assembled Materials Based on D8 and D10 Transition Metal Complexes. Chem. Rev. 2015, 115, 7589–7728. [Google Scholar] [CrossRef]
- Monro, S.; Colón, K.L.; Yin, H.; Roque, J.I.I.I.; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119, 797–828. [Google Scholar] [CrossRef]
- Imberti, C.; Zhang, P.; Huang, H.; Sadler, P.J. New Designs for Phototherapeutic Transition Metal Complexes. Angew. Chem. Int. Ed. 2020, 59, 61–73. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, C.; Li, F. Phosphorescent Heavy-Metal Complexes for Bioimaging. Chem. Soc. Rev. 2011, 40, 2508–2524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, F.; Huang, C. Phosphorescent Chemosensors Based on Heavy-Metal Complexes. Chem. Soc. Rev. 2010, 39, 3007–3030. [Google Scholar] [CrossRef]
- Sajoto, T.; Djurovich, P.I.; Tamayo, A.B.; Oxgaard, J.; Goddard, W.A.I.I.I.; Thompson, M.E. Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes. J. Am. Chem. Soc. 2009, 131, 9813–9822. [Google Scholar] [CrossRef] [PubMed]
- Omidyan, R.; Abbasi, M.; Azimi, G. Photophysical and Optoelectronic Properties of a Platinum(II) Complex and Its Derivatives, Designed as a Highly Efficient OLED Emitter: A Theoretical Study. Int. J. Quantum Chem. 2019, 119, e25793. [Google Scholar] [CrossRef]
- Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P.E.; Forrest, S.R.; Thompson, M.E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc. 2001, 123, 4304–4312. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev. 2010, 110, 2620–2640. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Aliprandi, A.; Septiadi, D.; Kehr, N.S.; De Cola, L. When Self-Assembly Meets Biology: Luminescent Platinum Complexes for Imaging Applications. Chem. Soc. Rev. 2014, 43, 4144–4166. [Google Scholar] [CrossRef]
- Leal, J.; Durá, G.; Jalón, F.A.; Zafon, E.; Massaguer, A.; Cuevas, J.V.; Santos, L.; Rodríguez, A.M.; Manzano, B.R. Luminescent Cyclometalated Platinum Compounds with N, P, and O^O Ligands: Density-Functional Theory Studies and Analysis of the Anticancer Potential. Appl. Organomet. Chem. 2023, 37, e6983. [Google Scholar] [CrossRef]
- Septiadi, D.; Aliprandi, A.; Mauro, M.; De Cola, L. Bio-Imaging with Neutral Luminescent Pt(II) Complexes Showing Metal···metal Interactions. RSC Adv. 2014, 4, 25709. [Google Scholar] [CrossRef]
- Adams, R.D.; Captain, B. Bimetallic Cluster Complexes: Synthesis, Structures and Applications to Catalysis. J. Organomet. Chem. 2004, 689, 4521–4529. [Google Scholar] [CrossRef]
- Freeman, G.R.; Williams, J.A.G. Metal complexes of pincer ligands: Excited states, photochemistry, and luminescence. In Organometallic Pincer Chemistry; Springer: Berlin/Heidelberg, Germany, 2013; Volume 40. [Google Scholar]
- Williams, J.A.G. Photochemistry and Photophysics of Coordination Compounds: Platinum BT—Photochemistry and Photophysics of Coordination Compounds II; Balzani, V., Campagna, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 205–268. [Google Scholar] [CrossRef]
- Dehghanpour, S.; Mahmoudi, A.; Rostami, S. Platinum(II) Complexes with Bidentate Iminopyridine Ligands: Synthesis, Spectral Characterization, Properties and Structural Analysis. Polyhedron 2010, 29, 2190–2195. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Y.; Tong, K.-C.; Chang, X.-Y.; To, W.-P.; Che, C.-M. Luminescent Platinum(II) Complexes with Bidentate Diacetylide Ligands: Structures, Photophysical Properties and Application Studies. Chem.—An Asian J. 2021, 16, 2978–2992. [Google Scholar] [CrossRef] [PubMed]
- DePriest, J.; Zheng, G.Y.; Goswami, N.; Eichhorn, D.M.; Woods, C.; Rillema, D.P. Structure, Physical, and Photophysical Properties of Platinum(II) Complexes Containing Bidentate Aromatic and Bis(Diphenylphosphino)Methane as Ligands. Inorg. Chem. 2000, 39, 1955. [Google Scholar] [CrossRef] [PubMed]
- Danilov, E.O.; Pomestchenko, I.E.; Kinayyigit, S.; Gentili, P.L.; Hissler, M.; Ziessel, R.; Castellano, F.N. Ultrafast Energy Migration in Platinum(II) Diimine Complexes Bearing Pyrenylacetylide Chromophores. J. Phys. Chem. A 2005, 109, 2465–2471. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fei, Y.; Sun, H.; Yu, S.; Liu, J. Regulation of the Switchable Luminescence of Tridentate Platinum(II) Complexes by Photoisomerization. Front. Chem. 2021, 8, 2020. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Xu, L.; Al-Balushi, R.A.; Al-Suti, M.K.; Ilmi, R.; Guo, Z.; Khan, M.S.; Wong, W.-Y.; Raithby, P.R. Cyclometallated Tridentate Platinum(Ii) Arylacetylide Complexes: Old Wine in New Bottles. Chem. Soc. Rev. 2019, 48, 5547–5563. [Google Scholar] [CrossRef]
- Hebenbrock, M.; González-Abradelo, D.; Hepp, A.; Meadowcroft, J.; Lefringhausen, N.; Strassert, C.A.; Müller, J. Influence of the Ancillary Ligands on the Luminescence of Platinum(II) Complexes with a Triazole-Based Tridentate C^N^N Luminophore. Inorganica Chim. Acta 2021, 516, 119988. [Google Scholar] [CrossRef]
- Shikhova, E.; Danilov, E.O.; Kinayyigit, S.; Pomestchenko, I.E.; Tregubov, A.D.; Camerel, F.; Retailleau, P.; Ziessel, R.; Castellano, F.N. Excited-State Absorption Properties of Platinum(II) Terpyridyl Acetylides. Inorg. Chem. 2007, 46, 3038–3048. [Google Scholar] [CrossRef] [PubMed]
- Rausch, A.F.; Murphy, L.; Williams, J.A.G.; Yersin, H. Improving the Performance of Pt(II) Complexes for Blue Light Emission by Enhancing the Molecular Rigidity. Inorg. Chem. 2012, 51, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Sanning, J.; Ewen, P.R.; Stegemann, L.; Schmidt, J.; Daniliuc, C.G.; Koch, T.; Doltsinis, N.L.; Wegner, D.; Strassert, C.A. Scanning-Tunneling-Spectroscopy-Directed Design of Tailored Deep-Blue Emitters. Angew. Chem. Int. Ed. 2015, 54, 786–791. [Google Scholar] [CrossRef]
- Hua, F.; Kinayyigit, S.; Cable, J.R.; Castellano, F.N. Platinum(II) Diimine Diacetylides: Metallacyclization Enhances Photophysical Properties. Inorg. Chem. 2006, 45, 4304–4306. [Google Scholar] [CrossRef]
- Schwartz, G.; Reineke, S.; Rosenow, T.C.; Walzer, K.; Leo, K. Triplet Harvesting in Hybrid White Organic Light-Emitting Diodes. Adv. Funct. Mater. 2009, 19, 1319–1333. [Google Scholar] [CrossRef]
- Lü, Y.; Zhang, M.; Shang, Y.; Xu, H.; Wei, B.; Wang, Z. Platinum Complexes as Phosphorescent Emitters in Highly Efficient Organic Light-Emitting Diodes. J. Shanghai Univ. (Engl. Ed.) 2011, 15, 256–261. [Google Scholar] [CrossRef]
- Wong, K.M.-C.; Yam, V.W.-W. Self-Assembly of Luminescent Alkynylplatinum(II) Terpyridyl Complexes: Modulation of Photophysical Properties through Aggregation Behavior. Acc. Chem. Res. 2011, 44, 424. [Google Scholar] [CrossRef]
- Yam, V.W.-W.; Wong, K.M.-C. Luminescent Metal Complexes of D6, D8 and D10 Transition Metal Centres. Chem. Commun. 2011, 47, 11579. [Google Scholar] [CrossRef]
- Law, A.S.-Y.; Lee, L.C.-C.; Yeung, M.C.-L.; Lo, K.K.-W.; Yam, V.W.-W. Amyloid Protein-Induced Supramolecular Self-Assembly of Water-Soluble Platinum(II) Complexes: A Luminescence Assay for Amyloid Fibrillation Detection and Inhibitor Screening. J. Am. Chem. Soc. 2019, 141, 18570–18577. [Google Scholar] [CrossRef]
- Zamora, A.; Wachter, E.; Vera, M.; Heidary, D.K.; Rodríguez, V.; Ortega, E.; Fernández-Espín, V.; Janiak, C.; Glazer, E.C.; Barone, G.; et al. Organoplatinum(II) Complexes Self-Assemble and Recognize AT-Rich Duplex DNA Sequences. Inorg. Chem. 2021, 60, 2178–2187. [Google Scholar] [CrossRef]
- Onunga, D.O.; Bellam, R.; Mutua, G.K.; Sitati, M.; BalaKumaran, M.D.; Jaganyi, D.; Mambanda, A. Controlling the Reactivity of [Pd(II)(N^N^N)Cl]+ Complexes Using 2,6-Bis(Pyrazol-2-Yl)Pyridine Ligands for Biological Application: Substitution Reactivity, CT-DNA Interactions and in Vitro Cytotoxicity Study. J. Inorg. Biochem. 2020, 213, 111261. [Google Scholar] [CrossRef]
- Gutierrez Suburu, M.E.; Maisuls, I.; Kösters, J.; Strassert, C.A. Room-Temperature Luminescence from Pd(Ii) and Pt(Ii) Complexes: From Mechanochromic Crystals to Flexible Polymer Matrices. Dalton Trans. 2022, 51, 13342–13350. [Google Scholar] [CrossRef] [PubMed]
- Bugarčić, Ž.D.; Bogojeski, J.; van Eldik, R. Kinetics, Mechanism and Equilibrium Studies on the Substitution Reactions of Pd(II) in Reference to Pt(II) Complexes with Bio-Molecules. Coord. Chem. Rev. 2015, 292, 91–106. [Google Scholar] [CrossRef]
- Drouet, S.; Paul-Roth, C.O.; Fattori, V.; Cocchi, M.; Williams, J.A.G. Platinum and Palladium Complexes of Fluorenyl Porphyrins as Red Phosphors for Light-Emitting Devices. New J. Chem. 2011, 35, 438–444. [Google Scholar] [CrossRef]
- Zou, C.; Lin, J.; Suo, S.; Xie, M.; Chang, X.; Lu, W. Palladium(Ii) N-Heterocyclic Allenylidene Complexes with Extended Intercationic Pd···Pd Interactions and MMLCT Phosphorescence. Chem. Commun. 2018, 54, 5319–5322. [Google Scholar] [CrossRef]
- Lai, S.-W.; Cheung, T.-C.; Chan, M.C.W.; Cheung, K.-K.; Peng, S.-M.; Che, C.-M. Luminescent Mononuclear and Binuclear Cyclometalated Palladium(II) Complexes of 6-Phenyl-2,2′-Bipyridines: Spectroscopic and Structural Comparisons with Platinum(II) Analogues1,2. Inorg. Chem. 2000, 39, 255. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, D.; Urriolabeitia, E.P. Luminescence and Palladium: The Odd Couple. Molecules 2023, 28, 2663. [Google Scholar] [CrossRef] [PubMed]
- Peris, E.; Crabtree, R.H. Key Factors in Pincer Ligand Design. Chem. Soc. Rev. 2018, 47, 1959–1968. [Google Scholar] [CrossRef]
- Feuerstein, W.; Breher, F. Synthetic Access to a Phosphorescent Non-Palindromic Pincer Complex of Palladium by a Double Oxidative Addition—Comproportionation Sequence. Chem. Commun. 2020, 56, 12589–12592. [Google Scholar] [CrossRef]
- Strassert, C.A.; Chien, C.-H.; Galvez Lopez, M.D.; Kourkoulos, D.; Hertel, D.; Meerholz, K.; De Cola, L. Lumineszenz Eines Platin(II)-Komplexes in Gelierenden Nanofasern Und Elektrolumineszierenden Filmen. Angew. Chem. 2011, 123, 976–980. [Google Scholar] [CrossRef]
- Mydlak, M.; Mauro, M.; Polo, F.; Felicetti, M.; Leonhardt, J.; Diener, G.; De Cola, L.; Strassert, C.A. Controlling Aggregation in Highly Emissive Pt(II) Complexes Bearing Tridentate Dianionic N^N^N Ligands. Synthesis, Photophysics, and Electroluminescence. Chem. Mater. 2011, 23, 3659. [Google Scholar] [CrossRef]
- Sanning, J.; Stegemann, L.; Ewen, P.R.; Schwermann, C.; Daniliuc, C.G.; Zhang, D.; Lin, N.; Duan, L.; Wegner, D.; Doltsinis, N.L.; et al. Colour-Tunable Asymmetric Cyclometalated Pt(II) Complexes and STM-Assisted Stability Assessment of Ancillary Ligands for OLEDs. J. Mater. Chem. C 2016, 4, 2560. [Google Scholar] [CrossRef]
- Henwood, A.F.; Lesieur, M.; Bansal, A.K.; Lemaur, V.; Beljonne, D.; Thompson, D.G.; Graham, D.; Slawin, A.M.Z.; Samuel, I.D.W.; Cazin, C.S.J.; et al. Palladium(0) NHC Complexes: A New Avenue to Highly Efficient Phosphorescence. Chem. Sci. 2015, 6, 3248–3261. [Google Scholar] [CrossRef]
- Mauro, M.; Aliprandi, A.; Cebrián, C.; Wang, D.; Kübel, C.; De Cola, L. Self-Assembly of a Neutral Platinum(II) Complex into Highly Emitting Microcrystalline Fibers through Metallophilic Interactions. Chem. Commun. 2014, 50, 7269. [Google Scholar] [CrossRef]
- Lakowicz, J.R. (Ed.) Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Krause, M.; von der Stück, R.; Brünink, D.; Buss, S.; Doltsinis, N.L.; Strassert, C.A.; Klein, A. Platinum and Palladium Complexes of Tridentate −C^N^N (Phen-Ide)-Pyridine-Thiazol Ligands—A Case Study Involving Spectroelectrochemistry, Photoluminescence Spectroscopy and TD-DFT Calculations. Inorganica Chim. Acta 2021, 518, 120093. [Google Scholar] [CrossRef]
- Gangadharappa, S.C.; Maisuls, I.; Schwab, D.A.; Kösters, J.; Doltsinis, N.L.; Strassert, C.A. Compensation of Hybridization Defects in Phosphorescent Complexes with Pnictogen-Based Ligands—A Structural, Photophysical, and Theoretical Case-Study with Predictive Character. J. Am. Chem. Soc. 2020, 142, 21353–21367. [Google Scholar] [CrossRef] [PubMed]
- Sillen, A.; Engelborghs, Y. The Correct Use of “Average” Fluorescence Parameters. Photochem. Photobiol. 1998, 67, 475. [Google Scholar] [CrossRef]
- Lees, A.J. The Luminescence Rigidochromic Effect Exhibited by Organometallic Complexes: Rationale and Applications. Comments Inorg. Chem. 1995, 17, 319–346. [Google Scholar] [CrossRef]
- Carrara, S.; Aliprandi, A.; Hogan, C.F.; De Cola, L. Aggregation-Induced Electrochemiluminescence of Platinum(II) Complexes. J. Am. Chem. Soc. 2017, 139, 14605–14610. [Google Scholar] [CrossRef]
- Aliprandi, A.; Mauro, M.; De Cola, L. Controlling and Imaging Biomimetic Self-Assembly. Nat. Chem. 2016, 8, 10–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheelakumari, S.P.; Cappellari, M.V.; Rivas Aiello, M.B.; Hepp, A.; Strassert, C.A. Synthesis and Photophysical Evaluation of Isoleptic Pt(II) and Pd(II) Complexes Utilizing N^N^N Ligands as Luminophoric Chelators with Different Ancillary Ligands. Inorganics 2024, 12, 58. https://doi.org/10.3390/inorganics12020058
Sheelakumari SP, Cappellari MV, Rivas Aiello MB, Hepp A, Strassert CA. Synthesis and Photophysical Evaluation of Isoleptic Pt(II) and Pd(II) Complexes Utilizing N^N^N Ligands as Luminophoric Chelators with Different Ancillary Ligands. Inorganics. 2024; 12(2):58. https://doi.org/10.3390/inorganics12020058
Chicago/Turabian StyleSheelakumari, Silpa Padmakumar, María Victoria Cappellari, María Belen Rivas Aiello, Alexander Hepp, and Cristian Alejandro Strassert. 2024. "Synthesis and Photophysical Evaluation of Isoleptic Pt(II) and Pd(II) Complexes Utilizing N^N^N Ligands as Luminophoric Chelators with Different Ancillary Ligands" Inorganics 12, no. 2: 58. https://doi.org/10.3390/inorganics12020058
APA StyleSheelakumari, S. P., Cappellari, M. V., Rivas Aiello, M. B., Hepp, A., & Strassert, C. A. (2024). Synthesis and Photophysical Evaluation of Isoleptic Pt(II) and Pd(II) Complexes Utilizing N^N^N Ligands as Luminophoric Chelators with Different Ancillary Ligands. Inorganics, 12(2), 58. https://doi.org/10.3390/inorganics12020058