Synthesis, X-ray Structure, and Hirshfeld Analysis of [Ag(3-amino-5,6-dimethyl-1,2,4-triazine)(NO3)]n: A Potent Anticancer and Antimicrobial Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Strategy
2.2. X-ray Structural Analysis of [Ag(3ADMT)(NO3)]n
2.3. FTIR Spectra
2.4. Hirshfeld Surface Analysis
2.5. Cytotoxic Potential
2.6. Antimicrobial Activity
3. Materials and Methods
3.1. Chemicals and Physicochemical Characterizations
3.2. Synthesis of [Ag(3ADMT)(NO3)]n
3.3. Crystal Structural Analysis
3.4. Hirshfeld Surface Analysis
3.5. Assessment of Cytotoxic and Antimicrobial Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raju, S.K.; Karunakaran, A.; Kumar, S.; Sekar, P.; Murugesan, M.; Karthikeyan, M. Silver Complexes as Anticancer Agents: A Perspective Review. Ger. J. Pharm. Biomater. 2022, 1, 6–28. [Google Scholar] [CrossRef]
- Tan, X.J.; Liu, H.Z.; Ye, C.Z.; Lou, J.F.; Liu, Y.; Xing, D.X.; Li, S.P.; Liu, S.L.; Song, L.Z. Synthesis, Characterization and in Vitro Cytotoxic Properties of New Silver(I) Complexes of Two Novel Schiff Bases Derived from Thiazole and Pyrazine. Polyhedron 2014, 71, 119–132. [Google Scholar] [CrossRef]
- El-Naggar, M.A.; Abu-Youssef, M.A.M.; Soliman, S.M.; Haukka, M.; Al-Majid, A.M.; Barakat, A.; Badr, A.M.A. Synthesis, X-Ray Structure, Hirshfeld, and Antimicrobial Studies of New Ag(I) Complexes Based on Pyridine-Type Ligands. J. Mol. Struct. 2022, 1264, 133210. [Google Scholar] [CrossRef]
- Altowyan, M.S.; El-Naggar, M.A.; Abu-Youssef, M.A.M.; Soliman, S.M.; Haukka, M.; Barakat, A.; Badr, A.M.A. Synthesis, X-Ray Structure, Antimicrobial and Anticancer Activity of a Novel [Ag(Ethyl-3-Quinolate)2(Citrate)] Complex. Crystals 2022, 12, 356. [Google Scholar] [CrossRef]
- Nawaz, S.; Isab, A.A.; Merz, K.; Vasylyeva, V.; Metzler-Nolte, N.; Saleem, M.; Ahmad, S. Synthesis, Characterization and Antimicrobial Studies of Mixed Ligand Silver(I) Complexes of Triphenylphosphine and Heterocyclic Thiones: Crystal Structure of Bis[{(Μ2-Diazinane-2-Thione)(Diazinane-2-Thione)(Triphenylphosphine)Silver(I) Nitrate}]. Polyhedron 2011, 30, 1502–1506. [Google Scholar] [CrossRef]
- Isab, A.A.; Nawaz, S.; Saleem, M.; Altaf, M.; Monim-ul-Mehboob, M.; Ahmad, S.; Evans, H.S. Synthesis, Characterization and Antimicrobial Studies of Mixed Ligand Silver(I) Complexes of Thioureas and Triphenylphosphine; Crystal Structure of {[Ag(PPh3)(Thiourea)(NO3)]2·[Ag(PPh3)(Thiourea)]2(NO3)2}. Polyhedron 2010, 29, 1251–1256. [Google Scholar] [CrossRef]
- Tan, S.J.; Yan, Y.K.; Lee, P.P.F.; Lim, K.H. Copper, Gold and Silver Compounds as Potential New Anti-Tumor Metallodrugs. Future Med. Chem. 2010, 2, 1591–1608. [Google Scholar] [CrossRef]
- Nomiya, K.; Tsuda, K.; Sudoh, T.; Oda, M. Ag(I)-N bond-containing compound showing wide spectra in efective antimicrobial activities: Polymeric silver(I) imidazolate. J. Inorg. Biochem. 1997, 68, 39–44. [Google Scholar] [CrossRef]
- El-Naggar, M.A.; Sharaf, M.M.; Albering, J.H.; Abu-Youssef, M.A.M.; Kassem, T.S.; Soliman, S.M.; Badr, A.M.A. One Pot Synthesis of Two Potent Ag(I) Complexes with Quinoxaline Ligand, X-Ray Structure, Hirshfeld Analysis, Antimicrobial, and Antitumor Investigations. Sci. Rep. 2022, 12, 1–14. [Google Scholar]
- Abu-Youssef, M.A.M.; Soliman, S.M.; Langer, V.; Gohar, Y.M.; Hasanen, A.A.; Makhyoun, M.A.; Zaky, A.H.; Öhrström, L.R. Synthesis, Crystal Structure, Quantum Chemical Calculations, DNA Interactions, and Antimicrobial Activity of [Ag(2-Amino-3-Methylpyridine)2]NO3 and [Ag(Pyridine-2-Carboxaldoxime)NO3]. Inorg. Chem. 2010, 49, 9788–9797. [Google Scholar] [CrossRef]
- Spacciapoli, P.; Buxton, D.; Rothstein, D.; Friden, P. Antimicrobial Activity of Silver Nitrate against Periodontal Pathogens. J. Periodontal Res. 2001, 36, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Glynn, F.; Phelan, S.; Sheahan, P.; Crotty, P.; McShane, D. Silver Nitrate Cauterisation, Does Concentration Matter? Clin. Otolaryngol. 2007, 32, 197–199. [Google Scholar] [PubMed]
- De Gracia, C.G. An Open Study Comparing Topical Silver Sulfadiazine and Topical Silver Sulfadiazine-Cerium Nitrate in the Treatment of Moderate and Severe Burns. Burns 2001, 27, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Klasen, H.J. A Historical Review of the Use of Silver in the Treatment of Burns. II. Renewed Interest for Silver. Burns 2000, 26, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Gupta, S.K.; Kalra, V.K.; Vajpayee, R.B.; Sachdev, M.S. Topical Silver Sulphadiazine—A New Drug for Ocular Keratomycosis. Br. J. Ophthalmol. 1988, 72, 192–195. [Google Scholar] [CrossRef]
- Eckhardt, S.; Brunetto, P.S.; Gagnon, J.; Priebe, M.; Giese, B.; Fromm, K.M. Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine. Chem. Rev. 2013, 113, 4708–4754. [Google Scholar] [CrossRef]
- Bayston, R.; Vera, L.; Mills, A.; Ashraf, W.; Stevenson, O.; Howdle, S.M. In Vitro Antimicrobial Activity of Silver-Processed Catheters for Neurosurgery. J. Antimicrob. Chemother. 2010, 65, 258–265. [Google Scholar] [CrossRef]
- Fox, C.L.; Modak, S.M. Mechanism of Silver Sulfadiazine Action on Burn Wound Infections. Antimicrob. Agents Chemother. 1974, 5, 582–588. [Google Scholar] [CrossRef]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O.A. Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Irisli, S.; Tiryaki, F. Silver(I) Complexes Containing Diphosphine and Bis(Phosphine) Disulphide Ligands. Asian J. Chem. 2009, 21, 355–360. [Google Scholar]
- Nomiya, K.; Noguchi, R.; Oda, M. Synthesis and Crystal Structure of Coinage Metal(I) Complexes with Tetrazole (Htetz) and Triphenylphosphine Ligands, and Their Antimicrobial Activities. A Helical Polymer of Silver(I) Complex [Ag(Tetz)(PPh3)2]n and a Monomeric Gold(I) Complex [Au(Tetz)(PPh3)]. Inorg. Chim. Acta 2000, 298, 24–32. [Google Scholar]
- Liu, H.; Long, S.; Rakesh, K.P.; Zha, G.F. Structure-Activity Relationships (SAR) of Triazine Derivatives: Promising Antimicrobial Agents. Eur. J. Med. Chem. 2020, 185, 111804. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mandal, M.K.; Masih, A.; Saha, A.; Ghosh, S.K.; Bhat, H.R.; Singh, U.P. 1,3,5-Triazine: A Versatile Pharmacophore with Diverse Biological Activities. Arch. Pharm. 2021, 354, 2000363. [Google Scholar] [CrossRef]
- Modh, R.P.; De Clercq, E.; Pannecouque, C.; Chikhalia, K.H. Design, Synthesis, Antimicrobial Activity and Anti-HIV Activity Evaluation of Novel Hybrid Quinazoline–Triazine Derivatives. J. Enzyme Inhib. Med. Chem. 2014, 29, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Srivastava, K.; Raja Kumar, S.; Puri, S.K.; Chauhan, P.M.S. Synthesis and Bioevaluation of Hybrid 4-Aminoquinoline Triazines as a New Class of Antimalarial Agents. Bioorg. Med. Chem. Lett. 2008, 18, 6530–6533. [Google Scholar] [CrossRef] [PubMed]
- El-Gendy, Z.; Morsy, J.M.; Allimony, H.A.; Abdel-Monem, W.R.; Abdel-Rahman, R.M. Synthesis of Heterobicyclic Nitrogen Systems Bearing a 1,2,4-Triazine Moiety as Anticancer Drugs: Part IV. Phosphorus Sulfur Silicon Relat. Elem. 2006, 178, 2055–2071. [Google Scholar] [CrossRef]
- Menicagli, R.; Samaritani, S.; Signore, G.; Vaglini, F.; Dalla Via, L. In Vitro Cytotoxic Activities of 2-Alkyl-4,6-Diheteroalkyl-1,3,5-Triazines: New Molecules in Anticancer Research. J. Med. Chem. 2004, 47, 4649–4652. [Google Scholar] [CrossRef]
- Hunt, J.C.A.; Briggs, E.; Clarke, E.D.; Whittingham, W.G. Synthesis and SAR Studies of Novel Antifungal 1,2,3-Triazines. Bioorg. Med. Chem. Lett. 2007, 17, 5222–5226. [Google Scholar] [CrossRef]
- Sangeetha, R.; Balasubramani, K.; Thanigaimani, K.; Razak, I.A. 6-Amino-3,4-Dimethyl-1,2,4-Triazin-1-Ium 2-Anilinobenzoate–3-Amino-5,6-Dimethyl-1,2,4-Triazine (1/1). IUCrData 2017, 2, x170829. [Google Scholar] [CrossRef]
- Fathalla, E.M.; Abu-Youssef, M.A.M.; Sharaf, M.M.; El-Faham, A.; Barakat, A.; Badr, A.M.A.; Soliman, S.M.; Slawin, A.M.Z.; Woollins, J.D. Synthesis, Characterizations, Antitumor and Antimicrobial Evaluations of Novel Mn(II) and Cu(II) Complexes with NNN-Tridentate s-Triazine-Schiff Base Ligand. Inorg. Chim. Acta 2023, 555, 121586. [Google Scholar] [CrossRef]
- Yousri, A.; El-Faham, A.; Haukka, M.; Ayoup, M.S.; Ismail, M.M.F.; Menofy, N.G.E.; Soliman, S.M.; Öhrström, L.; Barakat, A.; Abu-Youssef, M.A.M. A Novel Na(I) Coordination Complex with s-Triazine Pincer Ligand: Synthesis, X-Ray Structure, Hirshfeld Analysis, and Antimicrobial Activity. Crystals 2023, 13, 890. [Google Scholar] [CrossRef]
- Ismail, A.M.; El Sayed, S.A.; Butler, I.S.; Mostafa, S.I. New Palladium(II), Platinum(II) and Silver(I) Complexes of 2-Amino-4,6-Dithio-1,3,5-Triazine; Synthesis, Characterization and DNA Binding Properties. J. Mol. Struct. 2020, 1200, 127088. [Google Scholar] [CrossRef]
- El-Naggar, M.A.; Albering, J.H.; Barakat, A.; Abu-Youssef, M.A.M.; Soliman, S.M.; Badr, A.M.A. New Bioactive 1D Ag(I) Coordination Polymers with Pyrazole and Triazine Ligands; Synthesis, X-Ray Structure, Hirshfeld Analysis and DFT Studies. Inorg. Chim. Acta 2022, 537, 120948. [Google Scholar] [CrossRef]
- Almalioti, F.; MacDougall, J.; Hughes, S.; Hasson, M.M.; Jenkins, R.L.; Ward, B.D.; Tizzard, G.J.; Coles, S.J.; Williams, D.W.; Bamford, S.; et al. Convenient Syntheses of Cyanuric Chloride-Derived NHC Ligands, Their Ag(I) and Au(I) Complexes and Antimicrobial Activity. Dalton Trans. 2013, 42, 12370–12380. [Google Scholar] [CrossRef] [PubMed]
- Swamy, S.J.; Reddy, E.R.; Raju, D.N.; Jyothi, S. Synthesis and Spectral Investigations of Manganese(II), Cobalt(II), Nickel(II), Copper(II) and Zinc(II) Complexes of New Polydentate Ligands Containing a 1,8-Naphthyridine Moiety. Molecules 2006, 11, 1000–1008. [Google Scholar] [CrossRef]
- Raman, N.; Dhaveethu Raja, J.; Sakthivel, A. Synthesis, Spectral Characterization of Schiff Base Transition Metal Complexes: DNA Cleavage and Antimicrobial Activity Studies. J. Chem. Sci. 2007, 119, 303–310. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Shoukry, A.A.; Ali, A.G. Synthesis and Structural Characterization of Ternary Cu (II) Complexes of Glycine with 2,2′-Bipyridine and 2,2′-Dipyridylamine. The DNA-Binding Studies and Biological Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 86, 562–570. [Google Scholar] [CrossRef]
- Sharkey, M.A.; O’Gara, J.P.; Gordon, S.V.; Hackenberg, F.; Healy, C.; Paradisi, F.; Patil, S.; Schaible, B.; Tacke, M. Investigations into the Antibacterial Activity of the Silver-Based Antibiotic Drug Candidate SBC3. Antibiotics 2012, 1, 25–28. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Schier, A. Argentophilic interactions. Angew Chem.—Int. Ed. 2015, 54, 746–784. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Cui, L.N.; Huang, X.; Jin, Q.H.; Zhang, C.L. Tris(3-amino-5,6-dimethyl-1,2,4-triazine-Nκ2)silver(I) trifluromethanesulfonate-3-amino-5,6-dimethyl-1,2,4-triazine (1/1). Acta Crystallogr. E Crystallogr. Commun. 2011, 67, m1526–m1527. [Google Scholar]
- Clausen, H.F.; Chevallier, M.S.; Spackman, M.A.; Iversen, B.B. Three New Co-Crystals of Hydroquinone: Crystal Structures and Hirshfeld Surface Analysis of Intermolecular Interactions. N. J. Chem. 2010, 34, 193–199. [Google Scholar] [CrossRef]
- Spackman, M.A.; Byrom, P.G. A Novel Definition of a Molecule in a Crystal. Chem. Phys. Lett. 1997, 267, 215–220. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2004, 60, 627–668. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef] [PubMed]
- Lippert, B. Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug; Verlag Helvetica Chimica Acta: Zürich, Switzerland, 1999. [Google Scholar]
- Adams, M.; Kerby, I.J.; Rocker, I.; Evans, A.; Johansen, K.; Franks, C.R. A Comparison of the Toxicity and Efficacy of Cisplatin and Carboplatin in Advanced Ovarian Cancer. Acta Oncol. 2009, 28, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef]
- Piccart, M.J.; Lamb, H.; Vermorken, J.B. Current and Future Potential Roles of the Platinum Drugs in the Treatment of Ovarian Cancer. Ann. Oncol. 2001, 12, 1195–1203. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Liu, J.G.; Liu, J.; Xue, G.Q.; Li, H.; Liu, J.Z.; Zhou, H.; Qu, L.H.; Ji, L.N. DNA-Binding and Photocleavage Studies of Cobalt(III) Mixed-Polypyridyl Complexes Containing 2-(2-Chloro-5-Nitrophenyl)Imidazo [4,5-f][1,10]Phenanthroline. J. Inorg. Biochem. 2001, 85, 291–296. [Google Scholar] [CrossRef]
- Puszyńska-Tuszkanow, M.; Grabowski, T.; Daszkiewicz, M.; Wietrzyk, J.; Filip, B.; MacIejewska, G.; Cieślak-Golonka, M. Silver(I) Complexes with Hydantoins and Allantoin: Synthesis, Crystal and Molecular Structure, Cytotoxicity and Pharmacokinetics. J. Inorg. Biochem. 2011, 105, 17–22. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble Metals in Medicine: Latest Advances. Coord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Zaki, M.; Arjmand, F.; Tabassum, S. Current and Future Potential of Metallo Drugs: Revisiting DNA-Binding of Metal Containing Molecules and Their Diverse Mechanism of Action. Inorg. Chim. Acta 2016, 444, 1–22. [Google Scholar] [CrossRef]
- Banti, C.N.; Hadjikakou, S.K. Anti-Proliferative and Anti-Tumor Activity of Silver(I) Compounds. Metallomics 2013, 5, 569–596. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.A.; Abd-Elzaher, M.M.; Mahmoud, K. Synthesis and Anticancer Properties of Silver(I) Complexes Containing 2,6-Bis(Substituted)Pyridine Derivatives. Int. J. Med. Chem. 2013, 2013, 256836. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver Coordination Compounds: A New Horizon in Medicine. Coord. Chem. Rev. 2016, 327, 349–359. [Google Scholar] [CrossRef]
- Yousri, A.; Haukka, M.; Abu-Youssef, M.A.; Ayoup, M.S.; Ismail, M.M.; El Menofy, N.G.; Soliman, S.M.; Barakat, A.; Noa, F.M.A.; Öhrström, L. Synthesis, structure diversity, and antimicrobial studies of Ag (I) complexes with quinoline-type ligands. Cryst. Eng. Comm. 2023, 25, 3922–3930. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro; Agilent Technologies Inc.: Oxfordshire, UK, 2020. [Google Scholar]
- Sheldrick, G.M. Shelxt–integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. Cryst. Eng. Comm. 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Bond | Distance | Bond | Distance |
---|---|---|---|
Ag(1)–N(1) | 2.2330(16) | Ag(1)–Ag(1)#2 | 3.2263(2) |
Ag(1)–N(2)#1 | 2.2634(15) | Ag(1)–O(1) | 2.4386(18) |
Ag1–O3#3 | 2.6293(17) | ||
Bonds | Angle | Bonds | Angle |
N(1)–Ag(1)–N(2)#1 | 149.29(6) | O(1)–Ag(1)–Ag(1)#2 | 163.69(4) |
N(1)–Ag(1)–O(1) | 123.44(6) | N(1)–Ag(1)–Ag(1)#1 | 107.10(4) |
N(2)#1–Ag(1)–O(1) | 80.87(6) | N(2)#1–Ag(1)–Ag(1)#1 | 65.83(4) |
N(1)–Ag(1)–Ag(1)#2 | 65.08(4) | O(1)–Ag(1)–Ag(1)#1 | 61.23(4) |
N(2)#1–Ag(1)–Ag(1)#2 | 86.97(4) |
D-H...A | d(D-H) | d(H...A) | d(D...A) | <(DHA) | Symmetry Codes |
---|---|---|---|---|---|
N4-H4B...O2 | 0.84(3) | 2.064(3) | 2.848(3) | 154.8 | |
C2-H2A…O1 | 0.98 | 2.503 | 3.413(3) | 154.3 | 1/2 − x, −3/2 + y, 3/2 − z |
C2-H2C…O3 | 0.98 | 2.460 | 3.259(2) | 138.5 | −1/2 + x, 3/2 − y, −1/2 + z |
C4-H4C…O2 | 0.98 | 2.547 | 3.454(3) | 153.8 | 1 − x, 1 − y, 1 − z |
C4-H4D…O3 | 0.98 | 2.534 | 3.321(3) | 137.3 | −1/2 + x, 3/2− y, −1/2+z |
N4-H4A…N3 | 0.89(3) | 2.16(3) | 3.052(3) | 176(3) | 1 − x, 1 − y, 1 − z |
Compound | A-549 | MCF-7 |
---|---|---|
[Ag(3ADMT)(NO3)]n | 2.96 ± 0.31 | 1.97± 0.18 |
[Ag2(2ClDAT)2(NO3)2(H2O)]n | 1.85 ± 0.26 | 3.01 ± 0.59 |
3ADMT | 239.66 ± 6.28 | 214.21 ± 5.97 |
AgNO3 | 14.70 ± 0.53 | 2.81 ± 0.97 |
cis-platin | 7.5 ± 0.69 | 4.59 ± 0.53 |
Compound | Gram-Positive Bacteria | Gram-Negatvie Bacteria | Fungi | |||
---|---|---|---|---|---|---|
St. aureus | B. subtilis | E. coli | P. vulgaris | A. fumigatus | C. albicans | |
[Ag(3ADMT)(NO3)]n | 15 (30.5) | 17 (17.2) | 16 (30.5) | 22 (6.1) | NAd (ND e) | 15 (156.25) |
[Ag2(2ClDAT)2(NO3)2(H2O)]n | 12 (156) | 13 (156) | 9 (625) | 14 (312.5) | NAd (ND e) | NAd (ND e) |
AgNO3 | 14 (64) | 13 (312.5) | 15 (32) | 20 (156) | NAd (ND e) | 10 (128) |
3ADMT | NAd (ND e) | NAd (ND e) | NAd (ND e) | NAd (ND e) | NAd (ND e) | NAd (ND e) |
Control | 24 (9.7) b | 26 (4.8) b | 30 (4.8) b | 25 (4.8) b | 17 (156.25) c | 20 (312.5) c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Naggar, M.A.; Abu-Youssef, M.A.M.; Haukka, M.; Barakat, A.; Sharaf, M.M.; Soliman, S.M. Synthesis, X-ray Structure, and Hirshfeld Analysis of [Ag(3-amino-5,6-dimethyl-1,2,4-triazine)(NO3)]n: A Potent Anticancer and Antimicrobial Agent. Inorganics 2023, 11, 350. https://doi.org/10.3390/inorganics11090350
El-Naggar MA, Abu-Youssef MAM, Haukka M, Barakat A, Sharaf MM, Soliman SM. Synthesis, X-ray Structure, and Hirshfeld Analysis of [Ag(3-amino-5,6-dimethyl-1,2,4-triazine)(NO3)]n: A Potent Anticancer and Antimicrobial Agent. Inorganics. 2023; 11(9):350. https://doi.org/10.3390/inorganics11090350
Chicago/Turabian StyleEl-Naggar, Mostafa A., Morsy A. M. Abu-Youssef, Matti Haukka, Assem Barakat, Mona M. Sharaf, and Saied M. Soliman. 2023. "Synthesis, X-ray Structure, and Hirshfeld Analysis of [Ag(3-amino-5,6-dimethyl-1,2,4-triazine)(NO3)]n: A Potent Anticancer and Antimicrobial Agent" Inorganics 11, no. 9: 350. https://doi.org/10.3390/inorganics11090350
APA StyleEl-Naggar, M. A., Abu-Youssef, M. A. M., Haukka, M., Barakat, A., Sharaf, M. M., & Soliman, S. M. (2023). Synthesis, X-ray Structure, and Hirshfeld Analysis of [Ag(3-amino-5,6-dimethyl-1,2,4-triazine)(NO3)]n: A Potent Anticancer and Antimicrobial Agent. Inorganics, 11(9), 350. https://doi.org/10.3390/inorganics11090350